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1 CCA as a score test under MLM

When there are no covariates, CCA is typically applied to test the multi-trait association.

Here we show that CCA is equivalent to a score statistic under the MLM. Without loss

of generality, assume the genotype and individual trait have been centered. For sample

i = 1, . . . , n, consider

yki = giβk + εki, k = 1, . . . ,m,

where the error vector (ε1i, . . . , εmi)
T follows a zero-mean multivariate normal distribution

with covariance matrix Σ, where variance V ar(εki) = σ2
k and covariance Cov(εki, εji) =

σkj. Denote Yi = (y1i, . . . , ymi)
T , Y = (Y1, . . . , Yn), G = (g1, . . . , gn)T , and βββ = (β1, . . . , βm)T .
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The log likelihood is proportional to

` = −n log |Σ| −
n∑
i=1

(Yi − giβββ)TΣ−1(Yi − giβββ).

Hence we can easily show that the score vector for testing H0 : βββ = 0 is

U =
n∑
i=1

giΣ
−1Yi = Σ−1(Y G) = (GT ⊗ Σ−1)vec(Y ),

where ⊗ means the matrix Kronecker product, and vec() is the vector operator which

stacks the columns of a matrix into a column vector. Note Cov[vec(Y )] = I ⊗ Σ. Hence

Cov(U) = (GTG)⊗ Σ−1 = nS11Σ
−1,

where S11 = GTG/n is the sample variance of genotype. Denote S21 = Y G/n, which

is the sample covariance vector of multi-traits and genotype. The multi-trait association

can be based on the following chi-square statistic, UT Ĉov(U)−1U , which is

Q = n
ST21S

−1
22 S21

S11

,

where we have plugin the estimated null covariance matrix Σ̂ using the sample covariance

matrix S22 of multi-traits. The CCA test statistic used in Ferreira and Purcell (2009) is

then

Q/n

1−Q/n
n−m− 1

m
.

Therefore the proposed MLM based Wald test can be treated as a natural and flexible

generalization of the CCA: (1) it can accommodate any covariates; (2) it is based on the

more powerful Wald test instead of the Score test for association tests of quantitative
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traits; and (3) it has an exact F-distribution for the multivariate normally distributed

multiple continuous traits, and hence has very accurate control of type I errors.

It is not hard to verify that previous derivations still hold when we replace Y and G

by their residuals regressing on a common set of p covariates. Therefore operationally we

can apply the popular PLINK tool (Purcell et al., 2007) to test multi-trait association as

follows. We first obtain the residuals of multivariate traits and genotypes adjusting for all

covariates. We then input the residuals into the CCA test approach (Ferreira and Purcell,

2009) implemented in PLINK. Technically we need to adjust the PLINK output p-value

T using a F-distribution with different DFs as 1−Fm,n−m−1−p(F−1m,n−m−1(1−T )n−m−1−p
n−m−1 ),

where Fd1,d2(·) is the distribution function of F-distribution with (d1, d2) DFs. Note that

when the set of covariates are independent of the genotypes (e.g., age and gender), we

can directly use the genotypes instead of the genotype residuals, which can further save

some computation time.

2 Multivariate trait association detection using the

1-DF Wald test

Consider the linear combination U = aT β̂1, which follows a normal distribution, U ∼

N(aTγ, (GT
eGe)

−1aTΣa), where γ is the true value of β1. Assuming a common genotype

effect across the multivariate traits, we have γ = η1m. The effect size of U is then

proportional to

η(aT1m)√
(GT

eGe)−1aTΣa
= η

√
GT
eGeb

TΣ−1/21m, b =
Σ1/2a√
aTΣa

.
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Taking b ∝ Σ−1/21m will maximize the effect size (note bT b = 1). Therefore we use the

following statistic

T =
1TmΣ̂−1β̂1

(1TmΣ̂−11m)1/2
.

With a common scaled genotype effect across the multivariate traits, we have γ = ηS,

where S = (s1, · · · , sm)T with sk =
√

Σkk, k = 1, · · · ,m. Similarly we can derive the

following test statistic

T ′ =
ST Σ̂−1β̂1

(ST Σ̂−1S)1/2
.

3 Chi-square and F-distribution based p-value calcu-

lation

The chi-square statistic n−p−1
n

Q is commonly used in practice and referred to a m-DF

chi-square distribution to compute multi-trait association test p-values, which can lead to

significantly inflated type I errors at stringent genome-wide significance levels. Figure 1

shows the ratio of actual significance level of Wald test p-values computed using the

chi-square distribution and F-distribution respectively. We can see that the type I error

based on the chi-square distribution is inflated: more so for larger number of traits, smaller

significance level, and smaller sample size. For example, when testing m = 8 traits with

p = 2 covariates and n = 500 samples, under genome-wide significance level 5× 10−8, the

actual significance level of chi-square distribution p-value is 3.42× 5× 10−8 = 1.7× 10−7.

Using the chi-square distribution to compute p-values will lead to very small inflation only

when the sample size is large, such as in the meta-analysis of multiple GWAS studies.

Figure 2 shows the minimum sample size required to have the type I error inflation ≤ 1.1

at significance level α = 5× 10−8 as a function of number of traits m, when using the chi-

square distribution instead of F-distribution to compute p-values. The minimum sample
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Figure 1: Nominal significance level inflation factor (IF): plotted are the actual significance
level ratios of m-DF chi-square test versus the F-test with (m,n− p− 1−m) DFs. The
x-axis is the Type I error rate. The left panel shows the results for testing m = 4 traits
with p = 2 covariates based on n individuals. The right panel shows the results for testing
m = 8 traits with p = 2 covariates.
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size almost increases linearly with number of traits m. For typical GWAS with small

to medium sample sizes, we recommend using the appropriate F-distribution to compute

significance p-values to reduce false positive findings.

4 Joint analysis of glycemic traits in ARIC GWAS

Table 1 lists the 62 genome-wide significant SNPs that were identified in the ARIC joint

association test of fasting glucose (FG), fasting insulin (FI) and 2 hour fasting glucose

levels (2hFG), and were also significant in the MAGIC consortium meta-analyses of these

three traits (Dupuis et al., 2010; Saxena et al., 2010). In Table 1, we listed the ARIC

joint test p-values (the proposed MLM Wald test and the GEE chi-square test), and the

corresponding MAGIC consortium meta-analyses p-values.
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Figure 2: Minimum sample size required to control IF ≤ 1.1 at significance level α =
5× 10−8: assume testing m quantitative traits with p = 2 covariates.
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Table 2 lists the 79 novel SNPs that were identified in the ARIC joint association test

of FG, IS and 2hFG, but have not been reported as significantly associated with diabetes

related fasting glucose and insulin levels before. Among them, one SNP rs4665987 is

located on chromosome 2:27755825 and another 78 SNPs are clustered on chromosome

15:62132921 to 15:62396389. Majority of them have large meta-analysis p-values for FG

and FI, and relatively small p-values (around 10−5) for the 2hFG. Interestingly 6 of them

(rs4502156, rs7163757, rs8037894, rs6494307, rs7167878, rs7172432) were genome-wide

significant in the MAGIC meta analysis of fasting proinsulin level (FP, Strawbridge et al.,

2011), with meta-analysis p-values ranging from 3.8 × 10−11 to 8.7 × 10−11. We have

highlighted these 6 SNPs in yellow at Table 2. We also provided the corresponding

MAGIC meta-analysis p-values for FG, FI, 2hFG, and FP.
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Table 1: Genome-wide significant SNPs that were identified in the ARIC joint association test
of FG (fasting glucose), FI (fasting insulin) and 2hFG (2 hour fasting glucose), and were also
significant in the MAGIC consortium meta-analyses.

ARIC joint test Pval MAGIC meta-analysis Pval
SNP Chr bp Wald GEE FG FI 2hFG

rs1260326 2 27730940 1.0E-09 2.7E-09 4.3E-13 1.2E-04 1.5E-06
rs780094 2 27741237 1.4E-10 3.1E-10 2.5E-12 9.8E-05 1.5E-06
rs780093 2 27742603 1.5E-10 3.2E-10 2.9E-13 2.0E-04 1.7E-06
rs13431652 2 169753415 3.8E-11 3.5E-11 2.9E-63 1.4E-01 7.8E-01
rs1402837 2 169757354 1.8E-08 1.9E-08 7.4E-40 1.2E-01 7.7E-01
rs573225 2 169757541 1.2E-11 1.4E-11 6.2E-71 1.4E-01 6.0E-01
rs560887 2 169763148 3.0E-13 3.8E-13 4.6E-75 6.2E-02 4.1E-01
rs563694 2 169774071 1.6E-13 2.5E-13 1.2E-71 1.2E-01 1.5E-01
rs537183 2 169774646 1.5E-13 2.4E-13 9.0E-73 1.1E-01 1.6E-01
rs502570 2 169774959 1.5E-13 2.4E-13 9.2E-73 1.1E-01 1.6E-01
rs475612 2 169776746 6.7E-13 7.7E-13 1.0E-65 8.0E-02 1.9E-01
rs557462 2 169777595 1.5E-13 2.3E-13 3.4E-72 1.1E-01 1.6E-01
rs478333 2 169779156 2.6E-08 2.7E-08 3.2E-36 8.2E-02 3.9E-01
rs496550 2 169779712 2.6E-08 2.7E-08 1.3E-36 8.7E-02 4.3E-01
rs473351 2 169779896 1.1E-09 1.8E-09 5.7E-43 1.1E-01 1.8E-01
rs575671 2 169780818 1.1E-09 1.8E-09 5.5E-43 1.1E-01 2.0E-01
rs519887 2 169780885 2.5E-08 2.6E-08 2.6E-36 7.3E-02 5.2E-01
rs486981 2 169782149 1.1E-13 2.2E-13 2.5E-67 1.1E-01 2.9E-01
rs484066 2 169782481 7.7E-12 9.7E-12 1.4E-59 6.9E-02 5.1E-01
rs569805 2 169782880 1.1E-13 2.2E-13 2.6E-67 1.1E-01 3.0E-01
rs579060 2 169783039 1.1E-13 2.2E-13 2.5E-67 1.2E-01 3.0E-01
rs17540154 2 169784493 7.3E-08 4.2E-08 8.7E-38 1.0E-01 7.2E-01
rs508506 2 169784955 1.1E-13 2.2E-13 2.2E-67 1.2E-01 3.0E-01
rs503931 2 169785449 2.4E-08 2.6E-08 5.5E-36 7.7E-02 5.1E-01
rs551754 2 169787686 2.6E-08 2.7E-08 2.4E-36 8.4E-02 5.0E-01
rs497692 2 169789016 3.2E-08 3.3E-08 1.9E-35 7.4E-02 5.0E-01
rs494874 2 169789306 2.2E-13 3.6E-13 3.3E-67 1.3E-01 3.4E-01
rs552976 2 169791438 5.4E-13 7.6E-13 7.1E-66 9.6E-02 3.0E-01
rs567074 2 169794431 6.1E-09 6.4E-09 2.3E-42 1.0E-01 6.3E-01
rs2544367 2 169796288 3.5E-08 3.6E-08 2.1E-37 7.3E-02 6.4E-01
rs2685805 2 169797060 3.5E-08 3.6E-08 3.9E-37 7.7E-02 6.4E-01
rs1581397 2 169797652 3.4E-08 3.5E-08 1.5E-37 6.7E-02 6.4E-01
rs2685814 2 169798619 3.2E-08 3.4E-08 1.3E-37 7.3E-02 6.2E-01
rs853789 2 169801488 1.2E-14 2.5E-14 1.9E-67 9.8E-02 2.9E-01
rs860510 2 169801628 3.1E-08 3.2E-08 5.2E-38 6.0E-02 6.6E-01
rs853788 2 169801905 3.1E-08 3.2E-08 1.6E-38 6.3E-02 6.6E-01
rs853787 2 169802252 1.2E-14 2.5E-14 3.7E-73 9.9E-02 3.1E-01
rs853786 2 169802310 3.1E-08 3.2E-08 2.3E-38 6.0E-02 6.7E-01
rs862662 2 169802329 2.0E-09 2.3E-09 6.7E-44 6.3E-02 6.0E-01
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rs853785 2 169802594 3.1E-08 3.2E-08 1.1E-38 6.0E-02 6.6E-01
rs853784 2 169803674 3.5E-08 4.0E-08 8.3E-39 4.8E-02 4.7E-01
rs853783 2 169805511 4.0E-08 4.5E-08 1.4E-38 4.5E-02 4.7E-01
rs853781 2 169806321 2.7E-09 3.3E-09 5.9E-44 4.6E-02 4.3E-01
rs853780 2 169807482 4.9E-08 5.5E-08 2.1E-38 5.4E-02 4.8E-01
rs1101533 2 169808522 3.9E-08 4.1E-08 1.0E-38 4.8E-02 4.6E-01
rs853779 2 169809672 3.3E-08 3.4E-08 1.5E-36 2.7E-02 4.6E-01
rs853778 2 169811224 5.3E-09 5.3E-09 1.1E-39 2.5E-02 4.2E-01
rs853773 2 169814347 1.1E-08 1.9E-08 4.8E-51 4.0E-02 7.9E-01
rs3847554 11 92668826 3.4E-09 2.6E-09 6.9E-39 6.6E-01 1.0E-01
rs12792753 11 92668975 4.8E-09 3.0E-09 2.7E-46 9.2E-01 1.4E-01
rs7112766 11 92672021 8.9E-15 1.6E-14 1.3E-43 7.4E-01 1.4E-02
rs1387153 11 92673828 2.2E-15 7.7E-15 6.6E-45 4.4E-01 1.4E-02
rs11523890 11 92679778 5.2E-10 4.2E-10 9.6E-51 8.6E-01 6.9E-02
rs10830956 11 92681013 1.9E-15 6.8E-15 8.6E-50 7.1E-01 1.3E-02
rs10765573 11 92683332 3.6E-10 2.8E-10 1.2E-51 8.3E-01 5.2E-02
rs7933855 11 92684322 1.1E-09 8.3E-10 1.5E-45 7.8E-01 3.0E-02
rs7936247 11 92690032 2.8E-10 2.2E-10 5.1E-52 9.1E-01 4.6E-02
rs11020124 11 92690661 1.2E-14 2.7E-14 5.1E-50 7.3E-01 1.8E-02
rs2166706 11 92691532 1.0E-09 7.8E-10 4.1E-44 8.3E-01 2.4E-02
rs10830961 11 92694757 1.9E-11 1.4E-11 1.7E-52 8.6E-01 2.3E-02
rs10830962 11 92698427 2.0E-11 1.5E-11 3.2E-51 9.5E-01 2.5E-02
rs10830963 11 92708710 6.3E-26 1.6E-24 1.3E-68 4.0E-01 1.2E-02

Table 2: 79 novel SNPs identified in the ARIC joint association test of FG, FI and 2hFG. The
corresponding MAGIC consortium meta-analyses p-values for the three traits together with the
FP (fasting proinsulin) are also listed.

ARIC joint test Pval MAGIC meta-analysis Pval
SNP Chr bp Wald GEE FG FI 2hFG FP

rs4665987 2 27755825 4.9E-08 1.0E-07 4.5E-06 3.7E-02 9.3E-05 6.9E-02
rs17271144 15 62132921 2.5E-08 1.7E-08 6.8E-02 8.4E-01 9.5E-06 5.2E-04
rs3743297 15 62149784 1.5E-08 9.1E-09 3.3E-02 8.4E-01 2.0E-05 7.0E-04
rs12908081 15 62162264 1.6E-08 1.0E-08 4.0E-02 8.7E-01 2.0E-05 9.1E-04
rs1981916 15 62171479 9.1E-09 5.4E-09 3.6E-02 9.9E-01 1.3E-05 8.1E-04
rs2414755 15 62172429 9.1E-09 5.4E-09 4.1E-02 9.9E-01 1.6E-05 7.0E-04
rs2414753 15 62200974 1.1E-08 5.6E-09 6.3E-02 8.3E-01 6.5E-06 4.6E-04
rs963024 15 62211450 2.9E-08 1.6E-08 6.5E-02 9.6E-01 3.3E-05 5.4E-04
rs4775453 15 62217391 1.5E-08 8.8E-09 7.2E-01 6.7E-01 4.2E-04
rs4774427 15 62217444 1.2E-08 6.0E-09 9.5E-02 9.8E-01 8.3E-06 5.3E-04
rs7172967 15 62218568 1.2E-08 6.0E-09 6.6E-02 8.7E-01 8.4E-06 5.3E-04
rs12439934 15 62224613 1.9E-08 1.4E-08 8.8E-02 9.6E-01 1.5E-05 2.7E-04
rs11071642 15 62229356 1.3E-08 6.6E-09 7.3E-02 9.1E-01 7.6E-06 5.8E-04
rs2042608 15 62232380 2.7E-09 2.0E-09 7.7E-02 9.8E-01 7.2E-06 1.9E-04
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rs8033816 15 62233167 1.9E-08 1.5E-08 7.4E-02 7.9E-01 1.3E-05 4.1E-04
rs7170293 15 62236373 5.0E-09 3.1E-09 4.6E-02 9.9E-01 2.2E-05 4.3E-04
rs7177173 15 62236804 6.0E-09 3.2E-09 9.2E-02 9.8E-01 1.3E-05 3.1E-04
rs1425270 15 62237710 3.9E-09 2.5E-09 2.0E-02 9.1E-01 1.5E-05 4.2E-04
rs7166891 15 62239304 5.5E-09 3.3E-09 5.1E-02 9.9E-01 2.4E-05 4.4E-04
rs7172145 15 62239697 5.8E-09 3.5E-09 5.0E-02 1.0E+00 2.5E-05 4.8E-04
rs4587915 15 62241962 2.8E-09 1.7E-09 2.6E-02 9.2E-01 1.5E-05 5.4E-04
rs12899801 15 62246864 4.0E-08 3.2E-08 1.1E-01 7.9E-01 1.7E-05 2.8E-04
rs12593844 15 62247067 4.0E-08 3.1E-08 1.4E-01 8.6E-01 2.1E-05 2.8E-04
rs8027751 15 62247720 4.4E-09 2.2E-09 1.1E-01 9.7E-01 1.4E-05 3.7E-04
rs12910541 15 62248911 4.6E-08 3.0E-08 8.7E-02 9.3E-01 1.3E-05 3.0E-04
rs5006593 15 62250008 6.5E-09 3.4E-09 9.0E-02 9.9E-01 2.0E-05 3.3E-04
rs8034914 15 62250430 6.5E-09 3.4E-09 8.9E-02 9.7E-01 2.0E-05 3.4E-04
rs1344601 15 62259066 1.3E-08 8.2E-09 1.2E-01 9.2E-01 4.3E-06 3.3E-04
rs3784634 15 62259637 2.8E-09 1.4E-09 6.9E-02 9.6E-01 8.6E-06 4.5E-04
rs3784633 15 62259772 2.0E-08 1.4E-08 1.1E-01 9.5E-01 6.0E-06 2.8E-04
rs933807 15 62274940 1.4E-08 9.1E-09 1.3E-01 9.7E-01 3.0E-06 4.1E-04
rs2162062 15 62279937 1.3E-08 8.4E-09 1.2E-01 9.7E-01 3.4E-06 3.8E-04
rs11639482 15 62282114 1.1E-08 7.2E-09 1.2E-01 9.8E-01 3.6E-06 3.8E-04
rs8032433 15 62284101 1.6E-08 1.1E-08 1.2E-01 9.4E-01 3.5E-06 3.2E-04
rs8034335 15 62287456 1.1E-09 5.5E-10 8.9E-02 9.1E-01 4.9E-06 8.0E-04
rs8034216 15 62287528 1.1E-09 5.5E-10 6.5E-02 9.5E-01 4.1E-06 5.4E-04
rs12594658 15 62305090 5.6E-09 3.0E-09 1.2E-01 9.1E-01 2.2E-06 2.4E-04
rs17271305 15 62332980 1.0E-09 7.1E-10 2.2E-02 7.9E-01 1.0E-06 3.9E-03
rs1436958 15 62338797 1.3E-08 1.1E-08 4.9E-02 6.9E-01 6.2E-07 2.5E-03
rs17205365 15 62340126 3.0E-08 2.7E-08 2.5E-01 3.8E-01 5.2E-07 8.0E-04
rs12442675 15 62346056 8.0E-09 4.2E-09 1.7E-01 8.2E-01 6.1E-06 4.2E-04
rs4775455 15 62347274 8.1E-09 4.2E-09 1.3E-01 8.4E-01 9.0E-06 3.5E-04
rs17271340 15 62347885 8.8E-10 4.0E-10 7.4E-02 8.8E-01 2.3E-05 8.1E-04
rs12592402 15 62349020 8.1E-09 4.2E-09 1.3E-01 8.4E-01 9.6E-06 3.6E-04
rs8029942 15 62353458 1.2E-08 7.1E-09 6.0E-02 8.2E-01 2.7E-05 3.7E-04
rs12912208 15 62354570 1.2E-08 7.2E-09 9.8E-01 9.2E-01 4.2E-04
rs1436966 15 62358682 1.2E-08 6.8E-09 6.6E-02 8.0E-01 2.7E-05 3.8E-04
rs8039105 15 62359085 1.1E-09 4.5E-10 7.8E-02 8.3E-01 2.8E-05 1.0E-03
rs8039651 15 62359350 9.3E-09 4.5E-09 8.2E-01 8.9E-01 5.0E-04
rs1030859 15 62364932 6.2E-09 2.8E-09 1.1E-01 7.6E-01 1.3E-05 3.1E-04
rs11635977 15 62370484 3.5E-09 1.5E-09 1.1E-01 7.8E-01 7.7E-06 5.9E-04
rs11633500 15 62372475 3.5E-09 1.5E-09 1.1E-01 8.0E-01 6.3E-06 5.9E-04
rs12913951 15 62372592 3.5E-09 1.5E-09 1.1E-01 9.9E-01 4.3E-06 6.1E-04
rs17205407 15 62372827 3.5E-09 1.5E-09 8.8E-02 7.6E-01 5.4E-06 5.4E-04
rs7162536 15 62373459 3.5E-09 1.5E-09 1.3E-01 9.2E-01 1.1E-05 4.9E-04
rs1436964 15 62374487 3.6E-09 1.5E-09 1.1E-01 7.9E-01 6.6E-06 6.2E-04
rs4775458 15 62375036 3.9E-09 1.6E-09 1.2E-01 7.8E-01 6.8E-06 6.4E-04
rs17271403 15 62375389 3.7E-09 1.5E-09 8.5E-02 8.6E-01 8.5E-06 4.9E-04
rs8026008 15 62377805 4.6E-09 2.0E-09 1.2E-01 7.7E-01 8.4E-06 7.4E-04
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rs8025877 15 62377820 4.8E-09 2.0E-09 1.2E-01 7.7E-01 9.3E-06 7.5E-04
rs893158 15 62378608 5.1E-09 2.1E-09 1.2E-01 7.6E-01 1.3E-05 8.0E-04
rs893156 15 62378892 5.7E-09 2.4E-09 1.3E-01 7.7E-01 1.2E-05 8.6E-04
rs7177276 15 62379668 5.9E-09 2.5E-09 1.3E-01 7.8E-01 1.2E-05 9.0E-04
rs7178945 15 62379814 6.2E-09 2.6E-09 1.3E-01 7.7E-01 1.2E-05 9.1E-04
rs7177711 15 62379971 6.6E-09 2.8E-09 1.3E-01 7.7E-01 1.2E-05 9.2E-04
rs7178540 15 62380132 7.0E-09 3.0E-09 1.3E-01 7.5E-01 1.2E-05 1.1E-03
rs7178424 15 62380259 6.9E-09 2.9E-09 1.4E-01 6.8E-01 1.3E-05 9.0E-04
rs12442212 15 62380482 6.6E-09 2.7E-09 1.1E-01 8.0E-01 1.9E-05 7.6E-04
rs12439356 15 62380595 6.9E-09 2.8E-09 1.3E-01 6.7E-01 1.7E-05 1.0E-03
rs17271431 15 62381016 6.8E-09 2.8E-09 1.3E-01 7.7E-01 1.5E-05 8.6E-04
rs17271438 15 62381065 6.3E-09 2.8E-09 1.2E-01 7.7E-01 1.5E-05 8.4E-04
rs17205463 15 62381413 6.1E-09 2.7E-09 1.2E-01 7.6E-01 1.5E-05 8.5E-04
rs10519157 15 62381630 9.2E-09 4.6E-09 1.3E-01 6.5E-01 4.8E-05 2.9E-03
rs4502156 15 62383155 5.4E-09 7.9E-09 8.4E-08 6.7E-01 8.2E-05 3.8E-11
rs7163757 15 62391608 1.4E-08 1.8E-08 4.2E-07 5.7E-01 1.9E-05 3.9E-11
rs8037894 15 62394264 1.2E-08 1.6E-08 4.1E-07 4.8E-01 3.5E-05 8.7E-11
rs6494307 15 62394690 1.7E-08 2.1E-08 3.3E-07 4.9E-01 2.7E-05 4.1E-11
rs7167878 15 62396189 1.7E-08 2.1E-08 4.6E-07 4.5E-01 2.4E-05 4.1E-11
rs7172432 15 62396389 1.7E-08 2.2E-08 6.5E-07 3.3E-01 1.9E-05 4.3E-11

5 Multivariate trait association test with different

covariates

For trait yk, denote xk as its covariate vector (including the intercept) of length pk, k =

1, . . . ,m. Here xk are different across traits. Assume the multivariate regression model,

yk = xTk β0k + Gβ1k + εk, k = 1, . . . ,m, where β0k is of length pk, and εεε = (ε1, . . . , εm)T

follows a zero-mean multivariate normal distribution with covariance Σ, εεε ∼ N(0,Σ). This

model is also known as seemingly unrelated regression (SUR) model or multiple-design

multivariate (MDM) model (see, e.g., Timm, 2002, chapter 5).

Given observations of n individuals, denote the n × m response matrix as Y , the

m × p block matrix as Fi = diag(F T
i1 , . . . , F

T
im) = ⊕mk=1F

T
ik for the i-th individual, where

p =
∑m

k=1(pk + 1) and Fik = (xTik, Gi)
T is a column vector of length pk + 1, and the n×m
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error matrix as B = (εεε1, . . . , εεεn)T . Denote the (nm)× p matrix A = (F T
1 , . . . ,F

T
n )T , and

βββ = (βT01, β11, . . . , β
T
0m, β1m)T of length p. Then the SUR or MDM model can be written

in matrix notation as vec(Y T ) = Aβββ+vec(BT ). The MLEs can be very efficiently solved

based on iteration of β̂ββ = [AT (In⊗Σ−1)A]−1[AT (In⊗Σ−1)vec(Y T )] and updating Σ̂ as the

sample covariance of residuals (see, e.g., Timm, 2002, chapter 5). Note that Cov(β̂ββ) =

[AT (In ⊗ Σ−1)A]−1. When computing the Wald statistics, we plug in the estimated

Σ̂ and account for its estimation uncertainty by using an approximate F-distribution to

compute p-values (see, e.g., Timm, 2002, p. 313). Here AT (In⊗Σ−1)A =
∑n

i=1 F
T
i Σ−1Fi,

AT (In ⊗ Σ−1)vec(Y T ) =
∑n

i=1 F
T
i Σ−1Yi.

5.1 Simulation study

We consider a common Bernoulli covariate Z with probability of 0.5 (population indi-

cator), and separately simulate a standard normal covariate Xk for each trait Yk. The

SNP genotype score G is simulated from a Binomial distribution, Binom(2,f0), where the

minor allele frequency (MAF) f0 = p0 + p1Z.

We conducted simulations for testing m = 2, 4, 8 related traits of 1,000 unrelated

individuals respectively. Each time we simulate the m traits from a multivariate normal

distribution with a compound symmetry correlation matrix with correlation ρ. The first

trait has a variance of 2 and all the other traits have unit variance. We set E(Yi) =

1+0.5Xi+0.5Z+γiG for i = 1, . . . ,m−1, and E(Yk) = 1+Xk+Z+γkG for k = 2, . . . ,m.

We used 10 million experiments to evaluate the type I error, and 105 experiments to

evaluate the power under various combinations of (γ1, . . . , γm). We conducted simulations

for p0 = (0.1, 0.3), p1 = 0.1, and ρ = 0, 0.2, 0.5, 0.8. Here we report the results form = 2, 8,

ρ = 0, 0.5 and p0 = 0.1. The conclusions remain the same for other settings (data not

shown).
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Table 3: Type I error of testing two continuous traits, scaled by the nominal significance
level α. The MAFs of SNP are 0.1 and 0.2 in the two populations. Q is the m-DF
omnibus Wald test, T and T ′ are the 1-DF Wald tests assuming a common or common
scaled effect. (Qs, Ts, T

′
s) are the corresponding MLM GEE based m-DF omnibus test and

1-DF tests assuming a common effect or common scaled effect. (Q̃, T̃ , T̃ ′) are the Wald
tests using chi-square distribution to compute p-values.

ρ = 0

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 1.03 1.06 1.08 1.19 1.16 1.18 0.69 0.86 0.87
10−4 1.02 1.02 1.03 1.11 1.11 1.12 0.81 0.85 0.89
10−3 1.00 1.00 1.01 1.05 1.04 1.06 0.89 0.94 0.94

ρ = 0.5

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 1.07 0.96 1.06 1.15 1.08 1.10 0.66 0.66 0.83
10−4 1.04 1.00 1.00 1.14 1.08 1.07 0.82 0.87 0.91
10−3 0.99 0.99 1.00 1.05 1.03 1.04 0.90 0.93 0.93

Tables 3 and 4 summarize the estimated type I errors. Overall the type I errors are

well controlled for the proposed methods, while the GEE score tests are conservative

especially for large number of traits (m = 8).

Tables 5 and 6 summarize the power for m = 2 and m = 8 respectively. T is the most

powerful when γj are close to each other, and T ′ is the most powerful when γj/σj are

close to each other. In general the proposed MLM based Wald tests perform better than

the corresponding GEE based score tests. This agrees with the general principle that the

Wald test is typically more powerful than the GEE based test.
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Table 4: Type I error of testing eight continuous traits, scaled by the nominal significance
level α. The MAFs of SNP are 0.1 and 0.2 in the two populations.

ρ = 0, p0 = 0.1

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 0.84 1.07 1.05 1.11 1.25 1.15 0.48 0.85 0.78
10−4 0.88 0.99 1.00 1.11 1.10 1.11 0.60 0.86 0.85
10−3 0.93 1.01 1.00 1.11 1.08 1.09 0.75 0.95 0.94

ρ = 0.5, p0 = 0.1

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 0.92 0.78 0.93 1.33 0.98 1.05 0.42 0.62 0.65
10−4 0.94 0.96 0.99 1.24 1.09 1.12 0.64 0.90 0.86
10−3 0.95 0.95 1.00 1.13 1.02 1.07 0.76 0.94 0.94

ρ = 0, p0 = 0.3

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 1.00 0.96 1.03 1.42 1.15 1.17 0.66 0.86 0.92
10−4 0.90 0.96 0.97 1.17 1.07 1.10 0.77 0.90 0.90
10−3 0.93 1.01 1.02 1.11 1.09 1.10 0.84 0.97 0.97

ρ = 0.5, p0 = 0.3

α Q T T ′ Q̃ T̃ T̃ ′ Qs Ts T ′s
10−5 0.80 0.82 0.87 1.28 1.01 1.05 0.47 0.75 0.72
10−4 0.91 0.88 1.00 1.16 0.99 1.15 0.73 0.88 0.95
10−3 0.92 0.94 1.00 1.09 1.01 1.06 0.84 0.97 0.97
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Table 5: Power of multi-trait tests for m = 2 continuous traits (Y1, Y2) under significance
level α = 10−4. The MAFs of SNP are 0.1 and 0.2 in the two populations respectively. Q
is the m-DF omnibus Wald test, T and T ′ are the 1-DF Wald tests assuming common or
common scaled effect. (Qs, Ts, T

′
s) are the corresponding GEE based m-DF omnibus test

and 1-DF tests assuming a common effect or common scaled effect. σi is the standard
error of Yi and γi is the SNP coefficient, i = 1, 2. The highest powered tests are bold-faced.

ρ = 0
(γ1, γ2) ( γ1

σ1
, γ2
σ2

) Q T T′ Qs Ts T′s
(0.3,0) (0.21,0) 0.205 0.025 0.064 0.178 0.020 0.052

(0.3,0.1) (0.21,0.1) 0.316 0.249 0.337 0.278 0.217 0.302
(0.25,0.18) (0.18,0.18) 0.418 0.509 0.530 0.374 0.470 0.494
(0.3,0.25) (0.21,0.25) 0.831 0.891 0.892 0.796 0.869 0.870
(0.2,0.2) (0.14,0.2) 0.376 0.484 0.462 0.335 0.449 0.426
(0.2,0.25) (0.14,0.25) 0.631 0.727 0.676 0.585 0.694 0.638
(0.25,0.25) (0.18,0.25) 0.731 0.818 0.799 0.690 0.791 0.769

(0,0.25) (0,0.25) 0.401 0.247 0.133 0.359 0.216 0.108
(0,0.3) (0,0.3) 0.701 0.486 0.291 0.657 0.439 0.239

(0.1,0.25) (0.07,0.25) 0.463 0.484 0.372 0.418 0.448 0.331
(0.1,0.3) (0.07,0.3) 0.744 0.726 0.590 0.701 0.690 0.535
(0.2,0.3) (0.14,0.3) 0.842 0.890 0.842 0.810 0.869 0.809

ρ = 0.5
(0.3,0) (0.21,0) 0.377 0.001 0.025 0.334 0.001 0.019

(0.3,0.1) (0.21,0.1) 0.208 0.049 0.145 0.179 0.041 0.127
(0.25,0.18) (0.18,0.18) 0.178 0.218 0.255 0.153 0.192 0.232
(0.3,0.25) (0.21,0.25) 0.522 0.615 0.617 0.477 0.573 0.582
(0.2,0.2) (0.14,0.2) 0.175 0.255 0.214 0.151 0.229 0.192
(0.2,0.25) (0.14,0.25) 0.408 0.498 0.364 0.366 0.464 0.331
(0.25,0.25) (0.18,0.25) 0.448 0.558 0.493 0.403 0.521 0.457

(0,0.25) (0,0.25) 0.639 0.277 0.052 0.590 0.247 0.040
(0,0.3) (0,0.3) 0.890 0.525 0.120 0.863 0.476 0.094

(0.1,0.25) (0.07,0.25) 0.451 0.383 0.165 0.405 0.354 0.141
(0.1,0.3) (0.07,0.3) 0.771 0.640 0.300 0.730 0.607 0.257
(0.2,0.3) (0.14,0.3) 0.703 0.746 0.548 0.659 0.718 0.504
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Table 6: Power of multi-trait tests for m = 8 continuous traits under significance level
α = 10−4. The MAFs of SNP are 0.1 and 0.2 in the two populations respectively. Q is
the m-DF omnibus Wald test, T and T ′ are the 1-DF Wald tests assuming common or
common scaled effect. (Qs, Ts, T

′
s) are the corresponding GEE based m-DF omnibus test

and 1-DF tests assuming a common effect or common scaled effect. The highest powered
tests are bold-faced.

ρ = 0
γ1 = 0.3, γi>1 = 0 0.063 0.001 0.003 0.044 0.001 0.002

(.3, .2, .1, .05, 0, · · · , 0) 0.457 0.153 0.219 0.373 0.101 0.152
γ1 = 0.2, γi>1 = 0.15 0.933 0.995 0.996 0.889 0.992 0.993

γi = 0.15 0.908 0.994 0.993 0.855 0.990 0.989
ρ = 0.5

(γ1, · · · , γ8) Q T T′ Qs Ts T′s
γ1 = 0.3, γi>1 = 0 0.297 0.001 0 0.230 0 0

(.3, .2, .1, .05, 0, · · · , 0) 0.688 0.001 0.008 0.596 0 0.005
γ1 = 0.2, γi>1 = 0.15 0.043 0.196 0.217 0.030 0.169 0.198

γi = 0.15 0.045 0.230 0.190 0.031 0.203 0.172

6 R package MTAR

We have implemented the proposed methods in an R package “MTAR” available at http:

//www.github.com/baolinwu/MTAR. The following lists some sample R codes to install

and use the package.

## Install MTAR

devtools::install_github("baolinwu/MTAR")

## Multi-trait association test

library(VGAM)

library(MTAR)

Z = rbinom(1000,1,0.5)

G = rbinom(1000,2,0.25)

## assume the same covariates

X = rnorm(1000)
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e = rnorm(1000)

Y1 = Z+X + 0.15*G + rnorm(1000)+e

Y2 = Z+X + 0.1*G + rnorm(1000)+e

Y = cbind(Y1,Y2)

obj = MLM.null(Y,cbind(Z,X))

MQTAc(obj, G)

## different covariates

X1 = rnorm(1000)

X2 = rnorm(1000)

Y1 = Z+X1 + 0.15*G + rnorm(1000)+e

Y2 = Z+X2 + 0.1*G + rnorm(1000)+e

Y = cbind(Y1,Y2)

YX = list(Y, cbind(X1,Z), cbind(X2,Z))

objd = MDM.null(YX,pux=2)

MQTAd(objd, G)

The developed algorithms are very efficient and extremely scalable to genome-wide

association test. For example, it takes 30 minutes to conduct joint association tests for

around 2.5 million HapMap SNPs in the ARIC data on a single Linux desktop with 3.0

GHz CPU and 24 GB memory. The eigen decompositions involved are computed very

efficiently, since we just need to compute the top eigen vectors for the covariate matrix.

The covariance matrix involved in the Wald tests has the same dimension as the number

of traits, and its inverse can also be computed efficiently.

16



Table 7: Type I error (divided by the significance level α) when simulating from K-DF
multivariate t-distribution.

K=5 K=10 K=20
α Q T T ′ Q T T ′ Q T T ′

10−4 0.92 0.97 0.95 0.92 0.84 0.82 0.92 0.87 0.87
10−3 0.95 0.98 0.98 1.01 0.99 0.99 0.97 0.96 0.98
10−2 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

7 Discussions

We note that the multi-trait test approach generally benefits the most when the marginal

effects have different directions from the trait correlations. For example, consider a bi-

variate normal random vector Z = (z1, z2)
T with covariance matrix Σ having unit vari-

ance and 0.5 correlation. Consider the Wald test ZTΣ−1Z. Under 5 × 10−8 significance

level, its test power is 0.5% with E(z1) = 3, E(z2) = 2, while the power is 24.8% when

E(z1) = 3, E(z2) = −2.

The proposed Wald tests are generally robust to deviation from normality, partly

because GWAS are based on large sample sizes, and the F-distribution based Wald test

is robust. Here we conduct a simple simulation study to investigate the type I errors

of the proposed Wald tests when we simulate the outcomes from the multivariate t-

distribution instead. We consider 5000 individuals with two outcomes following K-DF

bivariate t-distribution with unit variance and 0.5 correlation. The genotype is simulated

from Binom(2, 0.2). We conducted 106 simulations to investigate the type I errors at

significance levels α = 10−2,−3,−4 under K = 5, 10, 20. Table 7 summarizes the results.

Overall we can see that all proposed Wald tests have well controlled type I errors.

GWAS are typically useful to identify common variants (MAF≥5%). The proposed

Wald tests are applicable to any MAF and number of traits, in the sense that the Wald test

F-distributions always hold. However we do recommend that the tests are only applied to
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common variants and relatively small number of traits: for PheWAS with huge number

of traits (Pendergrass et al., 2011), more efforts are needed to develop new and powerful

tests.
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