ELECTRONIC SUPPLEMENTARY MATERIALS Proceedings of the Royal Society Biology

Olfaction written in bone: Cribriform plate size parallels olfactory receptor gene repertoires in Mammalia

Deborah J. Bird^{1, 4,}*, William J. Murphy², Lester Fox-Rosales¹, Iman Hamid¹, Robert A. Eagle³, Blaire Van Valkenburgh¹

¹Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095-8347, USA.

²Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA

³Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California Los Angeles, 520 Portola Plaza, Math Sciences Building 7127, Los Angeles, CA 90095, USA.

⁴Lead Contact

*Correspondence: <u>dbirdseed@gmail.com</u>

Supplementary movie S1. Movie of cribriform plate and nasal anatomy within skull.

Animated 3D model of an Arctic fox (*Vulpes lagopus*) skull featuring the cribriform plate and general nasal anatomy. The cribriform plate (red) model clearly displays the perforations, or foramina, through which axon bundles from olfactory sensory neurons pass en route to the olfactory bulb of the brain. Sensory neurons in the olfactory epithelium are located primarily on the ethmoturbinal (green) and nasoturbinal (yellow) bones. Maxillary turbinals, which carry respiratory epithelium are shown in blue. The Arctic fox is not among the sample species but its model is used here because of its particular clarity.

Supplementary figure S2. Time-calibrated phylogeny of sample species. Tree compiled from published molecular phylogenies [32, 33] (See Main References).

Resource	Source	Identifier		
Skulls				
Ailuropoda melanoleuca	Institute of Zoology Chinese Academy of Sciences	IZCAS6072		
Bos taurus	Museum of Vertebrate Zoology	MVZ114370		
Bos taurus	UCLA Dept. Ecology and Evolutionary Biology	UCLAEEB110_1		
Canis familiaris	Natural History Museum Los Angeles County	LACM031106		
Canis familiaris	Natural History Museum Los Angeles County	LACM022825		
Canis familiaris	Natural History Museum Los Angeles County	LACM30539		
Canis familiaris	Donald R. Dickey Collection UCLA	UCLA3054		
Canis lupus	National Museum of Natural History	USNM291011		
Canis lupus	National Museum of Natural History	USNM507338		
Dasypus novemcinctus	Natural History Museum Los Angeles County	LACM46145		
Dasypus novemcinctus	Donald R. Dickey Collection UCLA	UCLA1697		
Equus caballus	Museum of Vertebrate Zoology	MVZ223018		
Equus caballus	UCLA Dept. Ecology and Evolutionary Biology	UCLAEEB110_2		
Erinaceus europeus	Natural History Museum Los Angeles County	LACM58376		
Erinaceus europeus	Natural History Museum Los Angeles County	LACM58375		
Erinaceus europeus	Museum of Vertebrate Zoology	MVZ183386		
Felis catus	UCLA Dept. Ecology and Evolutionary Biology	UCLAEEB110_3		
Felis catus	UCLA Dept. Ecology and Evolutionary Biology	UCLAEEB110_4		
Gorilla gorilla	Museum of Vertebrate Zoology	MVZ174521		
Gorilla gorilla	Donald R. Dickey Collection UCLA	UCLA1788		
Gorilla gorilla	Donald R. Dickey Collection UCLA	UCLA2367		
Homo sapiens	Museum of Vertebrate Zoology	MVZ106555		
Homo sapiens	University of Texas Austin	UTO_HS01		
Homo sapiens	UCLA Dept. Ecology and Evolutionary Biology	UCLAEEB110_5		
Loxodonta africana	Natural History Museum Los Angeles County	LACM52471		
Microcebus murinus	Museum of Vertebrate Zoology	MVZ132535		
Microcebus murinus	Duke Lemur Center	DLC7006		
Microcebus murinus	Duke University Primate Center	DUPC098		
Monodelphis domestica	Museum of Vertebrate Zoology	MVZ144306		
Monodelphis domestica	Museum of Vertebrate Zoology	MVZ144307		
Mus musculus	Texas Memorial Museum	TMM3196		
Myotis lucifugus	American Museum of Natural History	AMNH232239		
Myotis lucifugus	American Museum of Natural History	AMNH232244		
Ochotona princeps	Donald R. Dickey Collection UCLA	UCLA17230		
Ochotona princeps	Museum of Vertebrate Zoology	MVZ42613		
Ornithorynchus anatinus	Museum of Vertebrate Zoology	MVZ126977		
Ornithorynchus anatinus	Museum of Vertebrate Zoology	MVZ126978		
Orychtolagus cuniculus	Natural History Museum Los Angeles County	LACM7601		
Orychtolagus cuniculus	Natural History Museum Los Angeles County	LACM7603		

Supplementary table S3: Key resource table for sample specimens, CT scanning machines and facilities, and digital imaging software.

Ololemur garnelli	Cleveland Museum of Natural History	CMNH B0748
Pan troglodytes	National Museum of Natural History	USNM395820
Pongo pygmaeus	Museum of Vertebrate Zoology	MVZ65532
Pongo pygmaeus	University of Texas Austin	UTO_49859
Procavia capensis	Natural History Museum Los Angeles County	LACM90782
Procavia capensis	Texas Memorial Museum	TMM4351
Pteropus vampyrus	Donald R. Dickey Collection UCLA	LACM91185
Pteropus vampyrus	Donald R. Dickey Collection UCLA	LACM91183
Pteropus vampyrus	Museum of Vertebrate Zoology	MVZ116834
Rattus norvegicus	Donald R. Dickey Collection UCLA	UCLA6994
Rattus norvegicus	Donald R. Dickey Collection UCLA	UCLA9452
Smilodon fatalis	Rancho La Brea Tar Pits	LACMRLP_R37376
Sorex araneus	Museum of Vertebrate Zoology	MVZ179796
Tarsius syrichta	Duke Lemur Center	DLC1406_82
Tupaia belangeri	Natural History Museum Los Angeles County	LACM008157
Tupaia belangeri	Museum of Vertebrate Zoology	MVZ119721
Tursiops truncatus	San Diego Society of Natural History	SDSNH 21212
Tursiops truncatus	Natural History Museum Los Angeles County	LACM84269
Tursiops truncatus	Natural History Museum Los Angeles County	LACM95828
High resolution CT scanners		
High resolution CT scanners GE Phoenix V tome x s	General Electric Applications Technology	https://gemeasurement.com/
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s	General Electric Applications Technology General Electric Applications Technology	https://gemeasurement.com/ https://gemeasurement.com/
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s	General Electric Applications Technology General Electric Applications Technology	https://gemeasurement.com/ https://gemeasurement.com/
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTIS	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTIS	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTISNikon Metrology XT H 225 ST	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTISNikon Metrology XT H 225 ST	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTISNikon Metrology XT H 225 STXradia microXCT	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/ http://www.ctab.geo.utexas.edu
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m North Star Imaging ACTIS Nikon Metrology XT H 225 ST Xradia microXCT Siemens SOMATOM Definition	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility	https://gemeasurement.com/https://gemeasurement.com/https://gemeasurement.com/http://gemeasurement.com/http://www.ctab.geo.utexas.eduhttp://mic.usc.edu/http://www.ctab.geo.utexas.edu
High resolution CT scannersGE Phoenix V tome x sGE Phoenix nanotom sGE Phoenix nanotom mNorth Star Imaging ACTISNikon Metrology XT H 225 STXradia microXCTSiemens SOMATOM Definition AS64	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility Ronald Reagan Medical Center UCLA	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/ http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://usa.healthcare.siemens.com
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m North Star Imaging ACTIS Nikon Metrology XT H 225 ST Xradia microXCT Siemens SOMATOM Definition AS64	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility Ronald Reagan Medical Center UCLA	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/ http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m North Star Imaging ACTIS Nikon Metrology XT H 225 ST Xradia microXCT Siemens SOMATOM Definition AS64	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility Ronald Reagan Medical Center UCLA	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/ http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m North Star Imaging ACTIS Nikon Metrology XT H 225 ST Xradia microXCT Siemens SOMATOM Definition AS64 Imaging software Mimics v. 15.0-18.0	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility Ronald Reagan Medical Center UCLA Materialise; Leuven, Belgium	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://mic.usc.edu/ https://usa.healthcare.siemens.com http://www.materialise.com
High resolution CT scanners GE Phoenix V tome x s GE Phoenix nanotom s GE Phoenix nanotom m North Star Imaging ACTIS Nikon Metrology XT H 225 ST Xradia microXCT Siemens SOMATOM Definition AS64 Imaging software Mimics v. 15.0-18.0 3-Matics v. 7.0.1	General Electric Applications Technology General Electric Applications Technology General Electric Applications Technology The University of Texas High-Resolution X-ray Computed Tomography Facility Molecular Imaging Center, Univ. of Southern California The University of Texas High-Resolution X-ray Computed Tomography Facility Ronald Reagan Medical Center UCLA Materialise; Leuven, Belgium Materialise; Leuven, Belgium	https://gemeasurement.com/ https://gemeasurement.com/ https://gemeasurement.com/ http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.ctab.geo.utexas.edu http://www.materialise.com http://www.materialise.com http://www.materialise.com

CONTACT FOR RESOURCE SHARING.

Further information and requests for resources, scanning parameters, CT scan files, and 3D skull models should be directed to and will be fulfilled by the Lead Contact, Deborah Bird (<u>dbirdseed@gmail.com</u>).

Supplementary table S4. Cribriform plate surface area data for individual specimens.

Abbreviations, AMNH: American Museum of Natural History. CMNH: Cleveland Museum of Natural History. DLC: Duke Lemur Center. DUPC: Duke University Primate Center. IZCAS: Institute of Zoology of the Chinese Academy of Sciences. LACM: Natural History Museum of Los Angeles County. LACMRLP: Rancho La Brea Tar Pits. MVZ: Museum of Vertebrate Zoology. SDSNH: San Diego Society of Natural History. UCLA: Dickey Collection at the University of California Los Angeles. UCLAEEB: UCLA Department of Ecology and Evolutionary Biology. USNM: National Museum of Natural History. UTO: University of Texas Austin. TMM: Texas Memorial Museum. *The presence of a cribriform plate in the ethmoid bone of the bottlenose dolphin (*Tursiops truncatus*) could not be established in this study.

Species	Specimen	Sex	Cribriform plate
_			surface area (mm ²)
Ailuropoda melanoleuca	IZCAS6072	U	741.58
Bos taurus	MVZ114370	F	2482.09
Bos taurus	UCLAEEB110_1	U	2406.12
Canis familiaris	LACM031106	М	382.21
Canis familiaris	LACM022825	U	601.60
Canis familiaris	LACM30539	М	851.57
Canis familiaris	UCLA3054	U	446.28
Canis lupus	USNM291011	М	1045.53
Canis lupus	USNM507338	F	946.09
Dasypus novemcinctus	LACM46145	М	425.00
Dasypus novemcinctus	UCLA1697	М	456.73
Equus caballus	MVZ223018	М	2321.06
Equus caballus	UCLAEEB110_2	U	2327.43
Erinaceus europeus	LACM58376	М	93.44
Erinaceus europeus	LACM58375	F	81.04
Erinaceus europeus	MVZ183386	М	104.79
Felis catus	UCLAEEB110_3	М	188.86
Felis catus	UCLAEEB110_4	U	134.59
Gorilla gorilla	MVZ174521	F	165.18
Gorilla gorilla	UCLA1788	М	261.12
Gorilla gorilla	UCLA2367	F	135.21
Homo sapiens	MVZ106555	F	208.91
Homo sapiens	UTO_HS01	М	171.03
Homo sapiens	UCLAEEB110_5	F	161.65
Loxodonta africana	LACM52471	F	17922.00
Microcebus murinus	MVZ132535	F	12.82
Microcebus murinus	DLC7006	М	11.02
Microcebus murinus	DUPC098	U	13.18

Monodelphis domestica	MVZ144306	F	24.01
Monodelphis domestica	MVZ144307	Μ	23.03
Mus musculus	TMM3196	М	10.21
Myotis lucifugus	AMNH232239	U	5.83
Myotis lucifugus	AMNH232244	U	4.83
Ochotona princeps	UCLA17230	М	19.29
Ochotona princeps	MVZ42613	М	19.29
Ornithorynchus anatinus	MVZ126977	М	22.42
Ornithorynchus anatinus	MVZ126978	Μ	24.16
Orychtolagus cuniculus	LACM7601	М	124.79
Orychtolagus cuniculus	LACM7603	М	109.74
Otolemur garnettii	CMNH_B0748	U	39.33
Pan troglodytes	USNM395820	U	125.47
Pongo pygmaeus	MVZ65532	Μ	129.65
Pongo pygmaeus	UT49859	Μ	149.27
Procavia capensis	LACM90782	М	77.33
Procavia capensis	UCLATMM4351	Μ	68.16
Pteropus vampyrus	LACM91185	U	44.92
Pteropus vampyrus	LACM91183	U	47.67
Pteropus vampyrus	MVZ116834	Μ	74.87
Rattus norvegicus	UCLA6994	F	35.61
Rattus norvegicus	UCLA9452	Μ	35.86
Smilodon fatalis	LACMRLP R37376	U	1012.00
Sorex araneus	MVZ17979 6	F	10.57
Tarsius syrichta	DLC1406_82	F	3.22
Tupaia belangeri	LACM008157	М	57.93
Tupaia belangeri	MVZ119721	М	55.30
Tursiops truncatus	SDSNH 21212	U	NA*
Tursiops truncatus	LACM84269	М	NA*
Tursiops truncatus	LACM95828	U	NA*

Supplementary figure S5. Digitally quantifying CP surface area. (*a*), Three-dimensional CP model from the French bulldog (*Canis familiaris*) is reconstructed from CT scan data in Mimics imaging program. (*b*), CP foramina are digitally filled to create a generalized continuous surface within the perforate region of the bone. (*c*), Surface area is isolated and calculated with imaging software 3-matic.

Supplementary figure S6. Strong linear correlation between cribriform plate (CP) surface area (perforate area) and cumulative cross-sectional area of the CP foramina (log-log) ($r^2 = 0.91$, P < 0.0001, n = 19). The more exacting metric of total CP foramina area, representing the imprint of olfactory axon bundles in the ethmoid bone, serves to validate CP surface area as a metric of relative olfactory innervation. CP surface area is the preferable metric for future studies, as it is easily quantifiable, even in skulls with some CP damage, such as fossils. CP surface area was measurable here in 26 sample species, while foramina area was measurable in only 19 species. Image on y axis: taken from figure S5. Images on the x axis: left, section of CP bone (red) with splines, (rings of coordinate points) assigned to the perimeters of several foramina in Mimics; right, imaging software Rhinoceros creates non-planar surfaces from the splines then calculates and tallies all foramina areas.

Supplementary figure S7: 3D skull models showing marked reduction in CP morphology in taxa heavily reliant on non-olfactory sensory modalities. (*a*), CP loss viewed in nasal morphology of bottlenose dolphin (*Tursiops truncatus*), which uses echolocation. Pink: Single pair of foramina connecting ethmoid area of the nasal passage to the cranium. Inset, magnification of foramina. (*b-c*), Impact of orbit size on CP size constraints, contrasting the tarsier (*Tarsius syrichta*) and armadillo (*Dasypus novemcinctus*). (*b*), Tarsier, a visually-specialized nocturnal primate with enlarged, forward facing orbits, has reduced olfactory anatomy. Red: CP squeezed between convergent orbits. (*c*), By contrast, the armadillo's large CP (red) fills the space between small, laterally oriented, wide set orbits.

Supplementary table S8: Morphological and genomic data for sample species. Abbreviations: CP, cribriform plate; ORG, olfactory receptor gene. Body mass estimates are species means. Where sexual dimorphism was present, we considered the sex of individuals when deriving the species body mass. Individual dog breed body size estimates were averaged to calculate the mean body mass of the dog (*Canis familiaris*). ^aReferences for body mass and ORG data listed below the table. References for ORG data are found within the reference list in the main text as well. For cribriform plate surface area data of individual specimens, see table S4.

			СР		Body	Relative					ORG
			surface	Body	mass	СР				Percent	data
	Common		area	mass	refer-	surface	Total	Functional	Pseudo-	pseudo-	refer-
Species	name	n	(mm ²)	(kg)	ences ^a	area	ORGs	ORGs	genes	genes	ences ^a
Ailuropoda melanoleuca	Giant panda	1	741.58	111.600	1	0.016	1235	907	328	0.266	22
Bos taurus	Cow	2	2444.10	453.592	2	0.214	2284	1186	1057	0.463	23
Canis familiaris	Dog: French	4	570.42	21.890	3,4,5,4	0.274	1100	811	278	0.253	23
	bulldog, saluki,										
	borzoi, dachshund										
Canis lupus	Gray wolf	2	995.81	34.875	6	0.410	NA	NA	NA	NA	NA
Dasypus novemcinctus	Nine-banded		440.87	5.647	7	0.472	3146	1146	2000	0.636	24
	armadillo	2									
Equus caballus	Horse	2	2324.24	250.000	4	0.328	2658	1066	1569	0.59	23
Erinaceus europaeus	Hedgehog	3	93.09	1.177	8	0.155	625	295	330	0.528	24
Felis catus	Cat	2	161.72	4.750	9	0.081	1052	677	375	0.356	25
Gorilla gorilla	Gorilla	3	187.17	104.167	10	-0.566	597	263	334	0.559	24
Homo sapiens	Human	3	180.53	62.000	11	-0.463	821	396	425	0.518	26
Loxodonta africana	African elephant	1	17922.00	2766.000	12	0.650	4267	1948	2230	0.523	23
Microcebus murinus	Mouse lemur	3	12.34	0.054	13	-0.018	980	576	404	0.412	24
Monodelphis domestica	Opossum	2	23.52	0.071	4	0.198	1492	1188	294	0.197	27
Mus musculus	Mouse	1	10.21	0.015	4	0.192	1366	1130	236	0.173	23
Myotis lucifugus	Little brown bat	2	5.33	0.010	4	0.015	741	460	281	0.379	22
Ochotona princeps	Pika	2	19.60	0.158	4	-0.062	803	489	314	0.391	24
Ornithorhynchus anatinus	Platypus	2	23.29	1.484	4	-0.500	718	265	370	0.515	27
Oryctolagus cuniculus	Rabbit	2	117.26	1.800	14	0.158	1046	768	256	0.245	23
Otolemur garnettii	Galago	1	39.33	0.760	4	-0.119	803	433	370	0.461	24
Pan troglodytes	Chimpanzee	1	125.47	45.000	4	-0.548	813	380	414	0.509	26
Pongo pygmaeus	Orangutan	2	139.46	75.000	15	-0.619	821	296	488	0.594	26
Procavia capensis	Rock hyrax	2	72.74	4.000	16	-0.231	681	319	362	0.532	24
Pteropus vampyrus	Large fruit bat	3	55.82	1.067	17	-0.045	670	343	327	0.488	24
Rattus norvegicus	Rat	2	35.74	0.222	18	0.121	1767	1207	508	0.287	23
Smilodon fatalis	Sabertooth cat	1	1012.00	230.000	19	-0.014	NA	NA	NA	NA	NA
Sorex araneus	Shrew	2	10.57	0.009	20	0.335	1781	1031	750	0.421	24
Tarsius syrichta	Tarsier	1	3.22	0.117	21	-0.778	345	89	256	0.742	24
Tupaia belangeri	Tree shrew	2	56.61	0.200	4	0.344	2170	979	1191	0.549	24
Tursiops truncatus	Bottlenose dolphin	3	NA*	175.000	4	NA	26	12	14	0.538	24

References for supplementary table S8:

- 1. Smith, F. A., Lyons, S.K., Ernest, S.K., Jones, K.E. Body mass of late Quaternary mammals. *Ecology* **84**, 3403 (2003).
- 2. Oklahoma Dept. Agriculture, Food, Forestry, (2015). How much meat? http://www.oda.state.ok.us/
- 3. French bulldog breed standard (2014). French Bulldog Club of America. http://fbdca.org/

- 4. Crowley, J., and Adelman, B. (1998). The complete dog book: official publication of the American Kennel Club. New York Howell House.
- Shiel, R.E., Sist, M., Nachreiner, R.F., Ehrlich, C.P., and Mooney, C.T. (2010). Assessment of criteria used by veterinary practitioners to diagnose hypothyroidism in sighthounds and investigation of serum thyroid hormone concentrations in healthy Salukis. J. Am. Vet. Med. Assoc. 236, 302–308. (doi:10.2460/javma.236.3.302).
- 6. Ernest, S.K.M. (2003). Life history characteristics of placental nonvolant mammals. *Ecology* **84**, 3402 (10.1890/02-9002).
- 7. Wetzel, R.M., and Mondolfi, E. (1979). The subgenera and species of long-nosed armadillos, genus Dasypus L. *Vertebrate ecology in the northern neotropics*, pp.43-47
- Rautio, A., Valtonen, A., and Kunnasranta, M. (2013). The Effects of Sex and Season on Home Range in European Hedgehogs at the Northern Edge of the Species Range. *Ann. Zool. Fennici* 50, 107–123. (doi:10.5735/086.050.0110).
- 9. Myers, P. et al (2006). The animal diversity web. Accessed Oct. 12, 2.
- 10. Jungers, W.L. (1985). Body size and scaling of limb proportions in primates. In Size and scaling in primate biology (Springer), pp. 345–381.
- Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., and Roberts, I. (2012). The weight of nations: an estimation of adult human biomass. *BMC Public Health* 12, 439. (doi:10.1186/1471-2458-12-439).
- 12. Laws, R.M. (1970). Elephants and habitats in north Bunyoro, Uganda. *Afr. J. Ecol.* **8**, 163–180. (doi:10.1111/j.1365-2028.1970.tb00838.x).
- Fietz, J. (1998). Body Mass in Wild Microcebus murinus over the Dry Season. *Folia Primatol.* 69, 183–190.
- 14. Nowak, R.M. (1999). Walker's Mammals of the World (JHU Press).
- 15. Groves, C.P. (1971). Pongo pygmaeus. Mamm. Species, 1-6. (doi:10.2307/3503852).
- Olds, N., and Shoshani, J. (1982). Procavia capensis. Mamm. Species, 1–7. (doi: 10.2307/3503802).
- McNab, B.K., and Armstrong, M.I. (2001). Sexual dimorphism and scaling of energetics in flying foxes of the genus Pteropus. J. Mammal. *82*, 709–720. (doi:10.1644/1545-1542(2001)082<0709:SDASOE>2.0.CO;2).
- 18. Glass, G.E., Korch, G.W., and Childs, J.E. (1988). Seasonal and habitat differences in growth rates of wild Rattus norvegicus. J. Mammal. *69*, 587–592. (doi: 10.2307/1381350).
- Van Valkenburgh, B., Hayward, M.W., Ripple, W.J., Meloro, C., and Roth, V.L. (2015). The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc. Natl. Acad. Sci. 113, 1–6. (doi:10.1073/pnas.1502554112/-/DCSupplemental).
- 20. Gębczyński, M. (1965). Seasonal and age changes in the metabolism and activity of Sorex araneus Linnaeus 1758. Acta Theriol. (Warsz). *10*, 303–331.
- 21. Kappeler, P.M. (1991). Patterns of Sexual Dimorphism in Body Weight among Prosimian Primates. Folia Primatol. *57*, 132–146. (doi:10.1159/000156575).

- Hughes, G.M., Gang, L., Murphy, W.J., Higgins, D.G., and Teeling, E.C. (2013). Using Illumina next generation sequencing technologies to sequence multigene families in de novo species. Mol. Ecol. Resour. *13*, 510–521. (doi: 10.1111/1755-0998.12087).
- 23. Niimura, Y., Matsui, A., and Touhara, K. (2014). Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. *24*, 1485–1496. (doi:10.1101/gr.169532.113).
- Hayden, S., Bekaert, M., Crider, T.A., Mariani, S., Murphy, W.J., and Teeling, E.C. (2010). Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res. 20, 1–9. (doi:10.1101/gr.099416.109).
- Montague, M.J., Li, G., Gandolfi, B., Khan, R., Aken, B.L., Searle, S.M.J., Minx, P., Hillier, L.W., Koboldt, D.C., Davis, B.W. (2014). Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc. Natl. Acad. Sci. U. S. A. *111*, 17230–5. (doi: 10.1101/gr.186668.114)
- Matsui, A., Go, Y., and Niimura, Y. (2010). Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision. Mol. Biol. Evol. 27, 1192–1200. (doi: 10.1093/molbev/msq003).
- 27. Niimura, Y., and Nei, M. (2007). Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One *2*, e708. (doi: 10.1371/journal.pone.0000708).

Supplementary table S9. Assembly statistics for genome assemblies from which olfactory receptor gene counts were extracted. Abbreviations, BGI: Beijing Genomics Institute; BCM: Baylor College of Medicine; Broad: Broad Institute; ICGSC: International Cat Genome Sequencing Consortium; WU: Washington University. Sources of data: NCBI Assembly, University of California Santa Cruz Genome Browser, Genome Reference Consortium.

Species	Common nome	Assembly	Coverege v	Contig	Scaffold	Gaps btw	Data generation	Genbank accession
Ailwonoda melaneleuea	Cient panda		Coverage x	20.996	1 201 701	scanoius	DCI	CCA 000004335 1
Alturopouu metanoleucu	Giant panda	Allwei_1.0	7 1	39,880	1,201,701	2 201	DCM	GCA_000004333.1
	Cow	Blau_4.0	7.1	/0,39/	1,949,304	2,301	BCM	GCF_000003203.2
Canis jamiliaris	Dog	CanFam2	7.0	1/9,631	43,337,077	80	Broad	GCA_000002285.1
Dasypus novemcinctus	Nine-banded armadillo	Dasnos2.0	2.3	2,428	55,360	0	BCM	GCA_000208655.1
Equus caballus	Horse	EquCab2	6.8	112,381	46,749,900	51	Broad	GCA_000002305.1
Erinaceus europeus	European hedgehog	eriEurl	2	2,753	NA	0	Broad	GCA_000181395.1
Felis catus	Cat	felCat8	14	45,189	18,072,971	303	ICGSC	GCA_000181335.3
Gorilla gorilla	Gorilla	gorGor3.1	2.1	11,661	913,458	7,001	WSI	GCA_000151905.1
Homo sapiens	Human	hg18	10	38,509,590	38,509,590	301	multiple	GCF_000001405.12
Loxodonta africana	African elephant	Loxafr3.0	7	69,023	46,401,353	0	Broad	GCA_000001905.1
Microcebus murinus	Gray mouse lemur	micMurl	1.93	3,511	140,884	0	Broad	GCA_000165445.1
Monodelphis domestica	Gray short-tailed opossum	monDom4	6.5	108,014	59,809,810	209	Broad	GCF_000002295.2
Mus musculus	Mouse	NCBIm36	7	24,800	16,900,000	NA	multiple	CAAA01000000
Myotis lucifugus	Little brown bat	myoLuc1	1.8	3,100	93,000	NA	Broad	AAPE01000000
Ochotona princeps	American pika	ochPri2	1.9	3,265	88,760	0	Broad	GCA_000164825.1
Ornithorynchus anatinus	Platypus	ornAna2	6	11,544	991,605	0	WU	GCA_000002275.2
Oryctolagus cuniculus	European rabbit	OryCun2.0	7.48	64,648	35,972,871	83	Broad	GCA_000003625.1
Otolemur garnettii	Northern greater galago	otoGar1	1.87	3,172	NA	NA	Broad	AAQR01000000
Pan troglodytes	Chimpanzee	panTro2	6	30,554	8,803,938	3,108	multiple	GCF_000001515.3
Pongo pygmaeus	Bornean orangutan	ponAbe2.0	6	15,648	747,367	17,860	WU	GCA_000001545.3
Procavia capensis	Rock hyrax	proCap1	2.4	3,379	24,297	0	BCM	GCA_000152225.1
Pteropus vampyrus	Large fruit bat	pteVam1	2.9	8,527	124,060	0	BCM	GCA_000151845.1
Rattus norvegicus	Brown rat	rn4	7	36,847	18,621,810	270	BCM	GCF_000001895.3
Sorex araneus	Common shrew	sorAral	2	3,175	NA	0	Broad	GCA_000181275.1
Tarsius syrichta	Phillipine tarsier	tarSyr1	2.1	2,876	12,214	0	WU	GCA_000164805.1
Tupaia belangeri	Northern treeshrew	tupBel1	2	2,974	NA	0	Broad	GCA_000181375.1
Tursiops truncatus	Bottlenose dolphin	Turtru1.0	2.82	9,719	166,056	0	BCM	GCA_000151865.1

Supplementary table S10. Summary statistics. Abbreviations: CP, Cribriform plate; RelCP, Relative cribriform plate size; ORG, Olfactory receptor genes; PGLS, Phylogenetic generalized least squares.

Regression	n	\mathbf{r}^2	P value	PGLS r ²	P value	Pearson's r	P value
CP surface area (\log_{10}) vs body mass (\log_{10})	26	0.823	< 0.0001	0.875	< 0.0001	0.91 (.84,.96)	< 0.0001
RelCP vs functional ORG (log ₁₀)	26	0.763	< 0.0001	0.7468	< 0.0001	0.87 (.73, .95)	< 0.0001
RelCP vs functional ORG (log_{10})							
(species with $\geq 6x$ coverage genomes)	14	0.89	< 0.0001	0.815	< 0.0001	0.94 (.85, .98)	< 0.0001
RelCP vs functional ORG (log_{10}) (ORG count							
in $\leq 2x$ coverage species adjusted to predicted							
count for higher-coverage assemblies)	26	0.841	< 0.0001	0.81	< 0.0001	0.92 (.81, .97)	< 0.0001
RelCP vs total ORG (log ₁₀)	26	0.68	< 0.0001	0.682	< 0.0001	0.76 (.63, .86)	< 0.0001
RelCP vs total ORG (log ₁₀) (ORG count in							
\leq 2x coverage species adjusted to pedicted							
count for higher-coverage assemblies)	26	0.71	< 0.0001	0.684	< 0.0001	0.77 (.64, .86)	< 0.0001
RelCP vs number of pseudogenes (all species)	26	0.358	0.001	0.41	0.0004	0.6 (.3, .77)	0.0013
RelCP vs number of pseudogenes (6 species							
with $> \sim 750$ pseudogenes)	6	0.74	0.027	0.723	0.032	0.86 (.31,.99)	0.009
RelCP vs number of pseudogenes (20 species	•	0.00	0.40		0.60		0.4.0
with < ~550 pseudogenes)	20	0.09	0.19	0.009	0.68	-0.31 (82,.2)	0.19
RelCP vs number of pseudogenes (7 species	-	0.025	0.004	0.02	0.005	0.01 (50, 005)	0.041
with $> \sim 500$ pseudogenes)	/	0.825	0.004	0.82	0.005	0.91 (.59,.995)	0.041
ReiCP vs number of pseudogenes (19 species	10	0.225	0.04	0.020	0.495	0.47 (97 0()	0.0010
PalCP vs percentage of peoudogenes	19	0.225	0.04	0.029	0.485	- 0.4/ (8/, .06)	0.0019
RefCP vs percentage of pseudogenes	20	0.114	0.09	0.09	0.135	-0.84 (95,05)	0.074
Number functional ORG vs pseudogenes	26	0.465	0.0001	0.54	<0.0001	0.68 (0.32 87)	0.0005
Number functional ORG vs pseudogenes	20	0.405	0.0001	0.54	<0.0001	0.00 (0.52, .07)	0.0005
pseudogenes	26	0 119	0.084	0.066	0.2	-0.35 (-75.14)	0.084
pseudogenes	20	0.119	0.001	0.000	0.2	0.55 (.75, .11)	0.001
Absolute CP surface area (\log_{10}) vs functional							
ORG (log ₁₀)	26	0.22	0.015	0.27	0.006	0.47 (- 01 0 74)	0.013
Absolute CP surface area (\log_{10}) vs functional			0.010	÷.27	0.000		0.015
ORG (log.) elephant omitted	25	0 1 2 9	0.070	0.16	0.047	0.36(.12,0.66)	0 079
OKO (10g10) elephant onnueu	23	0.128	0.079	0.10	0.047	0.30 (12, 0.00)	0.078

Supplementary figure S11. Linear regressions in partitioned and non-partitioned data: RelCP vs absolute number of OR pseudogenes. Among the six species with the largest pseudogene counts, the correlation is $r^2 = 0.744$, P = 0.026, PGLS- $r^2 = 0.723$, P = 0.032 (red dashed line). There is no significant correlation among the 20 species with the lowest pseudogene counts. A significant linear correlation exists across the entire data, $r^2 = 0.36$, P = 0.001, PGLS- $r^2 = 0.41$, P = 0.004 (gray dotted line).

Supplementary figure S12. Estimating relative CP size (RelCP) to predict the likely position of two non-genome species, the sabertooth cat (*Smilodon fatalis*) and the gray wolf (*Canis lupus*), on our olfactory scale. (a), Log-log plot of absolute CP surface area regressed against body mass for all sample species plus the extinct felid (*Smilodon fatalis*). Residual value for *Smilodon* was used to estimate RelCP for the sabertooth cat. (b), *Smilodon* CP surface area is smaller for its body size than most of the ten living felid species for which CP data is known. (c), In a regression of CP surface area vs. body size among the sample species plus the gray wolf (*Canis lupus*), the wolf has a larger RelCP than the domestic dog (species mean of four dog breeds), predicting a larger ORG repertoire. (d) The identical regression plot in main figure 2d, here with species labels added.

Supplementary table S13. Sources and morphological data for felid species. Museums and collections are as follows: FMNH: Field Museum of Natural History; LACM: Museum of Natural History of Los Angeles County; LACMRLP: Rancho La Brea Tar Pits; MMNH: James Ford Bell Museum University of Minnesota, Minneapolis; UCLAEEB: University of California Los Angeles Department of Ecology and Evolutionary Biology. ^aEstimated body masses (in kg) are from [1] except for two species, *Felis catus* [9] and *Smilodon fatalis* [19] (see table S8 references).

a .	G	a .	Body	Cribriform plate
Species	Sex	Specimen	Mass"	surface area (mm ²)
Acinonyx jubatus	М	FMNH29635	50	473.07
Acinonyx jubatus	F	FMNH127834	50	396.43
Felis catus	М	UCLAEEB110_4	4.65	188.86
Felis catus	U	UCLAEEB110_3	4.65	134.59
Felis silvestris	М	LACM14480	4.65	206.27
Felis silvestris	F	LACM14474	4.65	157.46
Leopardus pardalis	М	FMNH34339	12	296.37
Leopardus pardalis	F	LACM26789	12	353.50
Lynx rufus	М	UCLA10115	9	225.13
Lynx rufus	F	LACM15254	9	220.71
Neofelis nebulosa	М	LACM31155	19.5	371.34
Neofelis nebulosa	М	USNM282124	19.5	429.04
Panthera leo	М	MMNH17537	161.5	1149.92
Panthera leo	F	MMNH17533	161.5	1041.53
Panthera pardus	М	LACM11704	55	712.55
Prionailurus viverrinus	U	LACM90838	10.85	184.97
Prionailurus viverrinus	F	LACM56718	10.85	152.30
Puma concolor	М	LACM87430	51.6	701.50
Puma concolor	F	LACM85440	51.6	686.83
Smilodon fatalis	U	LACMRLP R37376	230	820.05

Supplementary figure S14. Adjusting ORG counts for low coverage genomes, or omitting low coverage species, improves correlation between RelCP and functional ORG number. (a), Plot from figure 2b; RelCP vs. functional ORGs (log₁₀). Blue circles: species with low coverage ($\leq 6x$) genome assemblies ($r^2 = 0.76$, P < 0.0001). (b), Adjusted regression plot. Number of functional ORGs in low-coverage genomes is increased by 39.7%. Percent increase is derived by comparing the number of ORGs extracted from earlier, low-coverage draft genomes to the number from current $\geq 6x$ coverage assemblies, averaged over four available relevant cases (elephant, dog, cat, rabbit). Adjusted correlation: $r^2 = 0.84$, P < 0.0001. Any increase in ORG count in low-coverage species strengthens the correlation, as all but two have relatively few ORGs for their RelCP. (c), Omitting species with $\leq 6x$ genomes strengthens the correlation between RelCP and functional ORGs further ($r^2 = 0.89$, P < 0.0001).

Supplementary figure S15. High number of OR pseudogenes in species with large RelCP and large ORG repertoires. (a), Inversion of the axes from figure 3a showing that species with largest RelCP tend to have highest numbers of OR pseudogenes. (b), A similar non-linear, dual pattern emerges when the dependent variable in figure 3a is changed from RelCP to number of functional ORG. Species with > ~500 pseudogenes tend to have larger functional ORG repertoires.

Supplementary figure S16. Skull pneumatization as possible correlate of large CP size; contrast between elephant and gorilla skulls shown in CT scan images and 3D skull models. (a), Coronal cross-section slice from CT scan of elephant (*Loxodonta africana*) skull showing ~250 mm pneumatized bone surrounding brain. Scale bar: 100 mm. (b), Dorsal view of elephant skull model. Yellow line: locale of image in (a). Scale bar: 100 mm. (c), Coronal cross-section from CT scan of gorilla (*Gorilla gorilla*) skull; brain surrounded by non-pneumatized cortical bone. Scale bar: 40 mm. (d), Dorsal view of gorilla skull model. Yellow line: locale of image in (c). Red: CP.

Supplementary figure S17. Ethmoturbinal complexity matches large RelCP in African elephant; contrast between turbinal-rich elephant skull and turbinal-poor rock hyrax skull shown in CT scan images and 3D skull models. Ethmoturbinal bones, which carry the olfactory epithelium, are unusually expansive in the African elephant (*Loxodonta africana*). Quantifying turbinal area is beyond the scope of this paper, but here we visually contrast homologous cross-sections from the nasal chamber at the anterior-most extension of the CP in the elephant and its closest living relative, the rock hyrax (*Procavia capensis*), which has a relatively small CP. (*a*), Anterolateral view of elephant skull model. (*b*), Coronal cross-section from CT scan of elephant nasal cavity. (*c*), Hyrax skull model. (*d*), Coronal slice from CT scan of hyrax nasal cavity. Orange planes: locales of images (*b*) and (c). Blue: turbinals. Red: CP. Scale bars, (*a*): 100mm, (*b*): 20mm, (*c*): 5mm.

