Network-based Machine Learning and Graph Theory Algorithms for Precision Oncology

Wei Zhang¹, Jeremy Chien², Jeongsik Yong³ and Rui Kuang¹

¹Department of Computer Science and Engineering, University of Minnesota Twin Cities,

Minneapolis, Minnesota, United States of America

²Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas,

United States of America

³Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota

Twin Cities, Minneapolis, Minnesota, United States of America

Terms	Description	
directed graph	all the edges are directed from one vertex to another in a directed graph	
bipartite graph	edges in a bipartite graph only connect nodes in two disjoint sets	
hypergraph	a graph which edges are sets of any number of vertices	
directed acyclic graph	a directed graph with no directed cycle	
factor graph	a bipartite graph representing the factorization of a function with two types of nodes (variables and factors)	
regularization	introduction of an additional term to an objective/loss function of a statistical model for better generalization to new data	
spectral graph theory	the study of the characteristics of the adjacency matrix or the Laplacian matrix associated with the graph	
supervised learning/approach	a type of machine learning algorithm that build a model from labeled training data to make predictions on the unlabeled test data	
semi-supervised learning	make use of both labeled and unlabeled data for training a machine learning model	
LASSO	Least Absolute Shrinkage and Selection Operator; a regularization technique that performs sparse variable selection	
elastic-net	a regularization technique that linearly combines the LASSO and ridge penalties	
logistic regression	a linear classification model using logistic output	
Support Vector Machine (SVM)	a large-margin based classifier that finds an optimal hyperplane to separate two classes	
bi-clustering	a data mining technique which simultaneously clustering the rows and columns of a matrix	
label propagation	a semi-supervised learning algorithm for label inference based on a graph structure	
Steiner tree problem	find the minimum weight tree spanning through all the vertices in given subset in a graph	
heuristic algorithm	a technique designed to find an approximate solution close to the optimal one more quickly than the methods finding the optimal solution	
random walk	a stochastic process describing a path of a succession of random steps on a graph	
cross-validation	estimate the performance of a predictive model by testing on a holdout labeled data set in addition to training and test data	
matrix completion	the task of filling the missing entries in a matrix based on some error measures	
kernel function	a positive semi-definite function to compute the pairwise similarity between two feature vectors	
diffusion kernel	a special class of exponential kernels on graphs	
network diffusion	calculate an overall network proximity by simulating the diffusion of a value throughout a network	
kernel regression	a regression method based on kernel functions to allow non-linear relation between the random variables	
hierarchical clustering	a clustering method to build a hierarchy of clusters of the samples	

Table S1: Glossary

Г

Base Model	Objective function	Definitions
Linear regression [34]	$\mathcal{L}(oldsymbol{eta} \lambda_1,\lambda_2) = oldsymbol{y}-oldsymbol{X}^Toldsymbol{eta} ^2 + \lambda_1 oldsymbol{eta} _1 + \lambda_2oldsymbol{eta}^Toldsymbol{L}oldsymbol{eta}$	
Cox regression [36]	$\mathcal{L}(\boldsymbol{\beta}, h_0 , \lambda_1, \lambda_2) = \sum_{i=1}^n \left\{ -\exp(\boldsymbol{x}_i^T \boldsymbol{\beta}) H_0(t_i) + \delta_i \left[\log(h_0(t_i)) + \boldsymbol{x}_i^T \boldsymbol{\beta} \right] \right\}$	t_i : observed or censored survival time for the i^{th} patient. $h_0(t)$: baseline hazard function.
	$-(\lambda_1oldsymbol{eta}^Toldsymbol{eta}+\lambda_2oldsymbol{eta}^Toldsymbol{L}oldsymbol{eta})$	$H_0(t_i) = \sum_{t_k \leq t_i} h_0(t_k). \ \delta_i$: indicator of the survival time t_i is observed or censored.
Logistic regression [37]	$\mathcal{L}(\boldsymbol{\beta}, \beta_0 \lambda_1, \lambda_2) = \sum_{i=1}^n \left\{ y_i \log p(\boldsymbol{x}_i) + (1 - y_i) \log \left(1 - p(\boldsymbol{x}_i)\right) \right\}$	$\boldsymbol{y} = (y_1,, y_n)^T$ with $y_i \in \{1, 0\}$. β_0 : intercept.
	$-(\lambda_1 oldsymbol{eta} _1+\lambda_2oldsymbol{eta}^Toldsymbol{L}oldsymbol{eta})$	$p(\boldsymbol{x}_i)$: the probability that the i^{th} sample is in class 1.
Support vector machine [38]	$\mathcal{L}(\boldsymbol{\beta}, \beta_0 \lambda_1, \lambda_2) = \sum_{i=1}^n [1 - y_i(\beta_0 + \boldsymbol{x}_i^T \boldsymbol{\beta})]_+ + \lambda_1 \boldsymbol{\beta}^T \boldsymbol{\beta} + \lambda_2 \boldsymbol{\beta}^T \boldsymbol{L} \boldsymbol{\beta}$	"+": the positive part, i.e., $z_+ = \max\{z, 0\}$. $\boldsymbol{y} = (y_1,, y_n)^T$ with $y_i \in \{1, 0\}$.
Bipartite-graph-based learning [40]	$\mathcal{L}(\boldsymbol{f}, \boldsymbol{eta} \lambda) = \boldsymbol{f} ^2 + \boldsymbol{eta} ^2 + 2f^T \boldsymbol{S} \boldsymbol{eta} + \lambda \boldsymbol{f} - \boldsymbol{f^{(0)}} ^2$	X^+ : non-negative adjacency matrix of the bipartite graph representation of X (40).
		Bipartite graph: $S = D_c^{-\frac{1}{2}} X^+ D_r^{-\frac{1}{2}}$, where <i>c</i> and <i>r</i> are column and row sum of X^+ .
Hypergraph-based learning [39,41]	$\mathcal{L}(\boldsymbol{f},\boldsymbol{\beta} \lambda_1,\lambda_2) = \boldsymbol{f}^T(\boldsymbol{I} - \boldsymbol{D_v}^{-\frac{1}{2}}\boldsymbol{H}\boldsymbol{D_\beta}\boldsymbol{D_e}^{-1}\boldsymbol{H}^T\boldsymbol{D_v}^{-\frac{1}{2}})\boldsymbol{f}$	H: hyper-graph adjacency matrix constructed from X ([39,41]).
	$+\lambda_1 m{f}-m{f^{(0)}} ^2+\lambda_2m{eta}^Tm{L}m{eta}$	v and e are column (vertex) sum and row (hyperedge) sum of H .
NMF [42,43]	$\mathcal{L}(\boldsymbol{U}, \boldsymbol{H} \lambda) = \boldsymbol{X} - \boldsymbol{U}\boldsymbol{H}^T ^2 + \lambda \operatorname{Tr}(\boldsymbol{U}^T \boldsymbol{L} \boldsymbol{U})$	Nonnegative matrices $\boldsymbol{U} = [u_{ik}] \in \mathbb{R}^{m \times k}$ and $\boldsymbol{H} = [h_{jk}] \in \mathbb{R}^{n \times k}$.
Label Propagation (LP) [62]	$\mathcal{L}(oldsymbol{eta} \lambda) = oldsymbol{eta} - oldsymbol{eta}^0 ^2 + \lambdaoldsymbol{eta}^Toldsymbol{L}oldsymbol{eta}$	β^0 : initial coefficients.