
 

 

 

Supplementary Note 1: Brief introduction to ENSO, IOD and NAO. 

ENSO (El-Niño Southern Oscillation) is a pattern of sea-surface temperature (SST) and 

pressure gradients between the eastern and western parts of the equatorial Pacific Ocean1. It 

is the dominant source of interannual climate variability around the globe. When SST is 

abnormally high (low) in the eastern Pacific Ocean and the pressure gradient between eastern 

and western Pacific Ocean is low (high), the state of ENSO is here positive (El Niño), while 

the negative phase represents La Niña. During an El Niño event, the westerlies in the 

equatorial Pacific Ocean weaken, which hinders the uprising of cold water, leading to warm 

SST anomalies along the coasts of Peru and Ecuador. El Niño also results in shifts in the 

equatorial large-scale evaporation, condensation and wind patterns, causing climate 

anomalies around the globe through so-called teleconnections2. 

IOD (Indian Ocean Dipole) refers to the occurrence of opposite SST anomalies in the 

western Indian Ocean and on the coasts of northern Indonesia3. Although some connection 

between ENSO and IOD exists, only 20 to 25% of IOD variability can be explained by 

ENSO, and a notable proportion of IOD events occur independent of ENSO4 (and vice 

versa). During the evolution of a positive (negative) IOD, cold (warm) SST anomalies appear 

in the eastern part of the Indian Ocean, with warm (cold) anomalies in the western part. 

These SST anomalies change the patterns of zonal winds, moisture transport and 

precipitation in the neighboring areas as well as elsewhere. 

NAO (North Atlantic Oscillation) is defined as the difference in atmospheric pressure 

between northern (Iceland) and southern (Azores) parts of the North Atlantic Ocean5. When 

the pressure gradient from the southern high-pressure to the northern low-pressure region is 

high (low), NAO is in its positive (negative) phase. The positive phase of NAO strengthens 

westerlies in the northern hemisphere, which modulates the climate from western Europe all 

the way to China6. 

 

  



 

 

 

Supplementary Note 2: Climatological effects of ENSO, IOD and NAO. 

The climatological patterns related to ENSO events are widely studied. At global scale, El 

Niño has been found to be associated with lower precipitation in Southeast Asia, northern 

South America, northeastern Australia7 as well as parts of southern8 and northern9 Africa. 

These are all areas where this study found significant relationships between ENSO and crop 

productivity. Temperature variability in these areas also shows relationships with ENSO. 

For example, a global study conducted by Trenberth & Caron8 found significant negative 

correlations between the Southern Oscillation Index (gives opposite values compared to the 

index used in this study) and land surface temperatures (LST) in Southeast Asia, northern 

South America, southern and eastern Africa as well as South Asia. Also, the Palmer Drought 

Severity Index (PDSI) patterns related to ENSO follow the results of this study remarkably 

well10. 

A global study conducted by Saji & Yamagata4 found strong positive partial (impact of 

ENSO filtered) correlations between LST and IOD in southern Australia, Japan, the Korean 

peninsula and southern Africa. Hence, positive IOD events tend to increase LST in these 

areas, which are also represented in the results of this study. Further, the same study revealed 

that a positive phase in the IOD tends to be related with higher precipitation in central Africa 

and northern India, while it is related with lower precipitation in eastern Australia and South 

Africa. Studies conducted at sub-global level were also inspected, and especially in 

Australia, the effects of the positive phase have been extensively linked to high 

temperatures11, low precipitation12-14 and extreme drought events12. Furthermore, higher 

precipitation has been found to follow the positive IOD phase in southern15, 16 and central 

Africa13, 16 as well as northern India13, 17. However, the relationship between Indian 

precipitation and IOD has been found to be non-linear and related to the phase of ENSO18. 

To the best of our knowledge, no global study exists of NAO’s impacts on global 

hydroclimatological patterns. However, several regional and local studies do exist. Hurrell 

et al.6 showed a relationship between the positive phase of NAO and higher temperatures in 

large parts of the northern hemisphere, from western Europe to China and North America. 

For West Europe, these patterns are further confirmed by regional studies, which show that 

winter temperatures tend to be higher during a positive NAO phase, especially in France, 

Germany, United Kingdom as well as Scandinavia and several parts of East Europe19. For 

the Middle East, studies show an opposite effect, as a positive phase in NAO tends to be 

associated with below average temperatures19-21. Furthermore, a positive NAO phase tends 

to be associated with lower precipitation in Mediterranean Europe and the Middle East21, 22 

as well as some parts of northern Africa23, and higher precipitation in several areas in the 

northern Europe22. Furthermore, summer NAO has been found to influence weather patterns 

even in parts of India and Central Asia24. 

  



 

 

 

Supplementary Note 3: Temporal changes in the relationship between crop 

productivity and oscillation indices. 

We decided to examine potential changes in the linkages between teleconnections and crop 

productivity, because it is well documented in the literature that the strength, magnitude and 

activity of the studied climate oscillations vary both temporally and spatially5, 25-28. This 

variability is especially well documented for ENSO, as its power has changed over time on 

timescales from millennia to decades29-32. Moreover, many studies have shown that its 

influences on climates in distant regions have changed28, 33, 34. Ward et al.35 showed that there 

has also been a change in the correlation between ENSO and flood peak discharges over the 

last half century. 

 

  



 

 

 

 

Supplementary Figure 1: Regional division used in the regional analyses of this study. 

  



 

 

 

 

Supplementary Figure 2. Country level calibration results for all crop types included in the 

LPJmL model, averaged over years 2001–2010. The x-axis shows the yield according to 

FAOSTAT36 and the y-axis shows simulated yield. For each crop, the Willmott coefficient37 

is calculated to represent the goodness of the calibration, similarly to Fader et al.38 The 

point sizes represent the average production for the country and time-period in question. 



 

 

 

 

Supplementary Figure 3. Reported (FAOSTAT36) and simulated (calibrated) yield of all crop 

types included in the LPJmL model, averaged over years 2001–2010. 

 



 

 

 

 

Supplementary Figure 4: Country level calibration results for all crop types included in the 

LPJmL model, averaged over years 1981–1990. The x-axis shows the yield according to 

FAOSTAT36 and the y-axis shows simulated yield. For each crop, the Willmott coefficient37 

is calculated to represent the goodness of the calibration, similarly to Fader et al.38 The 

point sizes represent the average production for the country and time-period in question. 

  



 

 

 

 

Supplementary Figure 5: Reported (FAOSTAT36) and simulated (calibrated) yield of all crop 

types included in the LPJmL model, averaged over years 1981–1990. 



 

 

 

 

Supplementary Figure 6: Years of available productivity data from FAOSTAT36. 

  



 

 

 

 

Supplementary Figure 7: Pearson’s correlation between simulated (decennially calibrated) 

and reported (FAOSTAT36) crop productivity of all 12 crop types included in the LPJmL 

model at country scale. The first year of the correlation analysis varies depending on 

available data (most countries have data for the whole time-period, i.e. starting from 1961), 

while the last year is 2010 for all countries (see Supplementary Figure 6 for details 

regarding the extent of the time-periods). 

 

  



 

 

 

 

Supplementary Figure 8: Pearson’s correlation between simulated (decennially calibrated) 

and reported crop productivity of maize, rice, soybean and wheat (Ray et al.39) at the FPU 

level for 1961-2008. 

 

  



 

 

 

 

Supplementary Figure 9: Pearson’s correlation between simulated (calibrated for year 

2000) and reported (de-trended) crop productivity of a) the 12 crop types included in the 

LPJmL model at country scale (FAOSTAT36) as well as b) maize, rice, soybean and wheat 

at FPU scale (Ray et al.39). The de-trended reported crop productivity data was obtained by 

fitting and subtracting a best-fit polynomial curve from the original data. For the country 

scale data, the first year of the correlation analysis varies depending on available data (most 

countries have data for the whole time-period, i.e. starting from 1961), while the last year is 

2010 for all countries (see Supplementary Figure 6 for details regarding the extent of the 

time-periods). For the FPU scale data the correlations were calculated for years 1961-2008. 

Note that, as a third of global crop yield variability can be attributed to climate variability39 

and that LPJmL is here driven by climatological input data only, it is not to be expected that 

it reproduces all observed crop yield dynamics. 

  



 

 

 

 

Supplementary Figure 10: Pearson’s correlation between simulated (decennially 

calibrated) and reported crop productivity calculated for each crop type included in the 

LPJmL model at country scale (FAOSTAT36). The first year of the correlation analysis varies 

depending on available data (most countries have data for the whole time-period, i.e. 

starting from 1961), while the last year is 2010 for all countries. 



 

 

 

 

Supplementary Figure 11: Pearson’s correlation between simulated (calibrated for year 

2000) and reported (de-trended) crop productivity calculated for each crop type included in 

the LPJmL model (FAOSTAT36). The de-trended reported crop productivity data was 

obtained by fitting and subtracting a best-fit polynomial curve from the original data. The 

first year of the correlation analysis varies depending on available data (most countries have 

data for the whole time-period, i.e. starting from 1961), while the last year is 2010 for all 

countries. 

 

  



 

 

 

 

Supplementary Figure 12: a) standard deviation and b) coefficient of variation of simulated 

and reported crop productivity of all 12 major crop types included in the LPJmL model 

(FAOSTAT36) at the country scale for the whole study period. Prior to the variability 

assessment, the reported crop productivity data was de-trended by fitting and subtracting a 

best-fit polynomial curve from the original data. Furthermore, the average crop productivity 

of the reported data for calculating the CV was obtained by taking an average of the original 

data for the years 1995-2005. The first year of analysis varies depending on available data 

(most countries have data for the whole time-period, i.e. starting from 1961), while the last 

year is 2010 for all countries (see Supplementary Figure 6 for details regarding the extent 

of the time-periods). 

  



 

 

 

 

Supplementary Figure 13: a) standard deviation and b) coefficient of variation of simulated 

and reported crop productivity of maize, rice, soybean and wheat (Ray et al. 39) at the FPU 

scale for 1961-2008. Prior to the variability assessment, the reported crop productivity data 

was de-trended by fitting and subtracting a best-fit polynomial curve from the original data. 

Furthermore, the average crop productivity of the reported data for calculating the CV was 

obtained by taking an average of the original data for the years 1995–2005. 

  



 

 

 

 

Supplementary Figure 14: Standard deviation (a & b) and coefficient of variation (c & d) of 

simulated (a & c) and de-trended reported (FAOSTAT36; b & d) crop productivity of all 12 

major crop types included in the LPJmL model at the country scale. Prior to the variability 

assessment, the reported crop productivity data was de-trended by fitting and subtracting a 

best-fit polynomial curve from the original data. Furthermore, the average crop productivity 

for calculating the CV was obtained by taking an average of the original data for the years 

1995–2005. The first year of analysis varies depending on available data (most countries 

have data for the whole time-period, i.e. starting from 1961), while the last year is 2010 for 

all countries (see Supplementary Figure 6 for details regarding the extent of the time-

periods). 

  



 

 

 

 

Supplementary Figure 15: Standard deviation (a & b) and coefficient of variation (c & d) of 

simulated (a & c) and de-trended reported (Ray et al.39; b & d) crop productivity of maize, 

rice, soybean and wheat at the FPU scale for 1961-2008. Prior to the variability assessment, 

the reported crop productivity data was de-trended by fitting and subtracting a best-fit 

polynomial curve from the original data. Furthermore, the average crop productivity of the 

reported data for calculating the CV was obtained by taking an average of the original data 

for the years 1995-2005. 

  



 

 

 

 

Supplementary Figure 16: FPUs mapped according to the sensitivity (absolute value) of 

crop productivity to the oscillation indices (x-axis) and the coefficient of variance of crop 

productivity (CV; y-axis) for a) ENSO, b) IOD and c) NAO. Each of the images is divided, 

so that in the red (blue) section the sensitivity between crop productivity and the oscillation 

is significant (insignificant). For CV, the figures are divided in half, so that in the upper 

(lower) sections of each image CV is above (below) the mean CV of all FPUs. 

  



 

 

 

 

Supplementary Figure 17: Spatial and temporal variability in the relationship between the 

oscillations and crop productivity. a), c) & e) show the portion of years (21 year moving 

windows) when the oscillations have a significant (p-value < 0.1) Spearman’s correlation 

with crop productivity, whereas b), d) and f) show whether the strength of the correlation 

experience changes. The bottom row (g) shows correlation time series examples of the 

different categories in b), d) and f). Dashed line represents the threshold for significant 

correlation (p < 0.1). 



 

 

 

 

Supplementary Figure 18: Relationship between global average crop productivity of the 12 

major crop types and a) ENSO, b) IOD and c) NAO indices for years 1961-2010. Years 

representing negative (positive) oscillation phases are marked blue (red). The blue 

horizontal line represents mean crop productivity for the whole time-period. In the 

aggregation process, the crop-specific annual yields (kg ha-1 yr-1) of the 12 major crop types 

considered were converted to caloric crop productivities (kcal ha-1 yr-1), after which the total 

crop productivity was calculated as the growing area weighted mean. Details about the kcal 

kg-1 conversion factors of the 12 crop types considered and the aggregation calculations at 

global scale for simulated and reported (FAOSTAT36) data can be found in Supplementary 

Table 10. 

  



 

 

 

 

Supplementary Figure 19: Relationship between global average crop productivity of the 12 

major crop types and the ENSO (JMA SST) index at regional level mapped for years 1961-

2010. Years representing negative (positive) phases of ENSO are marked blue (red). The 

blue horizontal line represents mean crop productivity for the whole time-period. See 

caption of Supplementary Figure 18 and Supplementary Table 10 for details about how the 

crop-specific annual yields (kg ha-1 yr-1) of the 12 major crop types considered were 

converted to caloric crop productivities (kcal ha-1 yr-1).  



 

 

 

 

Supplementary Figure 20: Relationship between global average crop productivity of the 12 

major crop types and the IOD (SST DMI) index at regional level mapped for years 1961-

2010. Years representing negative (positive) phases of IOD are marked blue (red). The blue 

horizontal line represents mean crop productivity for the whole time-period. See caption of 

Supplementary Figure 18 and Supplementary Table 10 for details about how the crop-

specific annual yields (kg ha-1 yr-1) of the 12 major crop types considered were converted to 

caloric crop productivities (kcal ha-1 yr-1). 



 

 

 

 

Supplementary Figure 21: Relationship between global average crop productivity of the 12 

major crop types and the NAO (Hurrel North Atlantic Oscillation Index (PC-based)) index 

mapped for years 1961-2010. Years representing negative (positive) phases of NAO are 

marked blue (red). The blue horizontal line represents mean crop productivity for the whole 

time-period. See caption of Supplementary Figure 18 and Supplementary Table 10 for 

details about how the crop-specific annual yields (kg ha-1 yr-1) of the 12 major crop types 

considered were converted to caloric crop productivities (kcal ha-1 yr-1). 



 

 

 

 

Suppelementary Figure 22: Sensitivity of crop productivity (as derived from LPJmL model 

with yields calibrated every 10 years, see Methods) to changes in the a) ENSO, b) IOD and 

c) NAO indices at FPU level. Prior to the sensitivity assessment, the crop productivity time 

series was de-trended by fitting and subtracting a best-fit polynomial curve from the original 

data. The linear relationship was concluded to be significant based on the p-value (< 0.1, 

parametrized) of Pearson’s correlation coefficient. 

  



 

 

 

 

Supplementary Figure 23: Sensitivity of crop productivity (as derived from LPJmL model 

with limited irrigation input, see Methods) to changes in the a) ENSO, b) IOD and c) NAO 

indices at FPU level. The linear relationship was concluded to be significant based on the 

p-value (< 0.1, parametrized) of Pearson’s correlation coefficient.  



 

 

 

 

Supplementary Figure 24: Sensitivity of crop productivity to changes in a) the negative 

Southern Oscillation Index, b) the Oceanic Niño Index, c) the SLP Dipole Mode Index and 

d) the Hurrell North Atlantic Oscillation Index (station-based) at FPU level. The linear 

relationship was concluded to be significant based on the p-value (< 0.1, parametrized) of 

Pearson’s correlation coefficient. 

  



 

 

 

Supplementary Table 1: Regional changes in crop productivity during strongly oscillating 

years. 

 Change in crop productivity (%) during 

Region 

Negative 

ENSO  

(La Niña) 

Positive 

ENSO 

(El Niño) 

Negative 

IOD 

Positive 

IOD 

Negative 

NAO 

Positive 

NAO 

Australia and 

Oceania 
- - 6.0% -8.0% - - 

Central America - - - - - - 

East Asia - - - - –1.2% - 

Eastern Europe and 

Central Asia 
- - - - - - 

Middle East –4.1% - - - 4.2% –6.1% 

North Africa 3.8% - - - 5.8% –5.8% 

North America - - - –4.7% - - 

South America –4.3% - - - - - 

South Asia 1.9% - - - - 2.1% 

Southeast Asia 2.8% –1.4% - - - - 

Southern Africa 1.7% –3.6% - - - –2.6% 

Western Europe - - - - - –1.8% 

 

 

  



 

 

 

Supplementary Table 2: Regional Sensitivities of crop productivity to variations in the 

oscillation indices. 

 Sensitivity of crop productivity to variations in 

Region ENSO index IOD index NAO index 

Australia and Oceania - –0.38 - 

Central America - - - 

East Asia - - 0.29 

Eastern Europe and Central 

Asia 
- - - 

Middle East - - –0.41 

North Africa –0.25 - –0.49 

North America - - - 

South America 0.33 - - 

South Asia –0.28 - - 

Southeast Asia –0.53 - - 

Southern Africa –0.51 - - 

Western Europe - - - 

 

 

  



 

 

 

Supplementary Table 3: Regional results for the coefficients of the multivariate regression 

analysis, describing the combined effects of the oscillations on crop productivity. 

Region ENSO Index IOD Index NAO Index adjusted R2 

Australia and Oceania 0.217 –2.869*** 0.865 0.222*** 

Central America 0.772* –0.776 1.682# 0.099# 

East Asia 0.846 –0.003 1.367* 0.084# 

Eastern Europe and Central 

Asia 
0.005 –0.019# 0.286 0.036 

Middle East –0.006 0.543 –1.259*** 0.195** 

North Africa –2.598*** –0.236 –2.295*** 0.394*** 

North America –0.549 –0.778 1.115# 0.046 

South America 1.843* 0.297 0.576 0.078# 

South Asia –0.327* –1.153 0.799 0.116* 

Southeast Asia –2.835*** –0.156 –0.530 0.252*** 

Southern Africa –2.440*** 0.012 –0.840 0.307** 

Western Europe –0.012 1.180# 0.018# 0.116* 

Statistical significance (N = 49): 

# p < 0.1 

* p < 0.05 

** p < 0.01 

*** p < 0.001 

    

 

  



 

 

 

Supplementary Table 4: Population, cropland, and average total crop production (and 

percentage) in the areas where one or more oscillations produce significant changes in crop 

productivity during their negative and positive phases, when assessed at sub-national (i.e. 

FPU) scale. All areas included, also those where Pearson’s correlation between reported 

and simulated crop productivity is insignificant (p > 0.1). Cf. Table 1 in main text.  

 Oscillation Population (109) 
Cropland 

(106 km2) 

Crop production 

(1015 kcal yr-1) 

ENSO 1.7 (29%) 4.8 (31%) 2.4 (29%) 

IOD 0.6 (11%) 2.0 (13%) 0.7 (9%) 

NAO 2.3 (41%) 5.8 (37%) 3.4 (40%) 

Any 3.9 (69%) 10.7 (69%) 5.5 (66%) 

  



 

 

 

Supplementary Table 5: The indices chosen to represent the oscillations 

Oscillation Index name Timespan Index description Conversion to 

yearly index values 

Reference 

ENSO JMA SST Index 1868/03 - 

2015/03 

The index is calculated 

as a 5-month running 

mean of sea surface 

temperatures inside the 

'Nino 3' region. 

The mean of monthly 

index values from 

November (year N-

1) to January (year 

N). 

8 

IOD Dipole Mode 

Index 

1958/01 - 

2010/09 

The dipole mode index is 

calculated as the 

normalized difference in 

SST anomaly between 

the tropical parts of 

western Indian Ocean 

and south-eastern Indian 

Ocean. 

The mean of monthly 

index values from 

September (year N) 

to November (year 

N). 

5, 9 

NAO Hurrell North 

Atlantic 

Oscillation 

(NAO) Index 

(PC-based) 

1899/01 - 

2015/04 

The NAO index refers to 

the anomalies in the 

difference in normalized 

sea level pressure 

between the Azores and 

Iceland. 

The mean of monthly 

index values from 

November (year N-

1) to February (year 

N). 

7, 10 

 

 

  



 

 

 

Supplementary Table 6: Years when strong phases of ENSO, IOD and NAO were identified 

to have occurred. 

ENSO, strongly oscillating years 

Negative 1965 1968 1971 1972 1974 1976 1985 1989 1996 1999 2000 2008 

Positive 1966 1970 1973 1977 1983 1987 1988 1992 1998 2003 2007 2010 

                          

IOD, strongly oscillating years               

Negative 1964 1968 1970 1971 1974 1975 1980 1984 1992 1996 1998 2005 

Positive 1961 1963 1967 1972 1976 1982 1987 1991 1994 1997 2002 2006 

                          

NAO, strongly oscillating years 

Negative 1962 1963 1964 1966 1969 1970 1977 1979 1996 2001 2006 2010 

Positive 1973 1976 1983 1989 1990 1992 1993 1994 1995 2000 2007 2008 

 

 

  



 

 

 

Supplementary Table 7: Cross-correlation (and p-values) for the explaining variables used 

in the multivariate regression calculations. 

 ENSO IOD NAO 

ENSO 1 (-) –0.11 (0.43) −0.050 (0.73) 

IOD  1 (-) 0.099 (0.50) 

NAO   1 (-) 

 

Supplementary Table 8: VIF value of each variable used in the multivariate regression 

calculations. 

 VIF 

ENSO 1.01 

IOD 1.02 

NAO 1.01 

 

  



 

 

 

 

Supplementary Table 9: Link functions used to linearize the crop productivity data for the 

multivariate regression analysis.  

 Linc Function 

FPU id ENSO IOD NAO 

2 1 / x cube root 1 / x 

4 1 / x power to 3 power to 2 

5 - square root 1 / x 

7 - square root square root 

8 exp(x) log10 log10 

9 - power to 3 square root 

10 power to 2 power to 3 log10 

11 - power to 3 cube root 

12 power to 3 power to 3 power to 3 

13 power to 3 cube root power to 2 

14 log power to 2 1 / x 

15 square root 1 / x - 

16 cube root 1 / x 1 / x 

17 1 / x power to 2 power to 3 

18 log10 1 / x 1 / x 

19 power to 2 1 / x log10 

20 power to 3 power to 3 log10 

21 1 / x power to 3 - 

22 power to 2 1 / x power to 2 

23 power to 3 1 / x square root 

24 - log10 exp(x) 

25 cube root 1 / x power to 2 

26 - log10 power to 3 

27 1 / x 1 / x power to 2 

28 - log10 power to 3 

29 power to 3 power to 3 square root 

30 power to 2 cube root power to 2 

31 log power to 3 power to 3 

32 power to 3 power to 3 - 

33 cube root power to 3 - 

34 power to 3 power to 3 power to 3 

35 log - power to 3 

36 log power to 2 power to 3 

37 power to 3 log square root 

38 exp(x) power to 3 square root 

39 1 / x power to 3 1 / x 

40 1 / x 1 / x power to 3 

41 exp(x) log10 1 / x 

42 1 / x - log10 

43 1 / x 1 / x 1 / x 

44 cube root power to 2 power to 3 

45 exp(x) log10 1 / x 

46 square root 1 / x power to 3 

47 log square root power to 3 

48 1 / x power to 3 1 / x 

49 - square root power to 3 

50 square root 1 / x 1 / x 

 

 



 

 

 

 

51 1 / x power to 3 1 / x 

52 log log10 power to 3 

53 1 / x 1 / x cube root 

54 power to 3 power to 3 cube root 

55 log10 1 / x - 

56 power to 3 power to 3 square root 

57 1 / x cube root 1 / x 

58 square root 1 / x 1 / x 

59 square root power to 3 1 / x 

60 log10 power to 3 1 / x 

61 1 / x 1 / x log10 

62 1 / x power to 2 power to 2 

63 power to 2 1 / x power to 3 

64 power to 3 log10 power to 2 

65 power to 3 1 / x cube root 

66 cube root 1 / x square root 

67 log10 power to 3 1 / x 

68 power to 3 log10 exp(x) 

69 exp(x) 1 / x power to 3 

70 power to 3 - power to 3 

71 square root power to 3 1 / x 

72 cube root - power to 3 

73 log log10 power to 2 

74 cube root 1 / x power to 3 

75 log log10 cube root 

76 power to 2 power to 3 power to 3 

77 1 / x 1 / x power to 3 

78 power to 3 log10 log10 

79 1 / x cube root power to 3 

80 - power to 3 exp(x) 

81 square root cube root power to 3 

82 1 / x 1 / x power to 3 

83 power to 2 power to 3 power to 3 

84 1 / x log10 power to 3 

85 log power to 3 power to 3 

86 power to 3 1 / x - 

87 log 1 / x power to 3 

88 exp(x) 1 / x power to 3 

89 power to 3 log10 1 / x 

90 - 1 / x - 

91 - 1 / x power to 3 

92 power to 2 - log10 

93 power to 3 log10 - 

94 log power to 3 square root 

95 1 / x power to 3 - 

96 log10 log10 - 

97 power to 2 1 / x power to 2 

98 log10 1 / x cube root 

99 log square root square root 

100 1 / x power to 2 power to 3 

 

  



 

 

 

 

101 exp(x) power to 2 - 

102 1 / x power to 3 1 / x 

103 log log10 1 / x 

104 power to 3 power to 3 power to 3 

105 1 / x power to 3 power to 3 

106 - power to 2 power to 3 

107 cube root log10 power to 3 

108 - power to 2 log10 

109 1 / x square root 1 / x 

110 square root power to 3 1 / x 

111 power to 3 1 / x power to 3 

112 - 1 / x cube root 

113 1 / x cube root power to 3 

114 power to 3 1 / x - 

115 power to 3 1 / x 1 / x 

116 exp(x) power to 2 - 

117 power to 3 1 / x - 

118 power to 3 1 / x 1 / x 

119 square root 1 / x log10 

120 - power to 3 power to 3 

121 power to 2 1 / x power to 3 

122 exp(x) power to 3 power to 3 

123 - power to 3 1 / x 

124 power to 3 power to 3 1 / x 

125 log10 1 / x log10 

126 square root log10 1 / x 

127 square root power to 3 1 / x 

128 - 1 / x square root 

129 - exp(x) power to 3 

130 log power to 2 square root 

131 cube root power to 3 1 / x 

132 power to 2 power to 2 cube root 

133 - power to 2 power to 2 

134 1 / x power to 3 power to 2 

135 power to 3 - 1 / x 

136 1 / x power to 2 cube root 

137 square root 1 / x log10 

138 power to 3 1 / x log10 

139 power to 2 1 / x 1 / x 

140 power to 3 - log10 

141 1 / x square root square root 

142 power to 3 - - 

143 - - log10 

144 power to 2 power to 2 power to 3 

146 - power to 3 power to 3 

147 power to 3 1 / x power to 3 

148 power to 2 power to 3 log10 

149 square root square root power to 2 

150 1 / x power to 3 power to 3 

 

  



 

 

 

 

151 power to 2 log10 - 

152 - 1 / x power to 3 

153 log10 1 / x - 

154 1 / x log10 power to 2 

155 - 1 / x power to 3 

156 1 / x exp(x) log10 

157 cube root square root - 

158 power to 3 power to 2 power to 3 

160 log10 log10 - 

162 1 / x power to 2 power to 3 

163 square root power to 3 square root 

164 exp(x) square root 1 / x 

165 - 1 / x power to 3 

166 power to 3 power to 2 power to 2 

167 power to 2 power to 3 power to 3 

168 1 / x 1 / x log10 

169 log square root square root 

170 square root log10 power to 3 

171 power to 3 log10 power to 3 

172 cube root cube root 1 / x 

173 cube root 1 / x 1 / x 

174 1 / x power to 3 log10 

175 power to 2 square root log10 

176 1 / x power to 3 log10 

177 cube root 1 / x log10 

178 exp(x) power to 3 - 

179 1 / x 1 / x power to 3 

180 exp(x) exp(x) power to 2 

181 exp(x) power to 3 power to 3 

182 - power to 3 power to 3 

183 1 / x power to 3 1 / x 

184 log10 power to 2 cube root 

185 1 / x cube root 1 / x 

186 1 / x power to 3 1 / x 

187 log power to 3 1 / x 

188 1 / x 1 / x cube root 

189 1 / x 1 / x 1 / x 

190 1 / x log10 - 

191 log10 - cube root 

192 log10 log10 square root 

193 square root log10 cube root 

194 square root 1 / x 1 / x 

196 power to 2 1 / x power to 2 

198 power to 3 cube root power to 3 

200 power to 3 1 / x power to 3 

 

  



 

 

 

 

201 cube root power to 3 cube root 

203 power to 3 power to 3 power to 3 

204 1 / x 1 / x log10 

205 cube root power to 3 1 / x 

206 power to 3 - log10 

207 log log10 1 / x 

208 power to 3 power to 2 log10 

209 exp(x) power to 3 log10 

210 exp(x) power to 3 log10 

211 cube root power to 3 log10 

212 exp(x) power to 3 power to 3 

213 - 1 / x 1 / x 

214 square root power to 3 exp(x) 

215 1 / x power to 2 power to 2 

216 1 / x power to 3 power to 3 

217 1 / x exp(x) - 

218 power to 2 - power to 3 

219 log power to 3 - 

220 exp(x) power to 3 1 / x 

221 log10 1 / x 1 / x 

222 log10 log10 1 / x 

223 log10 cube root 1 / x 

224 square root 1 / x power to 3 

225 exp(x) power to 3 log10 

226 log log10 power to 3 

227 power to 3 power to 3 square root 

228 log log10 power to 3 

229 1 / x log10 power to 2 

230 log10 1 / x cube root 

231 power to 2 log10 log10 

232 1 / x 1 / x exp(x) 

233 1 / x 1 / x power to 2 

234 - power to 3 cube root 

235 cube root 1 / x power to 3 

236 log 1 / x cube root 

237 - 1 / x 1 / x 

238 power to 2 1 / x log10 

239 power to 3 1 / x power to 3 

240 1 / x 1 / x power to 3 

242 power to 2 power to 3 1 / x 

243 power to 2 cube root 1 / x 

244 1 / x log10 exp(x) 

245 1 / x log10 power to 2 

246 power to 2 - - 

247 power to 3 1 / x square root 

248 power to 3 power to 2 - 

249 power to 3 - - 

250 1 / x power to 3 square root 

 

  



 

 

 

 

251 square root - - 

252 log10 - log10 

253 power to 3 log10 log10 

254 - 1 / x power to 3 

255 1 / x - square root 

256 log - 1 / x 

257 log exp(x) log10 

258 exp(x) log square root 

259 log power to 2 1 / x 

260 1 / x square root cube root 

261 power to 3 power to 3 - 

262 cube root 1 / x 1 / x 

263 1 / x log10 1 / x 

264 log log power to 2 

265 - log10 1 / x 

266 - power to 3 power to 3 

267 - 1 / x 1 / x 

268 cube root power to 2 cube root 

269 1 / x power to 3 1 / x 

270 square root square root - 

271 square root square root log10 

272 1 / x square root power to 3 

273 1 / x - power to 3 

274 - square root power to 3 

275 cube root log10 power to 3 

276 log 1 / x log10 

277 1 / x - - 

278 - - 1 / x 

279 - power to 3 - 

280 log 1 / x power to 3 

281 1 / x 1 / x power to 3 

282 power to 3 - 1 / x 

283 1 / x power to 3 1 / x 

284 log10 - 1 / x 

285 log 1 / x 1 / x 

286 log - power to 3 

287 log log10 power to 3 

288 power to 3 power to 3 power to 3 

289 power to 3 log10 cube root 

290 - - square root 

291 log 1 / x log10 

292 1 / x log10 power to 2 

293 - 1 / x power to 3 

294 1 / x power to 3 square root 

295 power to 3 1 / x - 

296 power to 2 square root - 

297 power to 2 power to 2 square root 

298 power to 3 - log10 

299 square root 1 / x cube root 

300 square root exp(x) cube root 

 

  



 

 

 

 

301 - 1 / x log10 

302 - 1 / x - 

303 square root 1 / x power to 3 

304 power to 3 - cube root 

305 1 / x power to 3 - 

306 square root power to 3 1 / x 

307 power to 3 1 / x cube root 

309 power to 3 power to 3 cube root 

 

 

 

 



 

 

 

Supplementary Table 10. Global scale crop productivity calculations based on a) 

simulated and b) FAOSTAT36 data. Please note that, here the simulated crop types do not 

directly correspond to the crop types of FAOSTAT. For example, wheat is simulated as a 

representative of temperate cereals, which also include barley, rye, and oat. 

a: Global scale crop productivity calculated based on simulated data. 
 

Average yield, 

(years 2001-

2010, kg/yr) 

Conversion 

factor 

(kcal/kg) 

Average yield 

(years 2001 - 

2010, 107 

kcal/yr) 

Harvested 

area, year 

2000 (107 ha) 

Production 

(1015 kcal) 

Cassava 12270 1090 1.34 1.67 0.22 

Groundnuts 1798 4140 0.74 1.79 0.13 

Maize 4823 3560 1.72 13.08 2.25 

Millet 1139 3415 0.39 5.39 0.21 

Pulses 829 3460 0.29 5.60 0.16 

Rapeseed 1627 4940 0.80 2.17 0.17 

Rice 4466 2800 1.25 10.21 1.28 

Soybean 2360 3350 0.79 6.79 0.54 

Sugar beet 47622 700 3.33 0.49 0.16 

Sugarcane 61195 300 1.84 1.98 0.36 

Sunflower 

seed 

1307 3080 0.40 1.71 0.07 

Wheat 3098 3283 1.02 24.14 2.46 
   

Sum 75.03 8.01 
 

Harvested area weighted mean crop productivity 

(107 kcal/ha): 1.07 

 

 

b:  Global scale crop productivity calculated based on reported data (FAOSTAT36). 
 

Yield (year 

2010, kg/yr) 

Conversion 

factor 

(kcal/kg) 

Yield (year 

2010, 107 

kcal/yr) 

Harvested 

area (year 

2010, 107 ha) 

Production 

(2010 1015 

kcal) 

Cassava 12207 1090 1.33 1.97 0.26 

Groundnuts, with 

shell 

1662 4140 0.69 2.61 0.18 

Maize 5190 3560 1.85 16.40 3.03 

Millet 911 3400 0.31 3.60 0.11 

Pulses, nes 744 3400 0.25 0.48 0.01 

Rapeseed 1865 4940 0.92 3.21 0.30 

Rice, paddy 4336 2800 1.21 16.17 1.96 

Soybeans 2578 3350 0.86 10.28 0.89 

Sugar beet 48638 700 3.40 0.47 0.16 

Sugar cane 71075 300 2.13 2.37 0.50 

Sunflower seed 1363 3080 0.42 2.31 0.10 

Wheat 2971 3340 0.99 21.55 2.14 
   

Sum 81.42 9.64 
 

Harvested area weighted mean crop 

productivity (107 kcal/ha): 1.18 

 



 

 

 

 

Supplementary References 

1. Trenberth, K. E. The definition of el nino. Bull. Am. Meteorol. Soc. 78, 2771-2777 

(1997). 

2. Rasmusson, E. M. & Wallace, J. M. Meteorological aspects of the el nino/southern 

oscillation. Science 222, 1195-1202 (1983). 

3. Saji, N., Goswami, B. N., Vinayachandran, P. & Yamagata, T. A dipole mode in the 

tropical Indian Ocean. Nature 401, 360-363 (1999). 

4. Saji, N. & Yamagata, T. Possible impacts of Indian Ocean dipole mode events on global 

climate. Climate Research 25, 151-169 (2003). 

5. Hurrell, J. W. Decadal trends in the north atlantic oscillation: regional temperatures and 

precipitation. Science 269, 676-679 (1995). 

6. Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. An overview of the North 

Atlantic oscillation. Geophysical Monograph-American Geophysical Union 134, 1-36 

(2003). 

7. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns 

associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 115, 1606-1626 

(1987). 

8. Trenberth, K. E. & Caron, J. M. The Southern Oscillation revisited: Sea level pressures, 

surface temperatures, and precipitation. J. Clim. 13, 4358-4365 (2000). 

9. Dai, A. & Wigley, T. Global patterns of ENSO‐induced precipitation. Geophys. Res. 

Lett. 27, 1283-1286 (2000). 

10. Dai, A., Trenberth, K. E. & Karl, T. R. Global variations in droughts and wet spells: 

1900-1995. Geophys. Res. Lett. 25, 3367-3370 (1998). 

11. Saji, N., Ambrizzi, T. & Ferraz, S. Indian Ocean Dipole mode events and austral 

surface air temperature anomalies. Dyn. Atmos. Oceans 39, 87-101 (2005). 

12. Ummenhofer, C. C. et al. What causes southeast Australia's worst droughts? Geophys. 

Res. Lett. 36 (2009). 

13. Marchant, R., Mumbi, C., Behera, S. & Yamagata, T. The Indian Ocean dipole–the 

unsung driver of climatic variability in East Africa. Afr. J. Ecol. 45, 4-16 (2007). 

14. Ashok, K., Guan, Z. & Yamagata, T. Influence of the Indian Ocean Dipole on the 

Australian winter rainfall. Geophys. Res. Lett. 30 (2003). 



 

 

 

15. Behera, S. K. & Yamagata, T. Subtropical SST dipole events in the southern Indian 

Ocean. Geophys. Res. Lett. 28, 327-330 (2001). 

16. Reason, C. Subtropical Indian Ocean SST dipole events and southern African rainfall. 

Geophys. Res. Lett. 28, 2225-2227 (2001). 

17. Hong, C., Lu, M. & Kanamitsu, M. Temporal and spatial characteristics of positive and 

negative Indian Ocean dipole with and without ENSO. Journal of Geophysical Research: 

Atmospheres 113 (2008). 

18. Ashok, K., Guan, Z. & Yamagata, T. Impact of the Indian Ocean dipole on the 

relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 28, 4499-

4502 (2001). 

19. Trigo, R. M., Osborn, T. J. & Corte-Real, J. M. The North Atlantic Oscillation 

influence on Europe: climate impacts and associated physical mechanisms. Climate 

Research 20, 9-17 (2002). 

20. Li, J., Yu, R. & Zhou, T. Teleconnection between NAO and climate downstream of the 

Tibetan Plateau. J. Clim. 21, 4680-4690 (2008). 

21. Cullen, H. M., Kaplan, A. & Arkin, P. A. Impact of the North Atlantic Oscillation on 

Middle Eastern climate and streamflow. Clim. Change 55, 315-338 (2002). 

22. Trigo, R. M. et al. North Atlantic Oscillation influence on precipitation, river flow and 

water resources in the Iberian Peninsula. Int. J. Climatol. 24, 925-944 (2004). 

23. McHugh, M. J. & Rogers, J. C. North Atlantic oscillation influence on precipitation 

variability around the southeast African convergence zone. J. Clim. 14, 3631-3642 (2001). 

24. Linderholm, H. W. et al. Interannual teleconnections between the summer North 

Atlantic Oscillation and the East Asian summer monsoon. Journal of Geophysical 

Research: Atmospheres 116 (2011). 

25. Wang, B., Yang, J., Zhou, T. & Wang, B. Interdecadal changes in the major modes of 

Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 

1970s*. J. Clim. 21, 1771-1789 (2008). 

26. Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive 

Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. 

36 (2009). 

27. Kripalani, R. & Kumar, P. Northeast monsoon rainfall variability over south peninsular 

India vis‐à‐vis the Indian Ocean dipole mode. Int. J. Climatol. 24, 1267-1282 (2004). 

28. Gershunov, A. & Barnett, T. P. Interdecadal modulation of ENSO teleconnections. 

Bull. Am. Meteorol. Soc. 79, 2715-2725 (1998). 



 

 

 

29. Li, J. et al. El Niño modulations over the past seven centuries. Nature Climate Change 

3, 822-826 (2013). 

30. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in 

earth science. Science 314, 1740-1745 (2006). 

31. Cane, M. A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 230, 

227-240 (2005). 

32. Mann, M. E., Cane, M. A., Zebiak, S. E. & Clement, A. Volcanic and solar forcing of 

the tropical Pacific over the past 1000 years. J. Clim. 18, 447-456 (2005). 

33. Dettinger, M. D., Cayan, D. R., McCabe, G. J. & Marengo, J. A. in Multiscale 

streamflow variability associated with El Nino/Southern oscillation (Cambridge University 

Press, 2000). 

34. McCABE, G. J. & Dettinger, M. D. Decadal variations in the strength of ENSO 

teleconnections with precipitation in the western United States. Int. J. Climatol. 19, 1399-

1410 (1999). 

35. Ward, P. J., Eisner, S., Flörke, M., Dettinger, M. D. & Kummu, M. Annual flood 

sensitivities to El Niño–Southern Oscillation at the global scale. Hydrology and Earth 

System Sciences 18, 47-66 (2014). 

36. Food and Agriculture Organization of the United Nations (FAOSTAT) 

http://www.fao.org/faostat/en/#data/QC. Accessed on March 2017. 

37. Willmott, C. J. Some comments on the evaluation of model performance. Bull. Am. 

Meteorol. Soc. 63, 1309-1313 (1982). 

38. Fader, M., Rost, S., Müller, C., Bondeau, A. & Gerten, D. Virtual water content of 

temperate cereals and maize: Present and potential future patterns. Journal of Hydrology 

384, 218-231 (2010). 

39. Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a 

third of global crop yield variability. Nature communications 6 (2015). 

  


