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Introduction
Overview

This tutorial accompanies our 2017 Behavioral Ecology paper, “Avoiding the misuse of BLUP in behavioral
ecology”. Below, we provide worked examples of multivariate statistical methods for directly testing hypotheses
about associations between individual variation in behaviour and other traits. Below, we will:

o Test the correlation between two personality traits (behaviours measured repeatedly on individuals);
o Test for an association between these personality traits and a measure of fitness (one value per
individual).

In this version, we illustrate these models using the R interface for ASReml, which is commercial software
available from VSNi. We have provided a separate tutorial for the free R package MCMCglmm, but note that
MCMCglmm uses Bayesian methods while ASReml uses maximum likelihood (and is therefore likely to be more
familiar to users of the R package 1me4).

Updates and further tutorials associated with this paper can be found at https://tomhouslay.com/tutorials/.

Aims

Please note that we do assume readers are familiar with the general principles of specifying univariate mixed
effects models, and using diagnostic plots to check that the fitted model does not violate assumptions of the
linear model. Readers unfamiliar with using univariate mixed effects models for modelling a single behavioural
trait might prefer to start with (for example) Dingemanse & Dochtermann’s 2013 paper, ‘Quantifying
individual variation in behaviour: mixed effects modelling approaches’.

We also use various methods for manipulating and visualising data frames using the tidyverse package
(including tidyr, dplyr, ggplot2 etc) — more details on their use can be found at http://rdds.had.co.nz/.

In our tutorial, we aim to teach the following:

o How to phrase questions of interest in terms of variances and covariances (or derived correlations or
regressions);
e How to incorporate more advanced model structures, such as:

— Fixed effects that apply only to a subset of the response traits;
— Traits which are measured a different number of times (e.g., repeated measures of behaviour and a
single value of breeding success);

e Hypothesis testing using likelihood ratio tests.


http://www.vsni.co.uk/software/asreml/
https://tomhouslay.com/tutorials/
http://doi.wiley.com/10.1111/1365-2656.12013
http://doi.wiley.com/10.1111/1365-2656.12013
http://r4ds.had.co.nz/
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Packages required

There are several packages that you must have installed in R prior to starting this tutorial:

o asreml (note that this should be provided by the vendor, VSNi)
e 1lmed

e nadiv

e tidyverse

e broom

‘Study system’

For this tutorial, we have collected data on a population of wild haggis (Haggis scoticus) that roam the
Highlands of Scotland.

Figure 1: A male haggis in the wild (thanks to Emma Wood, http://www.ewood-art.co.uk/)

We tag all haggis individually when they emerge from their burrows as juveniles in their first spring. Here,
we concentrate on male haggis, which are solitary and territorial. Previous work has identified behaviours
that can be measured repeatedly, and used to represent the personality traits boldness and exploration.
We also have the ability to collect a single measure of mating success (as a fitness proxy) for each male at the
end of the season.

Behavioural syndromes

One type of ‘behavioural syndrome’ is a correlation between personality traits. Since personality can be
viewed (under most definitions) as the repeatable (among-individual) component of behaviour, evidence

Multivariate modelling for individual variation 2


http://www.ewood-art.co.uk/

Univariate models ASReml-R tutorial BEHAVIOURAL SYNDROMES

for the presence of a behavioural syndrome is provided by covariance among behaviours that arises from
among-individual differences.

Here we have repeatedly measured behaviours that represent boldness and exploration. We observed each
behaviour 4 times per individual. We also measured their body size on the day of behavioural assay so as to
control for general size effects in our statistical models.

Load libraries and inspect data

library (1lme4)
library(asreml)
library(tidyverse)
library (broom)
library(nadiv)

df_syndrome <- read_csv("syndrome.csv")

This data frame has 6 variables:

e Individual ID

e The repeat number for each behavioural test, assay_ rep

e boldness, measured 4 times per individual

e exploration, measured 4 times per individual

o fitness, our measure of mating success, with a single value for each individual
e Individual body__ size, as measured on the day of testing.

Univariate models

We first use the R package 1me4 to determine the proportion of phenotypic variation (adjusted for fixed
effects) that is due to differences among individuals, separately for each behaviour. We assume readers have
knowledge of these ‘univariate’ models and their use in behavioural studies — if not, there are various other
publications that go into them in greater detail (e.g., Dingemanse & Dochtermann (2013)).

Boldness

Our model includes fixed effects of the assay repeat number (centred) and individual body size (centred and
scaled to standard deviation units), as we wish to control for any systematic effects of these variables on
individual behaviour. Please be aware that controlling variables are at your discretion — for example, while
we want to characterise among-individual variance in boldness after controlling for size effects in this study,
others may wish to characterise among-individual variance in boldness without such control. Indeed, using
the techniques shown later in this tutorial, it would be entirely possible to characterise both among-individual
variance in boldness and in size, and the among-individual covariance between these measurements.

lmer_b <- lmer(boldness ~ scale(assay_rep, scale=FALSE) +
scale(body_size) +
(111D),
data = df_syndrome)
plot(lmer_b)
qgnorm(residuals(lmer_b))
hist(residuals(lmer_b))

summary (lmer_b)
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## Linear mixed model fit by REML ['lmerMod']

## Formula: boldness ~ scale(assay_rep, scale = FALSE) + scale(body_size) +
## (1 | ID)

## Data: df_syndrome

##

## REML criterion at convergence: 1061.4

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -2.3645 -0.6496 -0.1154 0.6463 2.6894

##

## Random effects:

## Groups Name Variance Std.Dev.

## 1D (Intercept) 0.6951  0.8337

## Residual 1.1682 1.0808

## Number of obs: 320, groups: ID, 80

##

## Fixed effects:

## Estimate Std. Error t value
## (Intercept) 20.09133 0.11108 180.87
## scale(assay_rep, scale = FALSE) -0.04805 0.05404 -0.89
## scale(body_size) 0.14128 0.10893 1.30
#i#

## Correlation of Fixed Effects:

#it (Intr) s(_s=F

## s(_,s=FALSE 0.000
## scl(bdy_sz) 0.000 -0.002

Having examined diagnostic plots of the model fit, we can check the model summary. We are interested in
the random effects section of the Ime4 model output (specifically the variance component — note that the
standard deviation here is simply the square root of the variance). Evidence for ‘animal personality’ (or
‘consistent among-individual differences in behaviour’) in the literature is largely taken from the repeatability
of behaviorual traits: we can compute this repeatability (also known as the intraclass correlation coefficient)
by dividing the variance in the trait due to differences among individuals (Vip) by the total phenotypic
variance after accounting for the fixed effects (Vip 4+ Viyesidual). This can be done quickly and automatically
through the use of the R package broom:

rep_bold <- tidy(lmer_b, effects = "ran_pars", scales = "vcov") %>%
select(group, estimate) %>%
spread(group, estimate) %>%
mutate(repeatability = ID/(ID + Residual))

rep_bold

ID Residual repeatability
0.695 1.168 0.373

So we can see that 37.3% of the phenotypic variation in boldness (having controlled for body size and assay
repeat number) is due to differences among individuals.

Let’s do the same for our other behavioural trait, exploration:
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Exploration

lmer_e <- lmer(exploration ~ scale(assay_rep, scale=FALSE) +
scale(body_size) +
(111D),
data = df_syndrome)

rep_expl <- tidy(lmer_e, effects = "ran_pars", scales = "vcov") %>%
select(group, estimate) %>%
spread(group, estimate) %>%
mutate(repeatability = ID/(ID + Residual))

ID Residual repeatability
0.362 0.909 0.285

Both of our traits of interest are repeatable at the among-individual level — the remaining question is
characterising the association between these personality traits. Are individuals that are consistently bolder
than average also more exploratory than average (and vice versa)?

Correlation using BLUPs

In our paper, we advise against the use of BLUPs due to their potential for spurious results due to
anticonservative hypothesis tests and/or confidence intervals.

Here we will run through this method, purely so that we can then contrast the results with those that we
get having (correctly) estimated the among-individual correlation between these behaviours directly from a
multivariate model (in this case, bivariate).

We create two data frames of individual predictions extracted from model fits, one for each of our univariate
1me4 models for boldness and exploration. We then join these (by individual ID) to create a single data
frame:

df _BLUPS_B <- data_frame(ID = row.names(ranef (lmer_b)$ID),
BLUP_B = ranef (lmer_b)$ID[," (Intercept)"])

df _BLUPS_E <- data_frame(ID = row.names(ranef (lmer_e)$ID),
BLUP_E = ranef (lmer_e)$ID[," (Intercept)"])

df_BLUPS_EB <- left_join(df_BLUPS_E,
df _BLUPS_B,
by = ”ID")

We can plot these to see what our expectation of a correlation might be:
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Exploration (BLUP)
..and then simply perform a correlation test of these two traits using the cor.test function:

cor.test (df_BLUPS_EB$BLUP_E,
df BLUPS_EB$BLUP_B)

#i#

## DPearson's product-moment correlation

#i#t

## data: df_BLUPS_EB$BLUP_E and df_BLUPS_EB$BLUP_B
## t = 3.2131, df = 78, p-value = 0.00191

## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## 0.1320924 0.5223645

## sample estimates:

## cor

## 0.3418867

As you can see, we get a positive correlation with a very small p-value (P = 0.0019), indicating that these
traits are involved in a behavioural syndrome. While the correlation itself is fairly weak (r = 0.34), it appears
to be highly significant, and suggests that individuals that are bolder than average also tend to be more
exploratory than average.

However, as discussed in our paper (and in greater detail by Hadfield et al), using BLUPs in this way leads
to anticonservative significance tests. This is because the error inherent in their prediction is not carried
forward from the lmer models to the subsequent analysis (in this case, a correlation test). To illustrate this
point quickly, below we plot the individual estimates along with their associated standard errors:
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We now go on to estimate the correlation between these behaviours directly in a multivariate model, using
ASreml.

Bivariate models

The correct approach for testing the hypothesised behavioural syndrome uses both response variables in a
two-trait (‘bivariate’) mixed model. This model estimates the among-individual variance for each response
variable (and the covariance between them). Separate (co)variances are also fitted for the residual variation.
The bivariate model also allows for fixed effects to be fitted on both response variables.

We set up our model using the asreml function call, with our bivariate response variable being exploration
and boldness bound together using cbind. You will also note that we scale our response variables, meaning
that each is centred at their mean value and standardised to units of 1 standard deviation. This is not
essential, but simply makes it easier for the model to be fit. Scaling the response variables also aids our
understanding of the output, as both boldness and exploration are now on the same scale.

asr_E_B_us <- asreml(cbind(scale(exploration),
scale(boldness)) ~ trait +
trait:scale(assay_rep, scale = FALSE) +
trait:scale(body_size),

random =~ ID:us(trait, init = c(1,
0.1,1)),
rcov =~ units:us(trait, init = c(0.1,
0.1,0.1)),

data = df_syndrome,
maxiter = 100)
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On the right hand side of our model formula, we use the trait keyword to specify that this is a multivariate
model — trait itself tells the model to give us the intercept for each trait. We then interact trait with our
fixed effects, assay_ rep and body__size, so that we get estimates for the effect of these variables on each
of our behaviours.

Our random effects structure starts with the random effects, where we tell the model to fit an ‘unstructured’
(us) covariance matrix for the grouping variable ID. This means that we want to calculate the variance in
exploration due to differences among individuals, the variance in boldness due to differences among individuals,
and the covariance between these variances.

Next, we set a structure for the residual variation (rcov), which is also sometimes known as the ‘within-
individual variation’. As we have repeated measures for both traits at the individual level, we also set an
unstructured covariance matrix, which finds the residual variance for each trait and also allows the residuals
to covary across the two traits.

Finally, we provide the name of the data frame, and a maximum number of iterations for ASReml to attempt
to fit the model.

After the model has been fit by ASReml, we can check the fit using the same type of model diagnostic plots as
we use for 1me4:

plot(residuals(asr_E_B_us)~fitted(asr_E_B_us))

qgnorm(residuals(asr_E_B_us))
hist(residuals(asr_E_B_us))

The summary part of the ASReml model fit contains a large amount of information, so it is best to look only
at certain parts of it at a single time. While we are not particularly interested in the fixed effects for current
purposes, you can inspect these using the following code to check whether there were any large effects of
assay repeat or body size on either trait:

summary(asr_E_B_us, all=T)$coef.fixed

We can see that there is a separate intercept for both personality traits (no surprise that these are very close
to zero, given that we mean-centred and scaled each trait before fitting the model), and an estimate of the
effect of assay repeat and body size on both traits. None of these appear to be large effects, so let’s move on
to the more interesting parts — the random effects estimates:

summary (asr_E_B_us) $varcomp

## gamma component std.error
## ID:trait!trait.exploration:exploration 0.2863101 0.2863101 0.07637361
## ID:trait!trait.boldness:exploration 0.0883864 0.0883864 0.06067166
## ID:trait!trait.boldness:boldness 0.3733306 0.3733306 0.08607573
## R!variance 1.0000000 1.0000000 NA
## R!trait.exploration:exploration 0.7184419 0.7184419 0.06572786

0 0

0 0

## R!trait.boldness:exploration .3263211 0.3263211 0.04829180
## R!trait.boldness:boldness .6274169 0.6274169 0.05740290
#i# z.ratio constraint
## ID:trait!trait.exploration:exploration 3.748810 Positive
## ID:trait!trait.boldness:exploration 1.456799  Positive
## ID:trait!trait.boldness:boldness 4.337234  Positive
## Rl!variance NA Fixed
## Rltrait.exploration:exploration 10.930554  Positive
## R!trait.boldness:exploration 6.757279  Positive
## R!trait.boldness:boldness 10.930055  Positive
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In the above summary table, we have the among-individual (co)variances listed first (starting with ID),
then the residual (or within-individual) (co)variances (starting with R). You will notice that the variance
estimates here are actually close to the 1me4 repeatability estimates, because our response variables were
scaled to phenotypic standard deviations. We can also find the ‘adjusted repeatability’ (i.e., the repeatability
conditional on the fixed effects) for each trait by dividing its among-individual variance estimate by the sum
of its among-individual and residual variances.

Here, we use the pin function from the nadiv package (Wolak 2012) to estimate the repeatability and its
standard error for each trait, conditional on the effects of assay repeat and body size. For this function, we
provide the name of the model object, followed by a name that we want to give the estimate being returned,
and a formula for the calculation. Each ‘V’ term in the formula refers to a variance component, using its
position in the model summary shown above.

nadiv:::pin(asr_E_B_us, prop_expl ~ V1/(V1+V5))
nadiv:::pin(asr_E_B_us, prop_bold ~ V3/(V3+V7))

## Estimate SE
## prop_expl 0.284956 0.06113612
## Estimate SE

## prop_bold 0.3730518 0.06124283

We can also use this function to calculate the estimate and standard error of the correlation from our model
(co)variances. We do this by specifying the formula for the correlation:

nadiv:::pin(asr_E_B_us, cor ~ V2/(sqrt(V1)*sqrt(V3)))

## Estimate SE
## cor 0.2703462 0.1594158

In this case, the estimate is similar (here, slightly lower) than our correlation estimate using BLUPs. However,
if we consider confidence intervals as +/- 1.96SE around the estimate, the lower bound of the confidence
interval would actually be -0.042. With confidence intervals straddling zero, we would conclude that
this correlation is likely non-significant. As the use of standard errors in this way is only approximate,
we should also test our hypothesis formally using likelihood ratio tests.

Hypothesis testing

We can now test the statistical significance of this correlation directly, by fitting a second model without the
among-individual covariance between our two behavioural traits, and then using a likelihood ratio test to
determine whether the model with the covariance produces a better fit.

Here, we use the idh structure for our random effects. This stands for ‘identity matrix’ (i.e., with Os on the
off-diagonals) with heterogeneous variances (i.e., the variance components for our two response traits are
allowed to be different from one another). The rest of the model is identical to the us version.

asr_E_B_idh <- asreml(cbind(scale(exploration),
scale(boldness)) ~ trait +
trait:scale(assay_rep, scale = FALSE) +
trait:scale(body_size),
random =~ ID:idh(trait, init = c(1,1)),
rcov =~ units:us(trait, init = c(0.1,
0.1,0.1)),
data = df_syndrome,
maxiter = 100)
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The likelihood ratio test is calculated as twice the difference between model log-likelihoods, on a single degree
of freedom (the covariance term):

pchisq(2x(asr_E_B_us$loglik - asr_E_B_idh$loglik),
1, lower.tail = FALSE)

## [1] 0.1170403

In sharp contrast to the highly-significant P-value given by a correlation test using BLUPs, here we find no
evidence for a behavioural syndrome between exploration and boldness.

To better understand why BLUPs produce an anticonservative p-value in comparison to multivariate models,
we should plot the correlation estimates and their confidence intervals. The confidence intervals are taken
directly from the cor.test function for BLUPs, and for ASReml they are calculated as 1.96 times the standard
error from the pin function.

Comparison of methods for testing behavioural syndromes
Correlation between individual variation in both exploration and boldness

1.01
051
o
[
je)
T
< 001
S
O
~0.5-
_10 -
ASreml BLUP

Method

Here we can clearly see that the BLUPs method - having failed to carry through the error around the predictions
of individual-level estimates - is anticonservative, with small confidence intervals and a correspondingly small
P-value (P = 0.0019). Testing the syndrome directly in a bivariate model that retains all the data, by
comparison, enables us to capture the true uncertainty about the estimate of the correlation. This is reflected
in the larger confidence intervals and, in this case, the non-significant P-value (P = 0.117).

Adding further traits

As part of our data collection, we also have a single value of mating success for each individual (which we will
use as a proxy for fitness). We are interested in whether our personality traits are associated with variation
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in this fitness-related measure. While our test above showed that the correlation between the measured
personality traits was not significant, there did appear to be some relationship — so we shall incorporate
both personality traits and fitness into a single trivariate model for hypothesis testing.

In this case, because the new response variable to be added to our model is fitness, we are not going to
mean-centre and scale by phenotypic standard deviations, but instead divide by the mean fitness value (such
that we are investigating among-individual covariance between personality traits and relative fitness). We
create this new variable, rel_fitness, as follows:

df _syndrome <- df_syndrome ¥>%
mutate(rel_fitness = fitness/mean(fitness, na.rm=TRUE))

Note that we will refer to this relative fitness trait simply as ‘fitness’ below for simplicity’s sake.

Setting up the model

Below, we will set up our main model, which will allow for heterogeneous among-individual variances in our
3 traits (boldness, exploration, fitness), and will estimate the associations between them. Note, however,
that we will use the corgh structure instead of us in the random effects. These structures fit the same
model, but on a correlation rather than covariance scale. Note in this case we are just using corgh because it
makes it easier in ASReml to specify some constraints that we require and (as we will see later, we can always
backcalculate the covariances from the estimated correlations if we want them).

First, we set up starting values from the model, which we also use to set some constraints. We set constraints
in ASReml by specifying some starting values in a numeric vector, then giving each value a ‘name’ that
corresponds to how ASReml should treat the corresponding part of the random effects matrix during model
fitting:

o U: Unconstrained (can take any value, positive or negative)
o P: Positive (must be a positive value)
o F: Fixed (remains fixed at the given value)

An important point: while the starting values (init) for the us structure were provided in the form of the
lower triangle of a covariance matrix, for corgh we provide the correlations first, and then the variances.

For the random effects, we set generic starting values — the 3 correlations have starting values close to 0 and
are unconstrained, while the variance components have starting values of unit variance (and are constrained
to be positive values):

init _E_B_fit_cor <- c¢(0.1,
0.1,0.1,
1,1,1)
names (init_E_B_fit_cor) <- c("U",
||U|I’I|Ul|,
0 0203 )

For the residuals (or ‘within-individual’ variance), we must bear in mind that we have only a single fitness
value per individual — therefore, that trait has no within-individual variance, and within-individual
correlations involving fitness must be set to zero as they cannot be estimated. We set the starting
value for both correlations to 0 below, and denote them as fixed at those values using ‘F’. The variance
component is slightly trickier — variances have to be positive, therefore we simply fix the within-individual
variance at a very small positive number (here, 1e-08 — i.e., so small as to be effectively 0):
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init_E_B_fit_res <- c(0.1,

0,0,
0.1, 0.1, 1e-08)
names (init_E_B_fit_res) <- c("U",
IIPH s I|P|l s ||Fll)

Now, we can fit our model with these starting values and constraints. Again, we cbind our response variables
on the left-hand side of the formula, and use trait to denote a multivariate model. Remember that we have
created the ‘relative fitness’ variable by essentially scaling by its mean, so this does not need to be scaled as
the behavioural traits are.

We can also use the at keyword to specify that fixed effects are estimated only for certain traits — here, we
test for an effect of assay repeat only on exploration and boldness (because these were measured repeatedly),
while we test for the effect of body size on all of our traits.

Fit the model as follows (and be sure to use visual diagnostic checks of the residuals):

asr_E_B_fit_cor <- asreml(cbind(scale(exploration),
scale(boldness),
rel_fitness) ~ trait +
at(trait,1) :assay_rep +
at(trait,2):assay_rep +
trait:scale(body_size),

random =~ ID:corgh(trait, init = init_E_B_fit_cor),
rcov =~ units:corgh(trait, init = init_E_B_fit_res),
data = df_syndrome,

maxiter = 500)

We can take a quick look at the fixed effects:

summary(asr_E_B_fit_cor, all=T)$coef.fixed

Below, we specify that we want to look at the variance components using $varcomp. In the interests of space,
we will request only the component (i.e., the variance estimate) and its std.error:

summary(asr E B fit cor)$varcomp[,c("component","std.error")]
y _bE_B 11t p p

## component std.error
## ID:trait!trait.boldness:!trait.exploration.cor 0.27031497 0.159419988
## ID:trait'trait.rel_fitness:!trait.exploration.cor 0.23386699 0.138687881
## ID:trait!trait.rel_fitness:!trait.boldness.cor 0.66168293 0.087961997
## ID:trait!trait.exploration 0.28630613 0.076372770
## ID:trait!trait.boldness 0.37322016 0.086051330
## ID:trait!trait.rel_fitness 0.05659086 0.009060437
## R!variance 1.00000000 NA
## R!trait.boldness:!trait.exploration.cor 0.48603894 0.049410253
## Rltrait.rel_fitness:!trait.exploration.cor 0.00000000 NA
## Rl!trait.rel_fitness:!trait.boldness.cor 0.00000000 NA
## R!trait.exploration 0.71844420 0.065728071
## R!trait.boldness 0.62744922 0.057405898
## Rltrait.rel_fitness 0.00000001 NA
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Here we can see that the fit provides us with estimates and standard errors of:

e 3 among-individual correlations;
o 3 among-individual variance components;
e 3 within-individual correlations;
e 3 within-individual variance components.

You can see from the estimates that our constraints have worked in the model: within-individual correlations
featuring fitness are at 0, and the residual fitness variance is a very small positive number (such that all the
variation is at the among-individual level).

A quick sanity check also tells us that the correlation between boldness and exploration (the first variance
component in our summary table above, r = 0.27 SE 0.159) estimated in this model is the same as in our
earlier bivariate model.

From a first glance at the correlation estimates and their associated standard errors, it appears likely that
there is a significant among-individual correlation between relative fitness and boldness (r = 0.662 SE 0.088),
but not between relative fitness and exploration (r = 0.234 SE 0.139).

Hypothesis testing

We can again use likelihood ratio tests for hypothesis testing with these models. We first test for an association
between relative fitness and our bivariate personality phenotype (defined by the two traits). We do this
by fixing both correlations with fitness (7boldness,fitness 81 Texploration,fitness) t0 0. We then use a likelihood
ratio test to analytically compare our main model (with all correlations estimated) to this second model
(no correlation between fitness and boldness/exploration), which tests whether allowing those correlations
provides a statistically significant improvement in the model fit. Note this is not testing the significance
of each trait-fitness correlation separately, it is testing whether there is any significant fitness-phenotype
correlation overall.

We set the correlations to 0 as follows:

init_E_B_fit_cor_FEBO <- c(0.1,
0,0,
1,1,1)
names (init_E_B_fit_cor_FEBO) <- c("U",
"E","F",
I|Pll s I|Pll , |lpll)

asr_E_B_fit_cor_FEBO <- asreml(cbind(scale(exploration),
scale(boldness),
rel_fitness) ~ trait +
at(trait,1):assay_rep +
at(trait,2):assay_rep +
trait:scale(body_size),
random =~ ID:corgh(trait, init = init_E_B_fit_cor_FEBO),
rcov =~ units:corgh(trait, init = init_E_B_fit_res),
data = df_syndrome,
maxiter = 800)

We then test the difference in model fits using a likelihood ratio test with 2 degrees of freedom:
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pchisq(2x(asr_E_B_fit_cor$loglik - asr_E_B_fit_cor_FEBO$loglik),
2, lower.tail = FALSE)

## [1] 5.654352e-07

Here we find evidence of significant correlation structure — based on the estimates and SEs from the model
summary, it’s a fairly safe bet that this is being driven by the fitness-boldness association. If tests of each of
the specfic trait-fitness correlations are needed, we advise using pairwise models (but note of course that
multiple testing issues might require consideration if you want to statistically test every pairwise correlation
estimate and you have a lot of traits). We will fit the two bivariate trait-fitness models below for completeness,
and they should confirm our suspicions about which personality trait is driving the correlation between the
bivariate behavioural phenotype and fitness.

As with tests of the earlier bivariate models for behavioural syndromes, we fit models with both us and idh
structures (or corgh with setting the correlation to 0) for hypothesis testing using likelihood ratio tests. In
this case, we also have to set the residual variation in fitness to a very small (near-zero) positive number, and
we do not fit a residual covariance. Here we demonstrate for boldness and fitness:

init_fitbiv_res <- ¢(0.1,1e-08)
names (init_fitbiv_res) <- c("P","F")

asr_B_fit_us <- asreml(cbind(scale(boldness),
rel_fitness) ~ trait +
at(trait,1) :assay_rep +
trait:scale(body_size),

random =~ ID:us(trait, init = c(1,
0.1,1)),
rcov =~ units:idh(trait, init = init_fitbiv_res),

data = df_syndrome,
maxiter = 800)

asr_B_fit_idh <- asreml(cbind(scale(boldness),
rel_fitness) ~ trait +
at(trait,1):assay_rep +
trait:scale(body_size),
random =~ ID:idh(trait, init = c(1,1)),
rcov =~ units:idh(trait, init = init_fitbiv_res),
data = df_syndrome,
maxiter = 800)

## [1] 8.164003e-08
We can now run the same test for exploration and fitness:
## [1] 0.1024701

As we had anticipated from the estimate and standard error of the correlations in our trivariate model,
the association between individual variation in boldness and relative fitness is significant, while there is no
evidence for a significant association between individual variation in exploration and fitness.
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A slight digression: converting correlations back to covariances can be useful

While we set up the trivariate model to output results in terms of correlation matrices, we could have fit the
model on a covariance scale using us. While correlations are intuitive, sometimes having the answers on the
covariance scale is useful. For instance, in the current example, the trait-fitness correlations could be used to
infer selection — but if we wanted to express the strength of that selection, the normal way to do so is through
__selection differentials. These are the trait — (relative) fitness covariances, and/or selection gradients (the
partial regressions of relative fitness on traits which can be calculated from variance and covariance terms).

Since a correlation is simply the covariance rescaled by the product of the squared variances, we can retrieve
the covariance terms by simply rearranging as follows:

COVrir2 =712 X V/ V1 X / Vo

Again, the pin function comes to our rescue. As an example, we can get the covariance between exploration
and boldness from our trivariate model (with corgh correlation-structure) as follows:

nadiv:::pin(asr_E_B_fit_cor, cov_E_B ~ Vixsqrt(V4)*sqrt(V5))

## Estimate SE
## cov_E_B 0.08836249 0.06066255

We might want to present our final results as a matrix with variances on the diagonals, covariances below
and correlations above (with standard errors in parentheses):

Exploration ~ Boldness Fitness
Exploration 0.29 (0.08) 0.27 (0.16)  0.23 (0.14)
Boldness 0.09 (0.06) 0.37 (0.09)  0.66 (0.09)
Fitness 0.03 (0.02) 0.1 (0.02) 0.06 (0.01)

Conclusions

To conclude, then: we found that the correlation between boldness and exploration tends to be positive
among male haggis. This correlation is not statistically significant, and thus does not provide strong evidence
for a behavioural syndrome. However, inappropriate analysis of BLUP extracted from univariate models
would lead to a different (erroneous) conclusion. We also found no statistically significant association between
among-individual variation in exploration and fitness. However, we did find a statistically significant positive
association between among-individual variation in boldness and our fitness proxy, indicating that bolder male
haggis had greater mating success (see figure below).

Note: below, we use BLUPs from our trivariate model to construct a figure that illustrates the association
between boldness and fitness. Unlike its use in secondary statistical analyses, this is an appropriate use of
BLUPs — i.e., just for illustrative purposes!

# Retrieve BLUPs from ASReml trivariate model
# and reform into data frame for plotting
df _bf_coefs <- data_frame(Trait = attr(asr_E_B_fit_cor$coefficients$random, '"names"),
Value = asr_E_B_fit_cor$coefficients$random) %>%
separate(Trait, c("ID","Trait"), sep = ":") %>%
filter(Trait %in% c("trait_boldness", "trait_rel_fitness")) %>%
spread(Trait, Value)
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# Find the regression line -
# the covariance of boldness, relative fitness divided by
# the wariance in boldness
B_fit_slope <- as.numeric(nadiv:::pin(asr_E_B_fit_cor,
slope ~ (V3*sqrt(V5)*sqrt(V6))/
V5)$Estimate)

ggplot(df_bf_coefs, aes(x = trait_boldness, y = trait_rel_fitness, group = ID)) +
geom_point(alpha = 0.7) +
geom_abline(intercept = 0, slope = B_fit_slope) +
labs(x = "Boldness (BLUP)",
y = "Relative fitness (BLUP)") +
theme_classic()

0.6 1 ®

Relative fithess (BLUP)

-1.0 0.5 0.0 05 1.0
Boldness (BLUP)

Further tutorials

We will continue to develop tutorials for multivariate modelling of individual (co)variation, which will cover
some of the more advanced issues discussed in our paper. Please visit https://tomhouslay.com/tutorials/ for
more information.
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