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Supplementary Information: 

Supplementary Methods 

Persistent homology 

The main mathematical method used in this paper to analyze the lung CT scans is called persistent 

homology11,12,13. It has been designed as a computational way to capture the shape of objects 

depending on the scale at which they are viewed. To understand the basic idea of persistence, 

imagine a given set of high resolution images of a human face. If one zooms in, one can capture tiny 

details of the face, but one may not be able to recognize the person in the photo. Zooming out, one 

sees less detail, but it will be easier to see the person in the photograph. Continuing the process of 

zooming out, eventually all details are lost. It is clear that the choice of zooming scale depends on 

the kind of information we are hoping to recover. We can avoid making a particular choice of 

zooming scale, and instead study all possible scales at once. This is the approach of persistent 

homology to study data – it presents us with information about the shape of our data at a range of 

scales, controlled by a parameter 𝑟. For small values of 𝑟, we see single points; as 𝑟 increases, 

connections between points begin to emerge, creating an approximate shape of the data.  

The data set to be analyzed is typically thought to be a discrete subset 𝑆 sampled from a metric 

space. To understand the structure of the set, and so capture the information it contains, one creates 

approximations of 𝑆 by simple shapes 𝐾𝑟, called simplicial complexes, for a range of values of the 

scale parameter 𝑟. We define the notion of simplicial complex in Section 3 below. As 𝑟 increases, 

the corresponding complexes will grow and their structure will also change. Persistent homology 

will exhibit the evolution of these approximations. Intuitively, homology in degree zero describes 

the components of the set, in degree one it uncovers the existence of non-trivial loops at a particular 

scale, while degree two identifies voids or cavities.  

This topological information is represented in the form of a set of intervals or bars with 

multiplicities, called the barcode (see Figure 9). The long bars, which represent features that persist 

over a wide range of values of the scale parameter, represent significant features of the underlying 

space the data was sampled from, while short bars typically (but not always) represent noise. Two 

barcodes can be compared by computing their distance, which provides a measure of similarity. 

Thanks to the stability theorem, this comparison is robust with respect to noise and small-scale 

perturbations. We now give details of this process. 
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Figure 9 A point cloud is sampled from a deformed annulus in the plane. The sequence of pictures from left to right shows simplicial 

representations of the set at different scales. In the picture on the left, there are nine components, represented by the horizontal bars below the 

picture. As the scale increases, all the components combine into one as we move from the left to the middle picture, and this persists for all 
remaining scales. There are no loops in the left picture, but two loops emerge at the middle scale, represented by the two bars at the bottom. 

Increasing the scale parameter from the middle to the right picture causes one of those loops to disappear, while the other one persists. Thus, the 

topological signal is that we have a ‘shape consisting of one piece with a hole in it’.  

Persistence modules and barcodes 

A starting point of persistent homology is the notion of a persistence module 𝑉, which is a family of 

vector spaces over some field 𝔽 and linear maps of the form: 

𝑉0
𝑓0
→ 𝑉1

𝑓1
→⋯

𝑓𝑛−1 
→ 𝑉𝑛,

in which composing the consecutive maps starting from some 𝑉𝑖 to 𝑉𝑗 we get linear maps 𝑓𝑖,𝑗: 𝑉𝑖 →

𝑉𝑗, for any 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. In particular, 𝑓𝑖,𝑖 is the identity map and 𝑓𝑖,𝑖+1 = 𝑓𝑖. A particularly simple 

persistence module, denoted by  𝐼[𝑖,𝑗−1], which plays a special role in the theory, is obtained as 

follows. Fix 𝑖 and 𝑗, such that 0 ≤ 𝑖 ≤ 𝑗 − 1 ≤ 𝑛 and consider the following persistence module 

0 → ⋯ → 0 → 𝔽
𝑖𝑑
→⋯

𝑖𝑑
→ 𝔽 → 0 → ⋯ → 0

where 𝔽 is the ground field considered as a 1-dimensional vector space over 𝔽. The first and the last 

nontrivial terms appear at the places 𝑖 and 𝑗 − 1 respectively. More complex examples are obtained 

by taking sums of these simple modules in the following sense. If 𝑉 and 𝑉′ are persistence modules, 

then their direct sum 𝑉⨁𝑉′ is the persistence module 𝑉′′, where

𝑉𝑖
′′ = 𝑉𝑖⨁𝑉𝑖

′,    and   𝑓𝑖
′′ = (

𝑓𝑖 0

0 𝑓𝑖
′). 

A theorem by Gabriel43 states that any persistence module is a direct sum of persistence modules of 

the form 𝐼[𝑖,𝑗]. Hence, a persistence module 𝑉 can be fully characterized by a finite set 𝐷(𝑉), called 

the persistence diagram, which contains a point (𝑖, 𝑗) ∈  ℝ2 (0 ≤ 𝑖 ≤ 𝑗 < 𝑛) for every summand of
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the form 𝐼[𝑖,𝑗−1] appearing in the decomposition of 𝑉 (and a point of the form (𝑖,∞) ∈ ℝ × (ℝ ∪
{∞}) for every summand of the form 𝐼[𝑖,𝑛]). Each point in 𝐷(𝑉) appears with multiplicity equal to

the number of copies of the corresponding summand. For technical reasons, all points in the diagonal 

{(𝑥, 𝑦) ∈ ℝ2| 𝑦 = 𝑥} are added to 𝐷(𝑉) as well.

A barcode is a graphical representation of 𝑉 equivalent to the persistence diagram 𝐷(𝑉). It is a 

collection of intervals with multiplicities44. The barcode of 𝑉 consists of one interval (or bar) of the 

form [𝑖, 𝑗) for every off-diagonal point (𝑖, 𝑗) in 𝐷(𝑉), which describes the range of values of the 

scale parameter over which a particular feature persists. The multiplicity of an interval is that of its 

corresponding point in 𝐷(𝑉). Figure 9 shows an example of a barcode. 

Simplicial complexes 

The persistence modules most commonly used in topological data analysis arise from filtered 

simplicial complexes, whose combinatorial nature is very suitable for computations. 

A simplicial complex 𝐾 with vertex set 𝑆 is a family of nonempty, finite subsets of 𝑆. Subsets of  

𝑆 of 𝑝 + 1 elements are called 𝑝-simplices. A 𝑝-simplex is represented as a list of its vertices  

[𝑣0, … , 𝑣𝑝]. In a simplicial complex 𝐾, one requires that all elements 𝑣 of 𝑆 form 0-simplices [𝑣] in

𝐾, and if 𝜎 ∈ 𝐾 and ∅ ≠ 𝜏 ⊂ 𝜎, then 𝜏 ∈ 𝐾. We usually consider the case when 𝑆 is finite. A 

simplicial complex 𝐾 has the associated space |𝐾|, called the geometric realization, which can be 

regarded as a triangulated polyhedron in an appropriate Euclidean space. The combinatorial structure 

of 𝐾 can be used to define the so-called 𝑝th homology 𝐻𝑝(𝐾) of |𝐾| for all 𝑝 ≥ 0. To define 𝐻𝑝(𝐾),

we first define the space of 𝑝-chains 𝐶𝑝(𝐾) to be the vector space consisting of all finite sums of the

form ∑ 𝑎𝜎𝜎𝜎 , where 𝜎 runs through all 𝑝-simplices, and 𝑎𝜎 is an element of a ground field 𝔽.

Typically, coefficients 𝑎𝜎 are taken from a finite field ℤp of integers modulo 𝑝, for instance ℤ2 =

{0,1}, which was also used in our computations. These vector spaces are connected by the boundary 

homomorphism 𝜕: 𝐶𝑝(𝐾) → 𝐶𝑝−1(𝐾). This map is defined on 𝑝-simplices 𝜎 = [𝑣0, … , 𝑣𝑝] by

𝜕(𝜎) =  ∑(−1)𝑘[𝑣0, … , 𝑣𝑘̂
𝑘

, … , 𝑣𝑝], 

and then extended by linearity. Here the symbol 𝑣𝑘̂ means that the corresponding element 𝑣𝑘 is 

omitted. The next step is to define a vector space 𝑍𝑝(𝐾) of 𝑝-cycles of 𝐾, which consists of all 

vectors 𝑣 ∈ 𝐶𝑝(𝐾) such that 𝜕(𝑣) = 0, and a vector space 𝐵𝑝(𝐾) of 𝑝-boundaries of 𝐾, which

consists of all 𝑣 ∈ 𝐶𝑝(𝐾) such that 𝑧 = 𝜕(𝑤), for some 𝑤 ∈ 𝐶𝑝+1(𝐾). It is important to note that ∂ ∘

∂ = 0, that is, performing this operation twice sends every simplex to zero. This guarantees that 

𝐵𝑝(𝐾) forms a vector subspace of 𝑍𝑝(𝐾). Hence, it makes sense to define the quotient space, which

is called the 𝑝th homology of 𝐾:

𝐻𝑝(𝐾) =
𝑍𝑝(𝐾)

𝐵𝑝(𝐾)
⁄ .

The dimension of 𝐻𝑝 (𝐾) is known as the 𝑝th Betti number 𝛽𝑝, of |𝐾|. Intuitively, 𝛽0 computes the

number of connected components of the geometric realization of 𝐾. Likewise, 𝛽1 computes the 

number of 1-dimensional holes, 𝛽2 computes the number of 2-dimensional holes, etc. 

If 𝐿 is also a simplicial complex on the set of vertices 𝑇, such that 𝑇 is a subset of 𝑆 and any simplex 

𝜎 of 𝐿 is also a simplex of 𝐾, then 𝐿 is called a subcomplex of 𝐾 and we write 𝐿 ⊂ 𝐾. It follows that 

𝐶𝑝(𝐿) ⊂ 𝐶𝑝(𝐾). If 𝑧 is a p-cycle in 𝐿, it is also a p-cycle of 𝐾 and if 𝑧 is a p-boundary in 𝐿, it is also 
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a p-boundary in 𝐾. Hence, there is a well-defined map 𝑓:𝐻𝑝(𝐿) → 𝐻𝑝(𝐾), 𝑝 ≥ 0, which is called

the induced map. In general, the induced map is not injective, even though 𝑍𝑝(𝐿) ⊂ 𝑍𝑝(𝐾). 

A filtered complex 𝐾 is a nested sequence of subcomplexes 

𝐾0 ⊂ 𝐾1 ⊂ ⋯ ⊂ 𝐾𝑛. 

Choosing a homology degree 𝑝 ≥ 0, we can write all homology groups and induced maps as a 

sequence 

𝐻𝑝(𝐾0)
𝑓0
→𝐻𝑝(𝐾1)

𝑓1
→⋯

𝑓𝑛−1
→ 𝐻𝑝(𝐾𝑛)

that forms a persistence module. The degree-𝑝 barcode of |𝐾| is defined as the barcode of this 

persistence module. 

Comparing persistence diagrams 

There is a number of ways to compare persistence diagrams 45. If X and Y are persistence diagrams, 

then the bottleneck distance between 𝑋 and 𝑌 is defined by  

𝑑𝐵(𝑋, 𝑌) = 𝑖𝑛𝑓
𝛾
𝑠𝑢𝑝
𝑥
‖𝑥 − 𝛾(𝑥)‖∞

where 𝛾 runs through all bijections from 𝑋 → 𝑌, while 𝑥 runs through all points of 𝑋 and for a point 

of the form 𝑧 = (𝑎, 𝑏) ∈  ℝ × (ℝ ∪ {∞}), one has ‖𝑧‖∞ = 𝑚𝑎𝑥 {|𝑎|, |𝑏|}, and ‖(𝑎,∞) −
(𝑏,∞)‖∞ = |𝑎 − 𝑏|. The 𝑞th Wasserstein distance (𝑞 ≥ 1) is defined by

𝑑𝑊𝑞(𝑋, 𝑌) = 𝑖𝑛𝑓
𝛾
(∑‖𝑥 − 𝛾(𝑥)‖∞

𝑞

𝑥

)

1
𝑞

. 

These expressions define pseudo-metrics, as it is possible to create distinct persistence diagrams for 

which either of these distances is zero. 

Stability 

The stability theorem for persistent homology, due to Cohen-Steiner, Edelsbrunner and Harer46, is 

easier to state in terms of tame functions on triangulable spaces, that is, on spaces which can be 

represented as a simplicial complex.  

Let 𝑋 be a triangulable topological space and let 𝑓: 𝑋 → ℝ be a real-valued function on 𝑋. A 

homological critical value of 𝑓 is a real number 𝑎, for which there exists an integer 𝑝 such that for 

all sufficiently small 𝜀 > 0 the map 𝐻𝑝(𝑓
−1(−∞, 𝑎 − 𝜖]) → 𝐻𝑝(𝑓

−1(−∞, 𝑎 + 𝜖]) induced by

inclusion is not an isomorphism. So, the number 𝑎 corresponds to the value at which the homology 

of sub-level sets changes. A function f is tame if it has a finite number of homological critical values 

and the homology groups 𝐻𝑝(𝑓
−1(−∞, 𝑎 − 𝜖]) are finite dimensional for all 𝑝 ≥ 0 and 𝑎 ∈ ℝ.

Typical examples of such functions are Morse functions on compact manifolds and piece-wise linear 

functions on finite simplicial complexes. For a real number 𝑟, one sets 𝑉𝑟 = 𝐻𝑝(𝑓
−1(−∞, 𝑟]). If 𝑟 <

𝑡, we have 𝑓−1(−∞, 𝑟] ⊂ 𝑓−1(−∞, 𝑡] and therefore we can consider the induced linear map 𝑉𝑟 → 𝑉𝑠,
which is an isomorphism, if the interval [𝑟, 𝑠] contains no homological critical value of 𝑓. Hence, 

varying 𝑟, one obtains a finite number of distinct vector spaces 𝑉𝑟𝑖, leading to a persistence module
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𝑉𝑟0 → 𝑉𝑟1 → ⋯ → 𝑉𝑟𝑛 .

In particular, we have a corresponding persistence diagram 𝐷(𝑓). The classical stability theorem 

reads as follows46: 

Theorem 1.  Let 𝑋 be a triangulable topological space with continuous tame functions 𝑓, 𝑔: 𝑋 → ℝ. 

Then the persistence diagrams satisfy 

𝑑𝐵(𝐷(𝑓), 𝐷(𝑔)) ≤ ‖𝑓 − 𝑔‖∞.

In other words, persistence diagrams are stable under possibly irregular perturbations of the function 

used to create the diagram. In our particular case, this theorem ensures that imprecisions of 

measurement, such as small differences in the alignment of lungs when the scans were taken, will 

not lead to a drastic change in the resulting barcodes. There are similar results in terms of 

Wasserstein distances 46.  

Height filtration 

In data analysis, a given data set can typically be approximated in several different ways by a family 

of simplicial complexes. In choosing a suitable representation, one is guided by the properties of the 

set and computational efficiency. Such a representation is fixed by choosing a real-valued tame 

function 𝑓 and computing its sublevel sets 𝑓−1(−∞, 𝑡] as in the section on Stability above.

For instance, given a 3D object 𝑋, a commonly used function 𝑓: 𝑋 → ℝ is that which sends each 

point (𝑥, 𝑦, 𝑧) ∈ 𝑋 to its “height”, i.e. its third coordinate, 𝑧. In the paper, to compute the upwards 

complexity of the graph representation 𝑋 of a bronchial tree, we use a function very similar to this: 

for each vertex 𝑣 in 𝑋, we define 𝑓(𝑣) as the vertical distance from 𝑣 to the highest point in the CT 

scan, and for each edge 𝑒 in 𝑋 connecting two vertices 𝑣 and 𝑣′, we define 𝑓(𝑒) =
𝑚𝑎𝑥{𝑓(𝑣), 𝑓(𝑣′)}.

For functions like these, the bars in the degree-0 barcode have a clear interpretation as changes in 

trajectory. In the case of upwards complexity, those are airway trajectories that change to face 

upwards. 

Alpha complexes 

Another construction we use are 3D alpha complexes, which can substantially reduce the 

computational complexity. To describe this construction, first let us say a word about Voronoi 

diagrams. Given a set 𝑆 of points in Euclidean space ℝ𝑛, one defines convex polytopes 𝑉𝑠, 𝑠 ∈
𝑆 called Voronoi cells, which consist of all points 𝑥 ∈ ℝ𝑛 such that 𝑑𝑖𝑠𝑡(𝑥, 𝑠) ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑠′) for any

other 𝑠′ ∈ 𝑆. The subsets 𝑉𝑠 give a tessellation of ℝ𝑛.

Given a finite set of points 𝑆 ⊂ ℝ𝑛 and a real number 𝑟 ∈ ℝ𝑛, one defines the region 𝑅𝑠(𝑟) =
𝐵̅𝑠(𝑟) ∩ 𝑉𝑠, where 𝐵̅𝑠(𝑟) is the closure of the ball of radius 𝑟 centered at 𝑠. Now we can form the α-

complex (or alpha complex) 𝐾𝑟 as follows: a subset 𝜎 ⊂ 𝑆 is called an α-simplex if 

⋂𝑅𝑠(𝜎) ≠ ∅.

𝑠∈𝜎

See Figure 10 for an illustration of this construction. 
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Figure 10 An example of a system of Voronoi cells constructed for a particular value of the scale parameter on a subset of the plane (shown in 

blue). Superimposed is the alpha complex that represents the structure the set at this scale. The topological signal here is that, at this scale, the 

points were sampled from a deformed annulus.   

Varying 𝑟, one obtains a finite family of nested α-complexes 

𝐾𝑟0 ⊂ 𝐾𝑟1 ⊂ ⋯ ⊂ 𝐾𝑟𝑛 .

This is a typical example of a filtered complex. Hence, one can apply the machinery of persistent 

homology. In particular, we have the corresponding persistence diagrams. This geometric 

construction can also be phrased in terms of tame functions as before, and thus fits into the same 

general framework.  

In the Methods section in the paper, we applied the alpha complex filtration to two sets of points in 

ℝ3. On the one hand, we used the vertices of the 3D graph representation of the bronchial tree 
described in the Methods subsection called MSCT analysis. The degree-1 barcode of the alpha 

complex filtration on this collection of vertices provided additional information about the complexity 

of the branching structure of the airways. On the other hand, we also used a 3D array of binary 

voxels representing the luminal surface of the airways together with the surface of the lobes as in 

Figure 4A of the paper. For each binary voxel image, we constructed the point cloud in ℝ3 by 
including the coordinates of every voxel with value 1. The degree-2 barcode of the alpha complex 

filtration on this set of points gave information about how the airways fill the cavity of the lobes.  
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