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Table S1: Glossary
Terms Description

directed graph all the edges are directed from one vertex to another in a directed graph

bipartite graph edges in a bipartite graph only connect nodes in two disjoint sets

hypergraph a graph which edges are sets of any number of vertices

directed acyclic graph a directed graph with no directed cycle

factor graph a bipartite graph representing the factorization of a function with two types of nodes (variables and factors)

regularization introduction of an additional term to an objective/loss function of a statistical model for better generalization to new data

spectral graph theory the study of the characteristics of the adjacency matrix or the Laplacian matrix associated with the graph

supervised learning/approach a type of machine learning algorithm that build a model from labeled training data to make predictions on the unlabeled test data

semi-supervised learning make use of both labeled and unlabeled data for training a machine learning model

LASSO Least Absolute Shrinkage and Selection Operator; a regularization technique that performs sparse variable selection

elastic-net a regularization technique that linearly combines the LASSO and ridge penalties

logistic regression a linear classification model using logistic output

Support Vector Machine (SVM) a large-margin based classifier that finds an optimal hyperplane to separate two classes

bi-clustering a data mining technique which simultaneously clustering the rows and columns of a matrix

label propagation a semi-supervised learning algorithm for label inference based on a graph structure

Steiner tree problem find the minimum weight tree spanning through all the vertices in given subset in a graph

heuristic algorithm a technique designed to find an approximate solution close to the optimal one more quickly than the methods finding the optimal solution

random walk a stochastic process describing a path of a succession of random steps on a graph

cross-validation estimate the performance of a predictive model by testing on a holdout labeled data set in addition to training and test data

matrix completion the task of filling the missing entries in a matrix based on some error measures

kernel function a positive semi-definite function to compute the pairwise similarity between two feature vectors

diffusion kernel a special class of exponential kernels on graphs

network diffusion calculate an overall network proximity by simulating the diffusion of a value throughout a network

kernel regression a regression method based on kernel functions to allow non-linear relation between the random variables

hierarchical clustering a clustering method to build a hierarchy of clusters of the samples



Table S2: Network-based Machine Learning Models.
Base Model Objective function Definitions

Linear regression [34] L(β|λ1, λ2) = ||y −XTβ||2 + λ1|β|1 + λ2βTLβ

Cox regression [36] L(β, h0|, λ1, λ2) =
∑n

i=1

{
− exp(xT

i β)H0(ti) + δi
[
log(h0(ti)) + x

T
i β
]}

ti: observed or censored survival time for the ith patient. h0(t): baseline hazard function.

−(λ1βTβ + λ2βTLβ) H0(ti) =
∑

tk≤ti
h0(tk). δi: indicator of the survival time ti is observed or censored.

Logistic regression [37] L(β, β0|λ1, λ2) =
∑n

i=1 {yi log p(xi) + (1− yi) log (1− p(xi))} y = (y1, ..., yn)T with yi ∈ {1, 0}. β0: intercept.

−(λ1|β|1 + λ2βTLβ) p(xi): the probability that the ith sample is in class 1.

Support vector machine [38] L(β, β0|λ1, λ2) =
∑n

i=1[1− yi(β0 + xT
i β)]+ + λ1βTβ + λ2βTLβ “+”: the positive part, i.e., z+ = max{z, 0}. y = (y1, ..., yn)T with yi ∈ {1, 0}.

Bipartite-graph-based learning [40] L(f ,β|λ) = ||f ||2 + ||β||2 + 2fTSβ + λ||f − f(0)||2
X+: non-negative adjacency matrix of the bipartite graph representation ofX (40).

Bipartite graph: S =D
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r , where c and r are column and row sum ofX+.

Hypergraph-based learning [39,41]
L(f ,β|λ1, λ2) = fT (I −D− 1
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v )f H: hyper-graph adjacency matrix constructed fromX ([39,41]).

+λ1||f − f(0)||2 + λ2βTLβ v and e are column (vertex) sum and row (hyperedge) sum ofH .

NMF [42,43] L(U ,H|λ) = ||X −UHT ||2 + λTr(UTLU) Nonnegative matricesU = [uik] ∈ Rm×k andH = [hjk] ∈ Rn×k .

Label Propagation (LP) [62] L(β|λ) = ||β − β0||2 + λβTLβ β0: initial coefficients.


