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A1. Algorithms for Minimizing the Weighted Ramp Loss

[Figure 1 about here.]

To minimize the loss function of the weighted ramp loss,

L(f) =
n∑
i=1

C
|Wi|hs(ZiAif(X i))

π(Ai|X i)
+

1

2
||β||2, (A.1)

express hs(u) as the difference of two convex functions. That is,

hs(u) = h1,s(u)− h2,s(u) = (
1

2
− u

s
)+ − (−1

2
− u

s
)+,

where function (x)+ denotes the positive part of x. Let ηi denote AiZif(X i). Then the

penalized weighted sum of ramp loss can be simplified as L =
∑n

i=1C
|Wi|hs(ηi)
π(Ai|Xi)

+ 1
2
||β||2, and

the minimization in (A.1) can be carried out in three steps:

• Step 1: Start with an initial value of β, i.e. β0, which can be derived from the optimal rule

estimated by the O-learning with hinge loss. Then, the initial value of η can be calculated

and we denote it as η0.

• Step 2: Solve

β̂ = arg min
n∑
i=1

C
|Wi|{h1,s(ηi)− ĥ2,s(ηi, η

0
i )}

π(Ai|X i)
+

1

2
||β||2, (A.2)

where ĥ2,s(ηi, η
0
i ) = h2,s(η

0
i ) + h′2,s(η

0
i )ηi and h′2,s(u) =

−I(u/s < −1/2)

s
.

• Step 3: Compute η0 and update it in step 2 until the change in L is less than a pre-specified

threshold.

In order to solve the optimization problem in Step 2, we introduce slack variables ξi to

replace h1,s(ηi). Therefore, (A.2) is equivalent to minimize

n∑
i=1

C
|Wi|{ξi − ĥ′2,s(η0

i )ηi}
π(Ai|X i)

+
1

2
||β||2, s.t. ξi >

1

2
− ηi
s
, and ξi > 0.

By adding two non-negative Lagrange multipliers α and τ , we obtain

L =
n∑
i=1

C
|Wi|{ξi − ĥ′2,s(η0

i )ηi}
π(Ai|X i)

+
1

2
||β||2 −

n∑
i=1

αi(ξi +
ηi
s
− 1

2
)−

n∑
i=1

τiξi.

Let γ be a vector with i-element γi =
|Wi|ĥ′2,s(η0i )

π(Ai|Xi)
. Notice that ηi = AiZi(β0 +XT

i β), and take
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derivative with regard to β0, β, ξ, we obtain the following equations

0 =
n∑
i=1

AiZi

(
Cγi +

αi
s

)
, (A.3)

β =
n∑
i=1

C
|Wi|ĥ′2,s(η0

i )AiZiX i

π(Ai|X i)
+

n∑
i=1

αiAiZiX i/s =
n∑
i=1

AiZi

(
Cγi +

αi
s

)
X i, (A.4)

0 =
|Wi|

π(Ai|X i)
C − αi − τi. (A.5)

By (A.5), ξ′is cancel out and the penalized weighted sum of ramp loss becomes

L = −
n∑
i=1

Cγi
{
AiZi(β0 +XT

i β)
}

+
1

2
||β||2 −

n∑
i=1

αi
s

{
AiZi(β0 +XT

i β)
}

+
1

2

n∑
i=1

αi

= −
n∑
i=1

AiZi

(
Cγi +

αi
s

)
XT

i β +
1

2

n∑
i=1

αi +
1

2
||β||2 by (A.3)

= −1

2
||β||2 +

1

2

n∑
i=1

αi by (A.4)

∝ 1

2

n∑
i=1

αi −
1

2

(∑
AiZi

αi
s
XT

i

∑
AiZi

αi
s
X i + 2

∑
AiZiCγiX

T
i

∑
AiZi

αi
s
X i

)
= − 1

2s2
αTQα+

1

2
(1− 2CQγ/s)α,

where Q is a square matrix where Qi,j =< AiZiX i, AjZjXj >.

Hence, the dual problem is

min
1

2s2
αTQα− 1

2
(1− 2CQγ/s)T α, (A.6)

subject to 0 6 αi 6 C|Wi|/π(Ai|X i) and
∑
CAiZiγi +

∑
AiZiαi/s = 0. Thus, the opti-

mization problem can be solved via quadratic programming. After obtaining αi, the original

coefficient can be derived by β̂ =
∑
AiZi

(
Cγi + αi

s

)
X i. Based on the KKT condition

ξi(C|Wi|/π(Ai|X i) − αi) = 0, when 0 < αi < C|Wi|/π(Ai|X i), we have ξi = 0 and

AiZi(β̂0 +XT
i β̂)− 1

2
s = 0. The intercept term β̂0 can be calculated by taking the average of

s

2AiZi
−XT

i β̂.

Therefore, we obtain the optimal linear ITR as

f̂ ∗L(X) = β̂0 +XT β̂.
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A2. Asymptotic Properties

Let X denote a vector with one as the first component and the remaining components as

feature variables. To emphasize that the tuning parameter s of ramp loss may depend on the

sample size to establish asymptotic properties, we denote it by sn in this section. We assume

(a) The true optimal linear function, f ∗L(x) = xTβ∗, is the unique minimizer of E {RI(Af(X) < 0)}

for f(x) = xTβ where ‖β‖ = 1. Furthermore, there exists a positive constant δ such that

P (|XTβ∗| > δ0) = 1.

(b) The joint densities of (R,X) given A = 1 and −1 are twice-continuously differentiable.

(c) There exits a function r(x) such that {r̂(x)− r(x)} = o((nsn)−1/2) uniformly in x.

(d) (nCn)−1 → 0, nsn →∞, ns3
n → 0, and (nsn)1/2(nCn)−1 → 0.

(e) There exits a unique minimizer, denoted by βn, that minimizes

E
[
|R− r(X)|hs

{
Asign(R− r(X))XTβ

}
/π(A|X)

]
.

Assume that βn belongs to a bounded set. Furthermore, let

IFn(R,X, A) =

[
∂

∂β
E {A(R− r(X))X/π(A|X)|Z(β) = 0} fZ(β)(0)

∣∣∣
β=βn

]−1

×
[
|R− r(X)|Asign(R− r(X))X(2sn)−1I(Asign(R− r(X))XTβn ∈ [−sn/2, sn/2])/π(A|X)

]
,

we assume that s
1/2
n IFn(R,X, A) has a bounded third moment and converges to a random

variable in L2(P ) norm.

Condition (a) requires a separable boundary condition, but this condition can be further

relaxed to allow XTβ∗ to have positive probability around the boundary and the density

vanishes faster than a linear rate when close to the boundary. Condition (c) usually holds if

we estimate r(x) through some parametric models. In condition (d), sn and Cn are the tuning

parameters to be chosen depending on n, for example, Cn = 1 and sn = n−1/2. Condition

(e) assumes the convergence of the minimizer associated with the ramp loss. Under these

assumptions, we first show the consistency of ABLO, f̂ ∗L(x) = xT β̂. The proof follows the

standard M-estimation theory by Van der Vaart (2000). Let Pn denote the empirical measure,
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then f̂ ∗L minimizes

Pn

[
|R− r̂(X)|hs

{
Asign(R− r̂(X))XTβ

}
/π(A|X)

]
+ (2nCn)−1‖β‖2.

It is clear that from assumptions (a), (b) and (c),

sup
β

∣∣∣Pn

[
|R− r̂(X)|hs

{
Asign(R− r̂(X))XTβ

}
/π(A|X)

]
+(2nCn)−1‖β‖2 − E

[
|R− r(X)|hs

{
Asign(R− r(X))XTβ

}
/π(A|X)

] ∣∣∣→ 0

almost surely. By condition (b) and (d), E
[
|R− r(X)|hs

{
Asign(R− r(X))XTβ

}
/π(A|X)

]
converges uniformly to E

[
|R− r(X)|I

{
Asign(R− r(X))XTβ < 0

}
/π(A|X)

]
, which is equiv-

alent to

E
[
RI(AXTβ < 0)/π(A|X)]− E[(R− r(X))−

]
− r(X).

This gives

Pn

[
|R− r̂(X)|hs

{
Asign(R− r̂(X))XTβ

}
/π(A|X)

]
+ (2nCn)−1‖β‖2

→ E
[
RI(AXTβ < 0)/π(A|X)]− E[(R− r(X))−

]
− r(X)

uniformly in β. Since (a) implies f ∗L is also the unique minimizer of the latter limit for ‖β‖ =

1, it yields that any convergent subsequence of β̂ should converge to a limit proportional

to β∗. Therefore, we conclude that β̂/‖β̂‖ converges to β∗ almost surely. Furthermore, by

noting

sup
β

∣∣∣P [|R− r̂(X)|hs
{
Asign(R− r̂(X))XTβ

}
/π(A|X)

]
−E

[
|R− r(X)|hs

{
Asign(R− r(X))XTβ

}
/π(A|X)

] ∣∣∣→ 0,

we can easily show that ‖β̂ − βn‖ converges to zero almost surely.

To obtain the asymptotic normality for β̂, we follow Koo et al. (2008) by noting β̂ solves

Pn

[
|R− r̂(X)|Asign(R− r̂(X))Xh′s

{
Asign(R− r̂(X)XT β̂

}
/π(A|X)

]
+ (nCn)−1β̂ = 0.
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This gives

√
nsn(Pn −P)

[
|R− r̂(X)|Asign(R− r̂(X))Xh′s

{
Asign(R− r̂(X))XT β̂

}
/π(A|X)

]
= −(nsn)1/2(nCn)−1β̂

−(nsn)1/2P
[
|R− r̂(X)|Asign(R− r̂(X))Xh′s

{
Asign(R− r̂(X))XT β̂

}
/π(A|X)

]
= o(1)− (nsn)1/2 ∂

∂y
P

[
|R− y|Asign(R− y)Xh′s

{
Asign(R− y))XT β̂

} r̂(X)− r(X)

π(A|X)

] ∣∣∣
y=r(X)

+(nsn)1/2s−1
n

∫ sn/2

−sn/2
E
[
A(R− r(X))X/π(A|X)|Z(β̂) = z

]
dFZ(β̂)(z),

where Z(β) denotes the random variable Asign(R− r(X))XTβ and FZ(β) is its cumulative

distribution function. From (b) and since βn is the minimizer of the expected ramp loss, the

last term is equal to

(nsn)1/2(β̂ − βn)
∂

∂β
E [A(R− r(X))X/π(A|X)|Z(β) = 0] fZ(β)(0)

∣∣∣
β=βn

+ o(1).

Thus, the asymptotic normality of
√
n(β̂ − βn) holds by noting that

√
nsn(Pn −P)

[
|R− r̂(X)|Asign(R− r̂(X))Xh′s

{
Asign(R− r̂(X))XT β̂

}
/π(A|X)

]
is equivalent to

√
nsn(Pn−P)

[
|R− r(X)|Asign(R− r(X))X

I(Asign(R− r(X))XTβn ∈ [−sn/2, sn/2])

2snπ(A|X)

]
and therefore,

√
nsn(β̂ − βn) =

√
nsn(Pn −P)IFn(R,X, A) + op(1).

The asymptotical normality of
√
nsn(β̂ − βn) follows from condition (e).

Lastly, we examine the diagnostic statistics for any estimated decision function, denoted as

δ̂C(f̂) in (7) of the main paper, where f̂(x) = xT β̂ is an estimated rule converging to f ∗(x)

uniformly in x. Note that we split the data into K folds, f̂ (−k) is estimated without the kth

part of data and δ̂
(k)
C is computed using the kth part. Let nk denote the sample size of the

kth part of data and let Pnk denote the empirical measure for the k part of data. Define by

δ∗C =
E [I(X ∈ C, Af ∗(X) > 0)R/π(A|X)− I(X ∈ C, Af ∗(X) < 0)R/π(A|X)]

E[I(X ∈ C)]
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the subgroup benefit based on the optimal linear rule f ∗. Since βn/‖βn‖ → β∗, from

condition (a), we have

β∗TXβTnX/‖βn‖ > 0

with probability one. Therefore,

δ∗C =
E [I(X ∈ C, Afn(X) > 0)R/π(A|X)− I(X ∈ C, Afn(X) < 0)R/π(A|X)]

E[I(X ∈ C)]
,

where fn(X) = βTnX.

Re-express δ̂C(f̂
(−k)) as

δ̂
(k)
C =

PnkI(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)

PnkI(X ∈ C)
− PnkI(X ∈ C, Af̂ (−k)(X) < 0)R/π(A|X)

PnkI(X ∈ C)
.

Since {I(X ∈ C) : C ∈ {C1, ..., Cm}} and
{
Af(X) > 0 : f = XTβ

}
are VC-major classes,

(Pnk −P)I(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)

= (Pnk −P)I(X ∈ C, Af ∗(X) > 0)R/π(A|X) + op(n
−1/2
k ).

We obtain

δ̂C(f̂
(−k))− δ∗C

=
(Pnk −P)I(X ∈ C, Af ∗(X) > 0)R/π(A|X)

PI(X ∈ C)
− (Pnk −P)I(X ∈ C, Af ∗(X) < 0)R/π(A|X)

PI(X ∈ C)

− E [I(X ∈ C, Af ∗(X) > 0)R/π(A|X)− I(X ∈ C, Af ∗(X) < 0)R/π(A|X)]

E[I(X ∈ C)]2
(Pnk −P)I(X ∈ C)

+
E
[
I(X ∈ C, Af̂ (−k)(X) > 0)R/π(A|X)− I(X ∈ C, Af̂ (−k)(X) < 0)R/π(A|X)

]
E[I(X ∈ C)]2

−E [I(X ∈ C, Afn(X) > 0)R/π(A|X)− I(X ∈ C, Afn(X) < 0)R/π(A|X)]

E[I(X ∈ C)]2

+ op(n
−1/2
k ).

Using the smooth condition in (b) and the expansion for β̂
(−k)

around β̂n from the previous

asymptotic proof, we can show that the difference in the last two terms has a convergence

rate faster than n
−1/2
k , given nk = o(nsn), and furthermore, when nk →∞,

√
nk

(
δ̂

(k)
C − δ

∗
C

)
→d G(C),
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where G(C) is a tight Gaussian process indexed by C with mean zero. After averaging over all

folds and assuming K is fixed, similar argument shows that
√
n
(
δ̂C − δ∗C

)
→d G̃(C) for some

tight Gaussian process G̃, where δ̂C = 1
K

∑
k δ̂

(k)
C . Note that these results apply to ABLO f̂L,

or other f̂ estimated from minimizing a weighted hinge loss as in O-learning or predictive

modeling.

If f ∗L is also the global optimal rule, that is f ∗L = f ∗, then δ∗C > 0 for any C and any

X. Therefore, the confidence interval for δ∗C will be expected to be within (0,∞) when n

is sufficiently large. We can also construct a test for H0 : δ∗C > 0 vs Ha : δ∗C < 0 using this

asymptotic distribution.

A3. Computing the Theoretical Optimal Linear Rule

Here we derive the theoretical optimal linear rule f ∗L in the class of all linear rules f ∈

L under our simulation settings in Section 3. Let G be the latent class identifier in the

simulations. Define G|(X,W, V,A,U)=G|X as the class number, which only depends on

X = (X1, X2, · · · , Xp), where Xj|G = k ∼ N(µk, 1) for j = 1, · · · , p, and k = 1, 2, 3, 4. For

a given treatment decision rule f , the expected value function under the decision rule is

E

[
R

π(A|X)
{I(Af(X, V,W,U ) > 0)}

]
= E [I(f(X, V,W,U) > 0) {E(R|X, V,W,U , A = 1)− E(R|X, V,W,U , A = −1)}]

+ E
{
E(R|X, V,W,U , A = −1)

}
.

Because E {E(R|X, V,W,U , A = −1)} is a constant which doesn’t depend on f , maximizing

the expected value function is equivalent to maximizing E {I(f(X, V,W,U) > 0)Ω(X,W )} ,

where under the simulation model for E(R|X, V,W,U , A) we can obtain

Ω(X,W ) = P (G = 1|X) {δ1 + (α11 − α21)W}+ P (G = 2|X) {δ2 + (α12 − α22)W}

+ P (G = 3|X) {−δ1 + (α13 − α23)W}+ P (G = 4|X) {−δ2 + (α14 − α24)W} .
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Next, we show that V and U are independent of optimal linear decision rule f ∗L. Let

f ∗L(X,W ) maximizes the value function in class L. For any fixed V and U ,

E {I[f ∗L(X,W ) > 0]Ω(X,W )} > E [I{f(X, V,W,U) > 0}Ω(X,W )]

= E [I{f(X, V,W,U) > 0}Ω(X,W )|V,U ] .

Therefore, take expectation of the inequality to obtain

E [E {I(f ∗L(X,W ) > 0)Ω(X,W )}] > E [E {I(f(X, V,W,U) > 0)Ω(X,W )|V,U}]

= E [I{f(X, V,W,U) > 0}Ω(X,W )] .

Thus we can ignore the independent noise variables while maximizing the value function.

Under linear transformation,

X → (
Xs√
p
, x̃2, · · · , x̃p),

where Xs = X1 +X2 + · · ·+Xp, and x̃2, · · · , x̃p are orthogonal to Xs, the objective function

becomes∫ ∫
I {f(Xs, x̃2, · · · , x̃p,W ) > 0}Ω(Xs,W )e−

X2
s

2p
− x̃

2
2
2
···− x̃

2
s
2 dXsf(W )dWdx̃2 · · · dx̃s,

where

Ω(Xs,W ) = eµ1Xs−
pµ21
2 {δ1 + (α11 − α21)W}+ eµ2Xs−

pµ22
2 {δ2 + (α12 − α22)W}

+eµ3Xs−
pµ23
2 {−δ1 + (α13 − α23)W}+ eµ4Xs−

pµ24
2 {−δ2 + (α14 − α24)W} .

Because (x̃2, · · · , x̃p) are independent noise variables, as shown before, the optimal linear

rule only depends on Xs and W . The objective function is thus equivalent to∫ ∫
I {f(Xs,W ) > 0}Ω(Xs,W )dXsf(W )dW.

As Xs ∼ 1
4
N(µ1, p) + 1

4
N(µ2, p) + 1

4
N(µ3, p) + 1

4
N(µ4, p) and W ∼ N(0, 1), where µk is the

mean of Xp in the kth class. Monte Carlo method can be applied to find the optimal linear

rule f ∗L.
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A4. Additional Simulation Results

[Figure 2 about here.]

We performed additional simulations to vary the strength of the informative feature vari-

able W , such that its effects in different settings are α =

 1 1 0.3 0.6

0.5 0.5 0.3 0.6

.

Results from 500 replicates are summarizied in Table A.1, Figure A.3, and A.4. ABLO

with linear kernel has the highest optimal treatment classification accuracy regardless of the

sample size for both settings, and also estimates the ITR benefit closest to the true global

maximal value of 0.705 on the overall sample. PM, Q-learning, and O-learning underestimate

the ITR benefit, especially when the sample size is smaller (N = 400 training, 400 testing).

Thus they do not achieve the maximal value of the theoretical optimal linear rule. The

performance of estimating subgroup ITR benefit is similar to the overall sample. ABLO

outperforms other methods with subgroup ITR benefit closer to the true global maximal

value (e.g., in groups W ∈ [−0.5, 0.5] and W > 0.5).

[Table 1 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

A5. Additional Results for STAR*D

The final STAR*D ITR estimated by ABLO using full data can be expressed as

f̂(X) =− 12.97 + 0.30 ∗ sex+ 1.27 ∗ white+ 0.79 ∗ black + 2.77 ∗ depression+ 0.05 ∗ age

+ 0.26 ∗ qids.start− 3.40 ∗ qids.slope+ 2.39 ∗ preference,

and treat a patient with SSRI if f̂ > 0; otherwise treat with a non-SSRI if f̂ 6 0. The

variable “sex” was coded as one for female and “preference” was coded as one for switch and

zero for no preference.
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[Table 2 about here.]

A6. Sensitivity to the Starting Values of ABLO

To evaluate the sensitivity of the algorithm to starting values, we include the algorithm

convergence path of two example datasets in terms of value function and weighted ramp loss

function. In Figure A.5, lines indicate convergence paths given different initial values. In the

first example dataset, the algorithm converges to the same value function and ramp loss.

However, the algorithm converges fastest if starting with O-leaning estimates. In the second

dataset, the algorithm is more sensitive to different starting values, but the one starting with

O-learning estimates performs the best, which is also the proposed starting values for ABLO.

[Figure 5 about here.]
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Figure A.1. Different approximation functions of the zero-one loss.
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Figure A.2. Clinical outcome (R) versus W with treatment 1 or −1 in each latent group
in the simulation setting described in Section 3. Two vertical dotted lines indicate W = −0.5
and W = 0.5.
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Figure A.3. Simulation results: Overall ITR benefit and accuracy rates for the four
methods. Dotted-dashed lines represent the benefit (top panels) and accuracy (bottom panels
under the theoretical global optimal treatment f ∗. Dashed lines represent the benefit and
accuracy under the theoretical optimal linear rule f ∗L. The methods being compared are
(from left to right): PM: predictive modeling by random forest; Q-learning: Q-learning with
linear regression; O-learning: improved single stage O-learning (Liu et al., 2014); ABLO:
asymptotically best linear O-learning. This figure appears in color in the electronic version
of this article.
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Figure A.4. Simulation results: Subgroup ITR benefit for the four methods. Black dotted-
dashed lines represent the benefit under the theoretical global optimal treatment f ∗. Red
dashed lines represent the benefit under the theoretical optimal linear rule f ∗L. The methods
being compared are (from left to right): PM: predictive modeling by random forest; Q-
learning: Q-learning with linear regression; O-learning: improved single stage O-learning
(Liu et al., 2014); ABLO: asymptotically best linear O-learning. This figure appears in color
in the electronic version of this article.
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Table A.2
Results of STAR*D Data Analysis

QIDS score ITR benefit Subgroup ITR benefit by baseline QIDS score

Mean(sd) Mean(sd) QIDS6 10 QIDS∈ [11, 15] QIDS> 16

PM 9.69(0.38) 0.38(0.76) 1.29(0.82) -0.10(1.02) 0.40(1.67)
Q-learning 9.50(0.35) 0.77(0.70) 2.08(0.68) -0.17(0.92) 1.09(1.62)
O-learning 9.55(0.41) 0.66(0.82) 1.58(0.92) -0.23(0.95) 1.20(1.84)
ABLO 9.32(0.23) 1.11(0.46) 2.22(0.45) -0.18(0.51) 2.02(1.12)

*: lower QIDS score indicates a better outcome; higher benefit indicates a better outcome.


