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Sensitivity analysis 
 

We performed Latin Hypercube Sampling for exploring (i) higher resolution 

effects of the α and γ parameters on the coevolutionary dynamics and (ii) exploring 

the parameter space of intrinsic birth rates, phi and intraspecific competition in the 

four selection scenarios. In the first analysis (Figures M1) we explored a higher 

resolution of the α and γ scenario parameters, keeping the other parameters equal to 

the ones reported in Table S1. In the second analysis (Figures xxx) we explored the 

parameter space of intrinsic birth rates, phi and intraspecific competition, keeping the 

selection scenarios equal to the ones explored in the main paper. For clarity we show 

the results for a pair of species (one exploiter and one victim). We performed the 

Latin Hypercube Sampling using R package pse. 

In the first analysis we found that, at small values, the strength of 

environmental selection (α) has a strong linear positive effect in abundance and 

negative non linear effect on trait variances. However this effect is smoother at high 

values of α (Figure M1). This pattern was not observed for the strength of interaction 

selection (γ) parameter. This indicates that when environmental selection is not so 

restrictive, reciprocal selection can result in greater coevolutionary changes. 

However, when environmental selection is strong this restricts the potential for 

coevolution. 

 



 

Figure M1: Effects of the strengths of environmental selection (alpha) and interaction 
selection (gamma) on community mean abundance, abundance variance, mean trait 
and trait variance. 
 
 

In the second analysis, we found a strong positive effect of victim growth rate 
on ecological and evolutionary dynamics (mean abundance, abundance variance, 
mean trait, trait variance, Figures M2-M5). Exploiter growth rate had a negligible 
effect on eco-evolutionary dynamics. The phi parameter had a positive effect on mean 
abundance, negative effect on abundance variance and positive effect on trait mean 
and variance, in special when the interaction selection was strong. In the other 
scenarios the effect of phi parameter was negligible. Intraspecific competition 
negatively affected ecological and evolutionary dynamics. The effects of these 
variables were consistent in the four selection scenarios and therefore comparisons 
among scenarios should not be affected by interactions effects between parameters 
and scenario. 
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Figure M2: Partial rank correlation coefficients (PRCC) of the parameters victim 
intrinsic growth rate (r.vit), exploiter intrinsic growth rate (r.expl), slope of selection 
gradient (phi) and intraspecific competition (intra.c) for a pair of exploiter and victim 
species in the scenario with weak environmental and weak interaction selection. The 
partial rank correlation coefficient measures the strength of the linear association 
between the result and each input parameter after removing the linear effect of the 
other parameters. The confidence intervals were generated by bootstrapping. 
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Figure M3: Partial rank correlation coefficients (PRCC) of the parameters victim 
intrinsic growth rate (r.vit), exploiter intrinsic growth rate (r.expl), slope of selection 
gradient (phi) and intraspecific competition (intra.c) for a pair of exploiter and victim 
species in the scenario with weak environmental and strong interaction selection. The 
partial rank correlation coefficient measures the strength of the linear association 
between the result and each input parameter after removing the linear effect of the 
other parameters. The confidence intervals were generated by bootstrapping. 
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Figure M4: Partial rank correlation coefficients (PRCC) of the parameters victim 
intrinsic growth rate (r.vit), exploiter intrinsic growth rate (r.expl), slope of selection 
gradient (phi) and intraspecific competition (intra.c) for a pair of exploiter and victim 
species in the scenario with strong environmental and weak interaction selection. The 
partial rank correlation coefficient measures the strength of the linear association 
between the result and each input parameter after removing the linear effect of the 
other parameters. The confidence intervals were generated by bootstrapping. 
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Figure M5: Partial rank correlation coefficients (PRCC) of the parameters victim 
intrinsic growth rate (r.vit), exploiter intrinsic growth rate (r.expl), slope of selection 
gradient (phi) and intraspecific competition (intra.c) for a pair of exploiter and victim 
species in the scenario with strong environmental and strong interaction selection. 
The partial rank correlation coefficient measures the strength of the linear association 
between the result and each input parameter after removing the linear effect of the 
other parameters. The confidence intervals were generated by bootstrapping. 
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Eco-evolutionary dynamics 

Here we illustrate the eco-evolutionary dynamics in a very simple network 

(two victims and one exploiter community). We illustrate trait and abundance 

dynamics in the four scenarios, showing that when biotic interactions are more 

important than environmental pressures, abundances are higher, interactions are 

stronger, and traits are more labile. 

 

 

Figure M6: Abundance and trait dynamics in time for a very simple network (two 

victims and one exploiter community) in the scenario with weak environmental and 

weak interaction selection. Black and red lines are victim species and green line is the 

exploiter species. 
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Figure M7: Abundance and trait dynamics in time for a very simple network (two 

victims and one exploiter community) in the scenario with weak environmental and 

strong interaction selection. Black and red lines are victim species and green line is 

the exploiter species. 

 

 

Figure M8: Abundance and trait dynamics in time for a very simple network (two 

victims and one exploiter community) in the scenario with strong environmental and 

weak interaction selection. Black and red lines are victim species and green line is the 

exploiter species. 
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Figure M9: Abundance and trait dynamics in time for a very simple network (two 

victims and one exploiter community) in the scenario with strong environmental and 

strong interaction selection. Black and red lines are victim species and green line is 

the exploiter species. 

 

 

Empirical antagonistic networks and network structure 

 
Species richness range from 12 species in assemblages of bacterias and phages to 31 

species in communities of fish hosts and their parasites (Table S2). To explore the 

effects of network structure on eco-evolutionary dynamics, we use four network 

descriptors: (i) species richness, (ii) connectance, i.e., the proportion of realized 

interactions, (iii) nestedness and (iv) modularity. Nestedness is a pattern of 

interactions in which specialist species tend to interact with subsets of species that 

interact with more generalist species [1]. We use the metric NODF [2] to estimate 
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nestedness, computed using ANINHADO [3]. Modularity characterizes groups of 

species that have more interactions within groups than among groups [4]. The 

network degree of modularity is estimated using a simulated annealing algorithm to 

optimize the metric Q for bipartite networks [5], calculated using the software 

MODULAR [6]. These metrics are widely used in the literature because they seem to 

play out an important role in the coexisting number of species [7,8] 

 We used z-scores to compare levels of nestedness and modularity across 

different networks. The nestedness z-score, Nz =
N − Nnull

σ Nnull

, and modularity z-score,	

Qz =
Q−Qnull

σQnull

, measure the degree of nestedness or modularity of each empirical 

network in relation the mean expected nestedness and modularity under a given null 

model.  and  are the average N and Q values and σ Nnull
and	σQnull

 are their 

standard deviations after 1000 runs of the null model. We used null model 2 of [1], 

which assumes that the probability of drawing an interaction is proportional to the 

mean number of interactions of the exploiter and victim species. This null model was 

used to control the effects of heterogeneity in number of interactions, connectance and 

species richness on nestedness and modularity [1].  

To investigate if a species degree of generalization or specialization within the 

network determines its abundance and trait dynamics, we characterized each species 

according to the two descriptors: (i) normalized degree, which is the number of 

interactions normalized by the maximal number of potential partners in the other 

trophic level [9]; and (ii) standardized Kullback-Leibler distance (d'), which is a 

relative entropy measure for complementary specialization and ranges from 0 for the 

Nnull Qnull



most generalized to 1 for the most specialized species [10]. 
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