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Figure	S1.	Compound	screen	data	and	drug	target	definition,	Related	to	Figure	1.	
(A) Overlap	of	compounds	among	three	screen	cohorts	shown	with	Venn	diagram.	The	

numbers	of	compounds	within	sub-regions	are	also	labeled.	
(B) Consistency	of	PLX4720	response	measurements	between	different	cohorts.	The	

drug	response	values,	measured	by	area	under	dose	response	curve,	are	shown	for	
PLX4720	across	different	cancer	cell	lines	with	CTRP	results	on	X-axis	and	CCLE	
results	on	Y-axis.	The	consistency	is	computed	with	a	Pearson	correlation	value.	

(C) Consistency	of	drug	response	measurements	among	three	cohorts.	Between	each	
combination	of	two	cohorts,	the	Pearson	correlations	of	drug	response	are	shown	
for	all	targeted	therapy	compounds,	with	correlation	0.5	as	the	dotted	reference	line.	

(D) Ordered	correlations	between	gene	features	and	EGFR	inhibitor	efficacy,	with	the	
relative	position	of	EGFR	expression	marked	as	a	black	dot.	Top:	Erlotinib	results	in	
CCLE,	Bottom:	Gefitinib	results	in	GDSC.	

(E) EGFR	inhibitor	efficacy	in	different	EGFR	status	groups.	Top:	Erlotinib	results	in	
CCLE,	Bottom:	Gefitinib	results	in	GDSC.	There	are	only	five	and	four	cell	lines	with	
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gain-of-function	mutations	(Mut.GOF,	exon	19	in-frame	and	L858R)	for	CCLE	and	
GDSC	cohorts,	respectively.	There	is	one	cell	line	with	T790M	mutation	driving	EGFR	
inhibitor	resistance	in	both	cohorts.	For	EGFR	wild-type	cell	lines,	the	category	
“WT.High”	consists	of	samples	with	EGFR	expression	two-fold	greater	than	average,	
and		“WT.Low”	consists	of	samples	with	EGFR	expression	lower	than	average.	The	p-
value	is	computed	from	the	two-sided	Wilcoxon	rank-sum	test.	

(F) Ordered	correlations	between	gene	features	and	palbociclib	efficacy,	with	the	
relative	ranks	of	RB1,	CDK4	and	CDK6	labeled	as	black	dots.	Top:	results	in	CCLE;	
Bottom:	results	in	GDSC.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Figure	S2.	Significant	CARE	scores	for	KRAS	mutation,	Related	to	Figure	2.	
Among	all	compounds	screened	in	three	cohorts,	the	statistically	significant	CARE	
scores	are	shown	for	KRAS	mutation,	with	the	median	value	as	a	thick	bar	in	the	box-
plot.	The	bottom	and	top	of	the	boxes	are	the	25th	and	75th	percentiles	(interquartile	
range).	Whiskers	on	the	top	and	bottom	represent	the	maximum	and	minimum	data	
points	within	1.5	times	the	inter-quartile	range.	
	 	

−
6

−
5

−
4

−
3

C
A

R
E

 s
c
o

re

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

CCLE CTRP CGP

KRAS mutation



	 3	

	
	
Figure	S3.	CARE	can	predict	clinical	outcome	of	targeted	therapies,	Related	to	
Figure	3.	
(A) Association	between	CARE	signature	and	anti-BRAF	clinical	outcome.	Using	the	

clinical	data	of	12	patients	treated	with	vemurafenib	(Hugo	et	al.,	2015),	we	applied	
the	Cox-PH	regression	to	test	the	association	between	each	gene	signature	(Table	
S3A)	and	progress-free	survival	without	any	cutoff.	The	z-score	of	each	signature	
(hazard	coefficient/standard	deviation)	is	used	as	a	performance	metric.	

(B) Prediction	performance	on	anti-PD1	response	correlates	with	the	enrichment	of	
EMT	signature.	For	the	CARE	signature	of	each	compound,	its	performance	of	
predicting	anti-PD1	response	was	measured	with	area	under	ROC	curve	(AUC)	
(Figure	3).	The	enrichment	of	epithelial-to-mesenchymal	(EMT)	transition	was	the	
normalized	enrichment	score	(NES)	from	the	GSEA	analysis	software	(Subramanian	
et	al.,	2005).	In	each	screening	cohort,	the	AUC	and	EMT	enrichment	of	each	
compound	are	plotted	on	X	and	Y	axes,	with	Pearson	correlation	between	two	axes	
as	the	title.	The	case	of	BRAF	inhibitor	on	predicting	anti-PD1	response	in	Figure	3	
was	labeled	with	red	dot	in	the	CCLE	plot.	

(C) Prediction	accuracy	on	paclitaxel	response.	All	patients	are	classified	into	four	sub-
groups	according	to	the	status	of	pathological	complete	response	(pCR)	and	
predicted	response	(Pred),	followed	by	the	percentage	of	patients	whose	response	
status	is	consistent	with	CARE	prediction.	

(D) Consistency	between	replicates	in	CRISPRa	screen.	For	the	CRISPRa	genome-wide	
screen	(Konermann	et	al.,	2015),	the	gene-wise	fold	change	scores	are	shown	for	
Puromycin	selected	replicate	and	Zeocin	selected	replicate.	Pearson	correlation	
between	two	replicates	is	shown	as	title.	

 



	 4	

	
	
Figure	S4.	Performance	comparison	between	CARE	and	other	computational	
methods,	Related	to	Figure	4.	
(A) Performance	comparison	based	on	variations	of	evaluation	standards.	For	each	drug,	

the	evaluation	standard	gene	sets	are	selected	with	different	thresholds	of	false	
discovery	rate	(FDR)	computed	by	Limma	(Ritchie	et	al.,	2015).	The	area	under	ROC	
curve	(AUC)	of	results	from	different	computational	methods	are	compared.	

(B) Performance	comparison	as	panel	A	with	different	thresholds	of	log-fold	change	
(logFC)	that	tests	the	differential	gene	expression	between	drug-resistant	and	
parental	cell	lines.	
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(C) Gene	features	selected	by	Elastic	Net	regression.	The	non-zero	coefficients	of	Elastic	
Net	are	plotted	for	each	drug	in	CCLE.	Coefficients	of	drug	target	genes	are	
highlighted	with	thick	dots.	

(D) Performance	of	Ridge	and	LASSO	regression	in	predicting	the	gene	expression	
signature	of	drug-resistant	cell	lines	for	PLX4720	and	lapatinib.	

(E) Performance	of	different	models	in	predicting	genes	associated	with	topotecan	
resistance.	The	performance	of	CARE,	Interaction	and	Correlation	are	compared	
using	ROC	curves.	

(F) Performance	AUC	metrics	for	both	interaction	effects	and	base	effects	(Correlation	
normalized	by	its	standard	deviation)	in	CARE	model	on	predicting	genes	associates	
with	topotecan	resistance.	The	mean	values	of	three	screen	cohorts	are	shown,	with	
standard	deviations	as	error	bars.	

(G) Fractions	of	cell	lines	in	different	lineages	of	CCLE	and	GDSC	(COSMIC)	collections.	
(H) CARE	performance	of	lineage-specific	analysis.	PLX4720’s	chemical	analog	

vemurafenib	is	primarily	for	skin	cancer	treatment,	and	lapatinib	is	mainly	for	
breast	cancer	treatment.	For	each	drug,	the	AUC	metrics	were	shown	for	results	
using	all	cell	lines	and	results	using	lineage-specific	cell	lines,	with	the	mean	and	
standard	deviation	(error	bar)	averaged	among	three	screen	cohorts.	

(I) Performance	of	CARE	after	sub-sampling	data.	For	each	drug,	the	cell	lines	were	
sub-sampled,	and	the	AUC	metrics	were	computed	under	each	sample	rate.	The	
mean	and	standard	deviation	were	computed	across	three	cohorts.	A	significant	
deterioration	of	performance	happens	after	a	down-sampling	rate	of	20%,	which	is	
higher	than	the	fractions	of	most	abundant	lineage	in	panel	G.	

(J) Quality	comparison	between	evaluation	standard	variations.	Evaluation	standard	
gene	sets	are	created	by	taking	either	the	union	or	overlap	between	two	sets	of	
differentially	expressed	genes	in	the	drug-resistant	M229-R5	and	M238-R1	cell	lines	
over	their	respective	parental	sensitive	lines	M229	and	M238.	To	compare	the	
quality	of	different	evaluation	standards,	we	used	the	differential	gene	expression	
profile	of	a	third	drug-resistant	cell	line	SKMel28-R1	compared	to	its	parental	line	
SKMel28.	The	average	log-fold	changes	(logFC)	between	SKMel28-R1	and	its	
parental	line	are	plotted	for	both	positive	and	negative	evaluation	standards.	

(K) Prediction	performance	of	SKMel28-R1	expression	on	the	“overlap”	or	“union”	
evaluation	standard.	In	the	ROC	curves,	the	prediction	performance	on	“overlap”	set	
is	consistently	higher	than	the	performance	on	“union”	set.	
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Figure	S5.	Inhibition	of	PRKD3	increases	anti-HER2	efficacy,	Related	to	Figure	5.	
(A) Association	between	gene	expression	level	and	lapatinib	clinical	response.	For	each	

gene,	the	expression	value	is	shown	according	to	the	pathological	complete	response	
status	of	patients,	with	median	value	in	each	group	as	a	black	bar.	The	bottom	and	
top	of	the	boxes	are	the	25th	and	75th	percentiles	(interquartile	range).	Whiskers	on	
the	top	and	bottom	represent	the	maximum	and	minimum	data	points	within	the	
range	represented	by	1.5	times	the	inter-quartile	range.	

(B) Inhibition	effects	on	SKBR3	growth	for	PRKD	inhibitors	KBNB14270	and	
CRT0066101	at	different	concentrations.	Each	inhibition	fraction	was	the	median	
value	from	three	replicate	experiments	with	standard	deviation	as	the	error	bar.	N:	
none	treatment	control.	

(C) Inhibition	effects	on	SKBR3	growth	for	drug	co-treatment	compared	with	mono-
treatment.	The	additive	inhibition	effect	of	co-treatment	is	estimated	using	Bliss	
independence	model.	Left:	CRT0066101	in	3uM	with	lapatinib	in	different	doses	(2x	
dilution	from	5uM);	Middle:	KBNB14270	in	5uM	with	trastuzumab	in	different	
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doses	(2x	dilution	from	20ug/mL);	Right:	CRT0066101	in	2	uM	with	trastuzumab	in	
different	doses.	N:	none	treatment	control.	

(D) Bliss	synergy	scores	between	combinations	of	anti-HER2	drugs	and	PRKD	inhibitors.	
Left:	Lapatinib	and	CID2011756,	Middle:	Trastuzumab	and	KBNB14270,	Right:	
Trastuzumab	and	CRT0066101.	 	
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Supplementary	Tables	
	
	
	

	 Coef	 Stderr	 t-value	 p-value	
ERBB2	 0.03951	 0.00351	 11.26	 2.73E-26	
EGFR	 0.02004	 0.00349	 5.74	 1.66E-08	
AXL	 -0.01828	 0.00338	 -5.41	 9.67E-08	

AXL*ERBB2	 -0.0136	 0.00333	 -4.08	 5.16E-05	
AXL*EGFR	 0.00386	 0.00356	 1.09	 2.78E-01	

CARE	score	ERBB2	 -0.03188	 0.00487	 -6.55	 1.44E-10	
CARE	score	EGFR	 -0.01442	 0.00459	 -3.14	 1.78E-03	

	
Table	S1.	Interaction	test	for	multiple	target	genes	of	lapatinib,	Related	to	Table	1	
and	Table	2.	
The	interactions	between	expression	variables	of	lapatinib	dual	targets	ERBB2,	EGFR	
and	the	partner	AXL	are	evaluated	by	linear	regression	with	lapatinib	efficacy	as	the	
outcome.	The	t-value	is	defined	as	regression	coefficient	divided	by	the	standard	error,	
and	the	p-value	is	calculated	by	the	two-sided	Student’s	t-test.	
	
	
	
	
	
	
	
	
	

Cohort	 Cell	line	 Compound	
CCLE	 495	 24	
CTRP		 824	 545	
GDSC	 990	 250	

	
Table	S2.	Number	of	cell	lines	and	compounds	in	each	cohort,	Related	to	Figure	1.	
The	numbers	of	cell	lines	and	compounds	screened	in	each	pharmacological	cohort.	
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Treatment	 Experiment	 Genes	 Pubmed	 Data	

PLX4720	

CRISPRa	screen	 23722	 25494202	 Released	
CRISPR	screen	 17419	 24336571	 Released	
ORF	screen	 14457	 24185007	 Released	
shRNA	screen	 16126	 23288408	 Released	

PLX4032	 Chronic	treatment	 18547	 21107323	 Released	
A.	BRAF	

	

Lapatinib	
	

Chronic	treatment	 20128	 19671800,	24319068	 Released	
shRNA	screen	 23742	 19010894	 No	
siRNA	screen	 337	 23474757	 Released	

AEE788+shRNA	 ORF	screen	 597	 24909179	 No	
B.	ERBB2	

	

anti-PD1+GVAX	
In-vivo	CRISPR	
screen	in	mice	 830	 28723893	 Released	

C.	PDCD1	
	

Paclitaxel	

Chronic	treatment	 18408	 25199881	 Released	
shRNA	screen	 74	 17982636	 No	
siRNA.1	screen	 1187	 25024437	 Released	
siRNA.2	screen	 21150	 17429401	 Released	
Clinical:	Pusztai	 12436	 20064235	 Released	
Clinical:	Noguchi	 20128	 22320227	 Released	
Clinical:	Symmans	 12436	 21558518	 Released	

D.	TUBB	
	
Table	S3.	Genomics	signatures	for	clinical	response	prediction,	Related	to	Figure	
3.	
For	each	targeted	therapy,	we	collected	published	data	related	to	drug	response	and	
resistance	profiling.	Column	“Treatment”	represents	the	drug	used	in	an	experiment.	
Column	“Experiment”	includes	the	brief	description	of	experiments.	CRISPR,	shRNA,	
and	siRNA	are	gene	loss	of	function	screens.	ORF	and	CRISPRa	are	gene	gain	of	function	
screens.	For	the	in-vivo	CRISPR	screen	on	mice	treated	with	immunotherapies,	we	
translated	all	mouse	top	gene	hits	in	supplementary	table	1	of	the	publication	(Manguso	
et	al.,	2017)	into	their	human	orthologs	for	further	analysis.	Chronic	treatment	
represents	differential	gene	expression	profiling	of	drug	resistant	cell	lines	derived	
from	chronic	drug	treatment	compared	with	its	parental	sensitive	cell	lines.	Column	
“Genes”	tells	the	number	of	genes	covered	in	each	signature.	Column	“Data”	indicates	
the	availability	of	data	with	the	study.	If	the	data	is	not	released,	we	extract	the	top	gene	
hits	reported	in	the	publication	as	a	gene	set	signature.	
(A)	BRAF	inhibitors.	
(B)	ERBB2	inhibitors.	
(C)	Anti-PD1	antibody	and	GVAX	vaccine.	
(D)	TUBB	inhibitor	paclitaxel.		
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CCLE	 CTRP	 GDSC	

	
Role	 CARE	 Elastic	 CARE	 Elastic	 CARE	 Elastic	

EGFR	 Resistant	 -4.96	 0	 -4.62	 0	 -10.35	 0	
PDGFRB	 Resistant	 -4.67	 0	 0.24	 0	 -10.35	 0	
MET	 Resistant	 -2.91	 0	 -4.31	 0	 -3.16	 0	
YAP1	 Resistant	 -10.84	 0	 -7.54	 0	 -5.63	 0	
SOX10	 Sensitive	 3.42	 0	 4.56	 0	 11.21	 0	
LEF1	 Sensitive	 4.19	 0	 5.79	 0	 7.60	 0	

A.	Computational	results	
	

	
Role	 logFC	 t-value	 p-value	 adj.p-value	

EGFR	 Resistant	 3.87	 29.54	 2.55E-06	 5.04E-04	
PDGFRB	 Resistant	 2.50	 15.39	 4.64E-05	 2.11E-03	
MET	 Resistant	 3.42	 20.83	 1.21E-05	 1.01E-03	
YAP1	 Resistant	 -0.01	 -0.08	 9.39E-01	 9.64E-01	
SOX10	 Sensitive	 -2.41	 -25.44	 4.97E-06	 6.56E-04	
LEF1	 Sensitive	 -3.37	 -37.17	 9.11E-07	 3.56E-04	

B.	M229-R5	differential	expression.	
	

	 Role	 logFC	 t-value	 p-value	 adj.p-value	
EGFR	 Resistant	 3.35	 21.83	 2.06E-06	 5.69E-04	
PDGFRB	 Resistant	 2.35	 13.67	 2.40E-05	 2.18E-03	
MET	 Resistant	 3.36	 14.85	 1.56E-05	 1.71E-03	
YAP1	 Resistant	 0.19	 1.20	 2.81E-01	 5.84E-01	
SOX10	 Sensitive	 -2.53	 -16.86	 8.03E-06	 1.17E-03	
LEF1	 Sensitive	 -2.59	 -14.68	 1.65E-05	 1.77E-03	

C.	M238-R1	differential	expression.	
	
Table	S4.	Method	comparison	based	on	known	genes	associated	with	BRAF	
inhibitor	efficacy,	Related	to	Figure	4.	
Two	previous	studies	have	identified	regulator	genes	of	anti-BRAF	resistance	(Hugo	et	
al.,	2015;	Sun	et	al.,	2014).	The	type	of	association	with	drug	efficacy	is	shown	in	the	
first	column	of	each	sub-table.	If	the	activation	of	a	gene	is	associated	with	a	gain	of	drug	
resistance,	the	gene	will	be	classified	as	“Resistant”	markers.	In	contrast,	if	the	loss	of	a	
gene	is	associated	with	a	gain	of	drug	resistance,	the	gene	will	be	classified	as	
“Sensitive”	markers.	
(A) Computational	results	from	CARE	and	Elastic	Net	are	shown	across	three	cohorts.	

For	CARE	t-value,	a	negative	score	indicates	the	gene	feature	as	a	resistant	marker,	
and	a	positive	score	indicates	the	gene	feature	as	a	sensitive	marker.	

(B) Differential	gene	expression	between	the	M229-R5	drug	resistant	cell	line	and	
parental	line	M229.	For	these	regulator	genes,	their	gene	expression	values	are	
compared	between	drug	resistant	cell	lines	and	sensitive	parental	lines	using	the	
data	from	a	previous	study	(Nazarian	et	al.,	2010).	The	differential	expression	
analyses	were	done	with	Limma	(Ritchie	et	al.,	2015).	logFC	represents	the	log-fold	
change	of	mRNA	level	between	the	drug	resistant	cell	line	and	its	parental	sensitive	
cell	line.	The	t-value	was	computed	as	logFC	divided	by	standard	deviation	
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estimated	in	the	linear	model.		The	p-value	represents	the	statistical	significance	for	
each	t-value,	followed	with	the	adjusted	p-value	after	multiple	test	correction.	

(C) Differential	gene	expression	between	the	M238-R1	drug	resistant	cell	line	and	
parental	line	M238	as	panel	B.	

	
	
	
	
	
	
	
	
	
	

A.	CARE	filtered	

ID	
CARE	 Expression	

PCR	
CCLE	 CTRP	 GDSC	 BT474	 SKR6	

AKT3	 -4.41	 -3.81	 -2.39	 6.47	 5.15	 -0.40	
PRKD3	 -3.07	 -3.39	 -3.59	 6.60	 9.04	 -0.82	
	
B.	Others	
SERPINE1	 -5.18	 -6.84	 1.04	 3.95	 26.61	 -1.74	
ADA	 -4.67	 -2.00	 -2.21	 4.26	 4.36	 -1.56	
PIM1	 -4.02	 0.38	 -1.90	 2.12	 5.94	 -0.36	
SOAT1	 -2.59	 -3.19	 0.33	 2.17	 8.30	 -0.44	
MAOA	 -1.93	 0.71	 1.80	 6.32	 3.10	 -0.35	
JAK2	 -1.16	 0.29	 -2.29	 2.28	 4.80	 -1.20	
PTGES	 -0.61	 -1.71	 -0.34	 39.00	 12.87	 -2.10	
ABCG2	 -0.37	 -1.93	 -5.31	 3.42	 29.17	 -0.46	
CYP1A2	 -0.31	 3.02	 -2.55	 3.86	 14.56	 -0.36	
SLC6A4	 0.21	 1.96	 -3.06	 2.46	 10.47	 -1.35	
BTK	 1.33	 -0.03	 -1.86	 3.29	 3.78	 -1.06	
PAK6	 2.62	 2.69	 1.89	 3.07	 9.25	 -1.02	

	
Table	S5.	Druggable	genes	associated	with	lapatinib	resistance,	Related	to	Figure	
5.	
The	first	group	of	CARE	score	was	computed	using	data	from	three	compound	screen	
cohorts.	The	second	group	(“Expression”)	of	t-values	are	from	Limma	results,	testing	
the	differential	gene	expression	between	Lapatinib	resistant	cell	line	and	parental	line.	
The	third	group	of	t-values	was	calculated	using	Limma,	testing	the	association	between	
gene	level	and	patient	pathological	complete	response	(pCR)	status.	All	genes	shown	
have	commercial	inhibitors	available.	
(A) Genes	with	consistently	significant	CARE	scores.	
(B) Other	genes	without	the	requirement	of	consistently	significant	CARE	scores,	with	

genes	shown	in	panel	A	excluded.	 	
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