Appendix A. ## **Protocol Literature Review** | Author | Study
Design | Sample
size | Patient Pop. | Outcomes | Assessment | Follow-up | Results | |-----------------------|--|----------------|--|--|--|---|---| | Tow et al[1] | Prospective cohort | 142 | Older adults
undergoing
elective
orthopedic
surgery | Incidence and
severity of
POD | CAM, Memorial Delirium Assessment Scale, cognitive reserve (literacy and cognitive activities) | First assessment
median 22 hrs
postoperatively,
second
assessment
median 32 hrs
postoperatively | Greater participation in cognitive activity was associated with lower incidence and severity of delirium | | Neufeld et
al[2] | Prospective cohort | 91 | Consecutive patients undergoing surgical procedure, ≥ 70 y/o | Cognitive functioning | ADLs, IADLs,
MMSE, Word
Fluency, Digit
Span, DSM-IV
delirium criteria | 19 months postoperatively | No differences in any outcomes between patients with versus without PACU delirium | | Sprung et al[3] | Population
based
prospective
cohort | 1,731 | 70-89 y/o
(data
abstracted
retrospectivel
y for
anesthesia
exposure
from 40 years
old until time
of evaluation) | Mild cognitive impairment | 1) impairment in one of the four cognitive domains; 2) cognitive concerns by the subject, informant, examining nurse, or physician; 3) essentially normal functional activities, and; 4) absence of dementia (based on published criteria) | Median 4.8 years | 31% developed MCI; Cumulative exposure to procedures requiring GA after the age 40 was not associated with the development of incident MCI in cognitively normal elderly participants. Does not exclude possibility that anesthetic exposures occurring later in life may be associated an increase in the rate of incident MCI, especially in patients undergoing vascular surgery | | Hempenius
et al[4] | RCT | 260 | Consecutive patients ≥65 years undergoing surgery for a solid tumor | mortality, rehospitalizati on, ADL functioning, return to the independent pre-operative living situation, use of supportive care, cognitive functioning and health related QOL | DOS for delirium,
MMSE for
cognition | 3 months | Geriatric liaison intervention did not improve outcomes. POD was associated with: an increased risk of decline in ADL functioning, an increased use of supportive assistance, and a decreased chance to return to the independent preoperative living situation. | | Youngblom et al[5] | Prospective cohort | 421 | >65 y/o,
noncardiac
surgery | Delirium and
POCD | For delirium: CAM;
for POCD: verbal
fluency, digit | 2 days postop | 80% of patients
experienced delirium or
POCD on POD1. 48% | | | | | | | symbol test, and
word list | | experienced postoperative delirium on POD1, POD2, or both days. The delirium group had a lower preoperative cognitive status score. incidence of pre-existent dementia was not different between the group that developed delirium and the group that did not. | |------------------------|---|------|--|---|---|--|--| | Hussain et
al[6] | Review | N/A | N/A | Relationship
between
general
anesthesia,
major surgery,
and dementia,
specifically AD | N/A | N/A | Future studies need: sufficient sample size, good control group (no anesthesia, no surgery, well-matched otherwise), preop cognitive assessment, maybe use biomarkers for AD. | | Abelha et
al[7] | Prospective | 562 | SICU patients | Primary: Mortality Secondary: hospital mortality and "becoming dependent" | ICDSC for
postoperative
delirium, SF-36 for
health-related QOL | 6 months | POD is an independent
risk factor for mortality,
hospital mortality, and
becoming dependent for
personal ADLs. Delirium
incidence: 16% | | Witlox et
al[8] | Prospective
cohort
nested w/in
RCT | 53 | ≥75 years
old, hip
fracture
repair | Delirium and
postoperative
cognitive
decline | Delirium: CAM
Cognition: MMSE,
the expanded digit
span test, and the
GDS | 3 months | All pts who developed delirium were asked to f/u and an equal number of control pts invited to f/u as well; 5 patients still delirious at 3 months; delirium was associated with impairments in global cognition and episodic memory at follow-up | | Radtke et
al[9] | RCT | 1155 | ≥60 y/o with
at least 60
minute
surgery with
general
anesthesia | Delirium and postoperative cognitive dysfunction | Delirium: DSM IV delirium criteria Cognition: Motor Screening Test, two tests of visual memory and a test of attention, visual verbal learning test and the Stroop Color Word interference test | Assessed for
delirium while
admitted, f/u at 1
week and 3
months | Delirium incidence was lower in the BIS-monitored group (16.7 vs 21.4%), but POCD was not different in the BIS vs non-BIS group. | | Saczynski
et al[10] | Prospective cohort | 225 | >60 y/o,
undergoing
CABG or | Delirium and cognition | Delirium: CAM;
Cognition: MMSE | Delirium
assessed
starting POD2 | Delirium incidence: 43%;
Those who developed
delirium has a lower | | | | | valve
replacement | | | until pt
discharge;
Cognitive tests
preop and at 1,
6, and 12
months postop | preoperative cognitive score. | |-------------------------|--|---|--|--|---|--|---| | Koster et
al[11] | Prospective
follow-up
study | 300 | >45 y/o
undergoing
elective
cardiac
surgery | Delirium,
postoperative
cognition and
functionality,
Mortality,
readmission | Delirium: DOS
scale; Cognition:
SF-36, the
Cognitive Failure
Questionnaire, and
a purpose-
designed
questionnaire | 6 months | Delirium incidence: 17%; Delirium was associated w/increased mortality, a higher hospital readmission rate, lower quality of life, cognitive failure, and reduced mobility. | | Quinlan et
al[12] | Secondary
analysis of
prospective
study | 1218
(948
complet
ed 3
month
function
al
assess
ment) | Non-cardiac
surgery, ≥ 60
y/o | Delirium,
cognition,
POCD | MMSE, chart
review, ISPOCD
neuropsychological
tests | 3 months postoperatively | After adjustment for age, sex, education, cognition, and surgery duration, delirium remained associated with functional decline | | Wallbridge
et al[13] | Prospective cohort | 89 | Patients
undergoing
elective
abdominal
aortic
aneurysm
surgery y/o | Cognition and function | Battery of cognitive
measures, Portland
Adaptability
Inventory (PAI) for
function | 3 months postoperatively | Cognitive impairment postoperatively was mild but was associated with number of days delirious and preoperative deficits in verbal memory and psychomotor speed | | Jankowski
et al[14] | Prospective cohort | 418 | ≥ 65 y/o,
undergoing
total hip or
knee
arthroplasty | Delirium,
cognition,
function | CAM, MMSE,
neurocognition and
functional testing
(American National
Adult Reading
Test, AVLT,
COWAT, SCWT,
CAGE, IADL) | 3 months postoperatively | Independent predictors of
POD included age,
history of psychiatric
illness, decreased
functional status, and
decreased verbal
memory | | Rudolph et
al[15] | Prospective cohort | 190 | ≥ 60 y/o,
elective or
urgent
cardiac
surgery | Delirium,
activities of
daily living
(function) | CAM, IADL | 1 and 12 months postoperatively | Delirium associated with
functional decline at 1
month and tended toward
association at 12 months | | Koster et
al[16] | Prospective cohort | 112 | Consecutive patients undergoing elective cardiac surgery, ≥ 45 y/o | Delirium,
mortality,
readmission,
cognition,
function | DSM-IV criteria,
study designed
questionnaire for
cognition | 1-1.5 years after surgery | POD associated with increased mortality, readmission, memory and concentration problems, and sleep disturbance | | Gogol et
al[17] | Review | N/A | N/A | Cognition,
dementia,
mortality,
functional
status | N/A | N/A | Delirium is associated with increased short- and long-term mortality, iatrogenic complications, functional decline, and future development of cognitive impairment or dementia. | |--------------------------------|--|------|---|---|---|---|--| | Bickel et
al[18] | Prospective cohort | 200 | Consecutive hip surgery patients ≥ 60 years old | Delirium,
cognition,
mortality, need
for long term
care | MMSE, CAM | 8 to 38 months postoperatively | Delirium was a strong independent predictor of cognitive impairment and severe dependency in activities of daily living - more marked long- than for the short-term | | Kat et
al[19] | Prospective
matched
controlled
cohort | 112 | Hip surgery patients ≥70 y/o | Delirium,
dementia/mild
cognitive
impairment
(MCI) | CAM, MMSE | 30 months
postoperatively | Delirium associated with increased risk of dementia/MCI, mortality, and institutionalization | | Rudolph et
al[20] | Prospective cohort | 1218 | Non-cardiac
surgery, ≥ 60
y/o | Delirium,
cognition,
POCD | MMSE, chart
review, ISPOCD
neuropsychological
tests | 7 days and 3
months
postoperatively | Delirium associated with early but not late POCD | | Olofsson et
al[21] | Prospective cohort | 61 | Consecutive patients undergoing femoral head fracture operation, ≥ 70 y/o | Delirium, LOS, activities of daily living | IADL, Cognition:
MMSE, Delirium:
OBS, Depression:
GDS-15, PGCMS,
S-COVS | 4 months postoperatively | Delirium incidence: 68%. Delirium was associated with more dementia and depression before their fractures, longer LOS after surgery, and more dependence before surgery, on discharge, and at 4 month f/u. | | Rothenhau
sler et
al[22] | Prospective cohort | 30 | Patients
undergoing
cardiac
surgery with
CPB | Cognition,
depression,
posttraumatic
stress
symptoms,
health status,
delirium | Syndrom Kurztest,
SF-36, Delirium
Rating Scale
(DRS) | 1 year
postoperatively | Lower cognition
associated with lower
HRQOL | | Duppils et
al[23] | Prospective cohort | 115 | ≥ 65 y/o, prior
participation
in
observational
hip fracture -
delirium study | Delirium,
cognition,
quality of life | DMS-IV criteria for
delirium, MMSE,
SF-36 | 6 months
postoperatively | Delirium associated w/
greater cognitive
deterioration in hospital,
lower health-related
quality of life at follow up | | Edelstein et al[24] | Prospective cohort | 921 | ≥ 65 y/o,
operatively
treated hip
fracture | Postoperative complication rates, in-hospital | | 1 year follow up | POD incidence: 5.1%.
Patients w/ POD had
longer LOS, higher 1 year
mortality, less likely to | | | | | | mortality, hospital LOS, hospital discharge status, 1-year mortality rate, place of residence, recovery of ambulatory ability, and activities of daily living | | | recover level of ambulation, more likely to show a decline independence. No difference in postoperative complications, in-hospital mortality, discharge residence, and recovery of instrumental activities of daily living at 1 year. | |------------------------|--------------------------|-----|---|---|---|-----------------------------------|---| | Adunsky et
al[25] | Retrospectiv
e cohort | 281 | Elderly hip
fracture
patients | Cognition,
delirium,
function | MMSE, CAM,
functional
independence
measure (FIM) | 1 week postop
and at discharge | Delirium patients tend to
be more disabled and
more cognitively impaired | | Lundstrom
et al[26] | Prospective cohort | 78 | ≥ 65 y/o, non-
demented,
femoral neck
fracture | Dementia and mortality | Organic Brain
Syndrome (OBS)
scale and MMSE | 5 year follow up | Increased dementia and mortality in patients with POD vs. not | | Edlund et
al[27] | Prospective cohort | 54 | Consecutive
patients
admitted for
femoral neck
fractures, age
range 40-98
y/o | Postoperative delirium incidence | OBS | 6 months follow
up | POD incidence: 27.8%. Dementia & increased surgery wait time = greater POD incidence; delirium = worse outcomes after surgery | | Goldstein
et al[28] | Prospective cohort | 362 | General surgical, orthopedic, non-surgical, ≥ 55 y/o | Postoperative decline | Psychosocial
questionnaire, tests
of cognition, affect,
function | 10 months postoperatively | No significant contribution to changes from baseline | - 1. Tow, A., et al., *Cognitive Reserve and Postoperative Delirium in Older Adults.* J Am Geriatr Soc, 2016. **64**(6): p. 1341-6. - 2. Neufeld, K.J., et al., Long-Term Outcomes of Older Adults with and Without Delirium Immediately After Recovery from General Anesthesia for Surgery. Am J Geriatr Psychiatry, 2015. **23**(10): p. 1067-74. - 3. Sprung, J., et al., Association of mild cognitive impairment with exposure to general anesthesia for surgical and nonsurgical procedures: a population-based study. Mayo Clin Proc, 91 (2) (2016), pp. 208-217. - 4. Hempenius, L., et al., *Long Term Outcomes of a Geriatric Liaison Intervention in Frail Elderly Cancer Patients.* PLoS One, 2016. **11**(2): p. e0143364. - 5. Youngblom, E., et al., *The temporal relationship between early postoperative delirium and postoperative cognitive dysfunction in older patients: a prospective cohort study.* Can J Anaesth, 2014. **61**(12): p. 1084-92. - 6. Hussain, M., et al., *General anesthetic and the risk of dementia in elderly patients: current insights.* Clin Interv Aging, 2014. **9**: p. 1619-28. - 7. Abelha, F.J., et al., Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit Care, 2013. **17**(5): p. R257. - 8. Witlox, J., et al., *The neuropsychological sequelae of delirium in elderly patients with hip fracture three months after hospital discharge.* Int Psychogeriatr, 2013. **25**(9): p. 1521-31. - 9. Radtke, F.M., et al., *Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction.* Br J Anaesth, 2013. **110 Suppl 1**: p. i98-105. - 10. Saczynski, J.S., et al., Cognitive trajectories after postoperative delirium. N Engl J Med, 2012. 367(1): p. 30-9. - 11. Koster, S., et al., Consequences of delirium after cardiac operations. Ann Thorac Surg, 2012. 93(3): p. 705-11. - 12. Quinlan, N. and J.L. Rudolph, *Postoperative delirium and functional decline after noncardiac surgery.* J Am Geriatr Soc, 2011. **59 Suppl 2**: p. S301-4. - 13. Wallbridge, H.R., et al., *Risk factors for postoperative cognitive and functional difficulties in abdominal aortic aneurysm patients: a three month follow-up.* Int J Geriatr Psychiatry, 2011. **26**(8): p. 818-24. - 14. Jankowski, C.J., et al., Cognitive and functional predictors and sequelae of postoperative delirium in elderly patients undergoing elective joint arthroplasty. Anesth Analg, 2011. **112**(5): p. 1186-93. - 15. Rudolph, J.L., et al., *Delirium: an independent predictor of functional decline after cardiac surgery.* J Am Geriatr Soc, 2010. **58**(4): p. 643-9. - 16. Koster, S., A.G. Hensens, and J. van der Palen, *The long-term cognitive and functional outcomes of postoperative delirium after cardiac surgery.* Ann Thorac Surg, 2009. **87**(5): p. 1469-74. - 17. Gogol, M., [Delirium in the elderly]. Z Gerontol Geriatr, 2008. 41(6): p. 431-9. - 18. Bickel, H., et al., *High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study.* Dement Geriatr Cogn Disord, 2008. **26**(1): p. 26-31. - 19. Kat, M.G., et al., Long-term cognitive outcome of delirium in elderly hip surgery patients. A prospective matched controlled study over two and a half years. Dement Geriatr Cogn Disord, 2008. **26**(1): p. 1-8. - 20. Rudolph, J.L., et al., *Delirium is associated with early postoperative cognitive dysfunction.* Anaesthesia, 2008. **63**(9): p. 941-7. - 21. Olofsson, B., et al., *Delirium is associated with poor rehabilitation outcome in elderly patients treated for femoral neck fractures.* Scand J Caring Sci, 2005. **19**(2): p. 119-27. - 22. Rothenhausler, H.B., et al., *Psychiatric and psychosocial outcome of cardiac surgery with cardiopulmonary bypass: a prospective 12-month follow-up study.* Gen Hosp Psychiatry, 2005. **27**(1): p. 18-28. - 23. Duppils, G.S. and K. Wikblad, *Cognitive function and health-related quality of life after delirium in connection with hip surgery. A six-month follow-up.* Orthop Nurs, 2004. **23**(3): p. 195-203. - 24. Edelstein, D.M., et al., *Effect of postoperative delirium on outcome after hip fracture*. Clin Orthop Relat Res, 2004(422): p. 195-200. - 25. Adunsky, A., et al., *The unfavorable nature of preoperative delirium in elderly hip fractured patients.* Arch Gerontol Geriatr, 2003. **36**(1): p. 67-74. - 26. Lundstrom, M., et al., *Dementia after delirium in patients with femoral neck fractures.* J Am Geriatr Soc, 2003. **51**(7): p. 1002-6. - 27. Edlund, A., et al., *Clinical profile of delirium in patients treated for femoral neck fractures.* Dement Geriatr Cogn Disord, 1999. **10**(5): p. 325-9. - 28. Goldstein, M.Z., B.S. Fogel, and B.L. Young, *Effect of elective surgery under general anesthesia on mental status variables in elderly women and men: 10-month follow-up.* Int Psychogeriatr, 1996. **8**(1): p. 135-49.