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MATERIALS AND METHODS 

The Discovery Cohort 

Relative to the larger and unselected Canadian Consortium for Genetic Studies (CGS; N = 1,357) 

CF cohort (E1), the threshold for the lower tertile in this data set is near the 20
th

 percentile, and 

the upper tertile threshold is approximately the 80
th

 percentile for SaKnorm in the CGS. Note 

that SaKnorm is normally distributed in a random sample of persons with CF (E1), but our 

samples were selected to include individuals having extreme lung function phenotypes, making 

our distribution bimodal. 

Controls were drawn from the National Heart, Lung, and Blood Institute (NHLBI) “Grand 

Opportunity” (GO) Exome Sequencing Project (ESP) Lung and Heart Cohorts (E2). Because the 

CF cases are also from the ESP collection, these control exomes have the desirable property of 

contemporaneous sequencing within the same umbrella project. To create a proper control set, 

we excluded individuals with lung disease, all but one sibling, individuals with non-European 

ancestry, and PC outliers. The excluded projects and their database of Genotype and Phenotype 

(dbGaP) accession numbers are: Cystic Fibrosis (phs000254), Acute Lung Injury (ALI; 

phs000334), COPD Genetic Epidemiology (COPDGene; phs000296), Lung Health Study of 

Chronic Obstructive Pulmonary Disease (LHS; phs000291), Pulmonary Arterial Hypertension 

(PAH; phs000290), and Severe Asthma Research Project (SARP; phs000422). The exome 

sequence data and phenotype data are available through dbGaP, with the accession numbers 

for each NHLBI-GO ESP project summarized on the ESP website. 
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 PCs were estimated by smartPCA v.9003 (E3, E4) from all autosomal SNVs passing the 

minimum read depth filter. Outliers were removed iteratively by smartPCA to achieve a 

homogeneous data set (Supplemental Figures E1 and E2). We restricted association testing to 

autosomal or pseudo-autosomal code-altering and UTR single nucleotide variants (SNVs), 

excluding synonymous variants and splash bases annotated only as "intronic", in order to 

minimize our multiple testing penalty and focus on the subset of variants most likely to be 

functional. The candidate gene list was based on a published PCD candidate gene list (E5) 

containing 82 genes that was updated to include 12 additional genes for PCD identified since its 

publication: ARMC4 (E6, E7), CCDC39 and CCDC40 (E8, E9), CCDC65 (E10, E11), CCDC103 (E12), 

CCDC164 (E13), DNAAF3 (C19orf51 (E14)), DNAAF5/HEATR2 (E15), DYX1C1 (E16, E17), LRRC6 

(E18, E19), SPAG1 (E20), and ZMYND10 (E21, E22). 

Samples with small numbers can cause test statistics to provide biased p-values, as the accuracy 

of these p-values is based on laws of large numbers that ensure a Gaussian distribution for the 

appropriate statistic in large samples. The adjusted-SKAT-O approach is designed specifically to 

avoid this problem (E23), allowing for non-Gaussian test statistic distributions. We used 

adjusted-SKAT-O (v0.81) to perform by-variant association tests. Variants were tested for 

association if genotypes were called for at least 65 cases and 130 controls, with minor allele 

counts >2. Analysis parameters include method="optimal.adj", missing_cutoff=0.9, kernel = 

"linear", and the inclusion of PCs 1 and 2 as covariates. The upper tertile was compared to 

3,148 ESP controls (excludes subjects from ALI, CF, COPDGene, LHS, PAH, and SARP studies). 

The lower tertile was compared to 3,269 controls (3,148 plus COPDGene “super healthy lung” 

controls). 
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The Bonferroni approach to correct for multiple testing was highly conservative, as we tested 

multiple highly-correlated variants within the same gene. The  number of independent tests 

were estimated using the Genetic type I error calculator(E24), which were then used for the 

second multiple testing correction approach. For all the subjects together, the total estimated 

effective number of independent markers is 785.2 for the 1213 markers, with an effective ratio 

of 0.65 on all chromosomes. This gives a corrected p-value threshold of 6.37 x 10
-5

. 

Extension Cohorts 

Variants associated with variation in lung function among persons with CF could also be 

associated with outcomes in respiratory diseases with phenotypes overlapping CF, particularly 

if the associated variants are causal. Hence, finding an association with a related phenotype in 

the same direction of effect provides additional evidence of causality.  We explored this line of 

evidence using two approaches. First, we tested for association between the candidate variants 

and the extreme tertiles of percent of predicted forced expiratory volume in 1 second (FEV1) in 

338 persons with COPD in the Lung Health Study. We calculated the percent predicted value of 

FEV1, using the observed pre-bronchodilator values and the Global Lung Function Initiative 

formula (E25). We excluded 19 individuals with reactive airways, defined as a ≥12% change in 

FEV1 after taking a bronchodilator, then defined lower and upper tertiles as described above. 

PCs were estimated as described with these subjects and the ESP controls defined above. We 

restricted the analysis to persons of self-reported European ancestry, consistent with their PC 

results. We performed by-variant adjusted-SKAT-O analyses for variants found to be 
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significantly associated with SaKnorm extremes in the discovery cohort, adjusting for the first 

two PCs as in the CF discovery analysis. 

Second, we tested for association between variants found to be significantly associated with 

SaKnorm extremes in the CF discovery cohort and the following sub-phenotypes in an 

independent data set: chronic sinusitis, chronic bronchitis, and bronchiectasis. Phenotypes 

were defined by diagnostic ICD9 coding extracted from Marshfield Clinic’s Personalized 

Medicine Research Project (PMRP). PMRP is a cohort of approximately 20,000 adult 

participants, 99% Caucasian with over 70% claiming German ancestry, and most linked to over 

30 years of electronic health record data (E26). Cases were defined by those with a specific 

code (e.g., ICD9 473, chronic sinusitis) whereas controls were defined by those without the 

code (E27-31). Genotype data from 7418 subjects were generated using the Illumina Human 

Core Exome Chip. One variant of interest, rs17522489, was not present on the Exome Chip and 

was instead represented by rs12032942, a variant in strong LD in European populations 

(r
2
=0.94). Both a Chi-squared test and a Fisher’s Exact test were performed for each variant. For 

the Chi-squared test, sex and completeness of electronic health record data was included as 

covariates. 
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Figure E1: Principal components 1 (X-axis) and 2 (Y-axis) for the discovery sample lower 

SaKnorm tertile (red) and controls (blue). 



Figure E2: Principal components 1 (X-axis) and 2 (Y-axis) for the discovery sample upper 

SaKnorm tertile (red) and controls (blue).



Figure E3: Q-Q plot for adjusted SKAT-O analysis of lower SaKnorm tertile in discovery cohort. 

The red line is the observed =expectation line. 



Figure E4: Q-Q plot for adjusted SKAT-O analysis of upper SaKnorm tertile in discovery cohort. 

The red line is the observed =expectation line. 




