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Figure S1: B3C CP MAS Spin lattice relaxation, T; values at different temperatures for
Be (right) and 'H (left) measured with saturation recovery experiments. The T values
were acquired with ©,/2n = 4.83 kHz, 0;/2n = 83 kHz for TPPM decoupling and wop/2n
OO0 UUHz.
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Figure S2. Temperature-dependent direct °C spectra of [U-">C,'°N] APG. The spectral
changes are plotted in Figure 3c. The spectra were acquired with ®,/2n = 4.83 kHz,
o1y/21 = 83 kHz for TPPM decoupling and woy/2x (111111 [THz.
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Figure S3. Temperature-dependent 'H-"C CP spectra of [°C,"’N- FVYL]-PI3-SH3
amyloid fibrils. Sample was cryoprotected in ds-glycerol/D,O/H,0 (60/30/10 volume
ratio). ®,/2n =7 kHz, ®1y/2n = 100 kHz for TPPM decoupling and wop/2n
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Figure S4. Temperature-dependent 'H-">C CP spectra of ['°C,’N]- bacteriorhodopsin.
Sample was cryoprotected in dg-glycerol/D,O/H,0 (60/30/10 volume ratio). /21 = 4.83
kHz, w1y/2n = 100 kHz for TPPM decoupling and woy/2m (11111111 Hz.
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Figure S5. DNP-enhanced 1D and 2D spectra of [°C,'"N-FVYL]-PI3-SH3 fibrils. (a)'H-
B3C CP MAS NMR spectra at 88 K measured with (top) and without (bottom) DNP, an
enhancement of 35 was obtained. The fibril was hydrated in 60/30/10 volume ratio of dg-
glycerol/D,O/H,0 supplemented with 15 mM TOTAPOL. (b) DNP-enhanced 2D "*C-">C
RFDR acquired with 1.6 ms of mixing time and a total experiment time of 4 hours. The

dashed lines indicate the spin systems of tyrosine residues. The spectra were acquired
with o,/2n =7 kHz, 0y/2n = 83 kHz for TPPM decoupling, and wou/2 © =380 MHz.

The enhanced intensity greatly accelerates the acquisition of multidimensional spectra
and allows the investigation of low-temperature structural and dynamic behaviors such as
conformational disorder, polymorphism, and backbone and side chain motions. In the 2D
REDR spectrum of [°C,'"N-FVYL]-PI3-SH3, methyl containing valine and leucine
residues are recovered at 85 K.
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Notes: GAMMA Simulation of 3-Site Hopping Mechanism

The details of the simulation performed for the results in Figure 7 will be discussed here.

The equation of motion for the density operator &(t) is given as

with the solution

where

while L, H and K are the Liouvillian, Hamiltonian and exchange superoperators in

the Liouville space. The Hamiltonian superoperator H can be constructed from the
Hamiltonian H in the Hilbert space as follows

A=0Q1-1Q8

In the context of this paper, the Hamiltonian A contains information about dipolar
couplings, chemical-shifts and more importantly, the parameters used in 'H decoupling.
We have chosen a natural set of bases to represent the density operator & of the four-spins
methyl group, namely

A _ / / ’ /
6 = |mgmyympzmyz, mg'myy 'my; ' myz’ >

where mg = + 1/2 for the °C spin, and m; = + 1/2 for the 'H spin or m; = 0, +1 for
the H spin. The number of dimension N spanned by the density operator can be
calculated easily, i.e. N = (2% 23)?2 =28 =256 for the CH; group and N =

(2 x 3%)2 = 2916 for the CD; group. The exchange superoperator K in a hopping

mechanism can be setup by considering all the possible permutations P exhibited by the
molecule.

Gy =@(—nﬁo+ZﬁA )

M ' 1~0
N =1
where P is the permutation superoperator, M=3 for three-site hopping, 7 is the number of
possible permutations, and key is the hopping rate. For instance, when spin 1 hops and
exchanges with spin 2, the spin states m; and m;, exchanges and can be formulated as

)

== ! ! ! ! — ! ! ! !
Py lmgmyymiamys, mg my; my; 'myg’ >= [mgmpmy;mys, Ms My Myy Mz >
ifmy, # my, and my;" #= my,'.
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