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In the following sections we present the details of the calculations
related to the results derived in the main text.

Characteristic Function
The characteristic function F which we introduce in Eq. 15 is
essential for the multiplicity analysis of the SSN steady states. In
the main text we have derived F for the case det J > 0. Here,
we present the details of the derivation of the characteristic func-
tion for det J < 0 and det J = 0 whereby we follow steps simi-
lar to those for det J > 0 in Materials and Methods. Before we
do so, we mention why different definitions of F for det J ≥ 0
and det J < 0 are necessary. Many of our multiplicity proofs
are based on the Descartes’ rule of signs and the second deriva-
tive argument (see Multiplicity of Steady States). Both arguments
would lose their usefulness if we were to use the same definition
of P and F for positive and negative values of det J as we point
out in the corresponding sections. Therefore, we have opted for
the particular definition of F as in Eq. 15.

We start the derivation of the characteristic function F for
det J < 0 by considering P defined by Eq. 12 in the main text.
We recognize that P is no longer a monotonically increasing
function with respect to the variable zE for det J < 0. However,
we note that the left side of Eq. 11 is monotonically increas-
ing with respect to zI . Therefore, here we change the definition
of P to

P(zI ) = −det J · J−1
IE · (zI )αI

+ + J−1
IE JEE zI + C−. [S1]

Our goal now is to eliminate the variable zE and reduce the prob-
lem to 1D. To this end, we substitute zE =P(zI ) into Eq 10.
Now the system of Eqs. 10 and 11 is equivalent to the equation
F(zI ) = 0 with respect to the variable zI , where the function F
is given by

F(zI ) = JIE (P(zI ))αE
+ − JII (zI )αI

+ − zI + gI [S2]

with P defined by Eq. S1. In summary, for det J < 0 we have
shown that if rE , rI is a steady state, then zI satisfies F(zI ) = 0
with F defined by Eq. S2.

To establish a one-to-one bijective mapping between zero
crossings and steady states we now show that the inverse is also
true: All zero crossings of the characteristic function have a cor-
responding SSN steady state; i.e., there are no spurious zero
crossings that have no corresponding steady states. To this end
we consider an arbitrary real zero-crossing z∗ of the function F
defined by Eq. S2. To show that z∗ corresponds to an SSN steady
state we verify that the nonnegative numbers rE = (P(z∗))αE

+

and rI = (z∗)αI
+ represent a steady state of the SSN. To this end

we substitute rE = (P(z∗))αE
+ and rI = (z∗)αI

+ into the zero-
crossing equation

F(z∗) = JIE (P(z∗))
αE
+ − JII (z∗)

αI
+ − z∗ + gI = 0

and obtain

JIE rE − JII rI + gI = z∗. [S3]

Next, we apply the function (·)αI
+ to both sides of Eq. S3 to obtain

(JIE rE − JII rI + gI )αI
+ = (z∗)

αI
+ = rI ,

which is the second steady-state equation in Eq. 2. Now, we insert
z∗ from Eq. S3 and rI = (z∗)αI

+ into rE = (P(z∗))αE
+ with P

defined by Eq. S1 and obtain

rE = (JEE rE − JEI rI + gE )αE
+ .

This is the first steady-state equation in Eq. 2. Taken together
this proves that any zero crossing ofF for det J < 0 corresponds
to a steady state as defined by Eq. 2.

Finally, we derive the characteristic function for det J = 0.
We find that for det J = 0, we cannot invert the system Eq.
7. However, we note that det J = 0 is equivalent to JIE =
JIIJEEJ

−1
EI . Using this formula we express the variable zI as a

function of zE :

zI = JIE rE − JII rI + gI = JIIJ
−1
EI (zE − gE ) + gI .

For det J = 0 we define P as

P(zE ) = JIIJ
−1
EI (zE − gE ) + gI = J−1

EI JII zE + C+. [S4]

We note that this definition coincides with the definition of P in
Eq. 12 for det J > 0 if we set det J = 0. The equilibrium equa-
tions in Eq. 2 are now equivalent to

rE = (zE )αE
+ , rI = (P(zE ))αI

+ . [S5]

To obtain the equation with respect to the new variable zE we
substitute Eq. S5 into the expression zE = JEE rE − JEI rI + gE .
We obtain F(zE ) = 0, where F is defined by Eq. 14.

Next, we prove that there is a one-to-one mapping between
zero crossings and steady states for det J = 0 and show that all
zero crossings of the characteristic function F correspond to the
SSN steady states. To this end we consider a real number z∗ such
that F(z∗) = 0 with F defined by Eq. 14. Here, we consider the
case det J = 0 and use the corresponding definitions of F and
P from Eq. 14 and Eq. S4. Next, we define rE = (z∗)αE

+ , rI =

(P(z∗))αI
+ and insert these numbers into F(z∗) = 0. We obtain

the first steady-state relation from Eq. 2 using similar algebraic
steps as in the case det J > 0 in Materials and Methods. Then,
we use the relation rI = (P(z∗))αI

+ to obtain the second relation
in Eq. 2. This proves that rE , rI is an SSN steady state.

To summarize, we have established a one-to-one bijective
mapping between the steady states of Eq. 1 and zero crossings
of the characteristic function F defined by Eq. 15 in the follow-
ing sense. If rE , rI is a steady state of Eq. 1, then

z =

{
JEE rE − JEI rI + gE , det J ≥ 0
JIE rE − JII rI + gI , det J < 0

satisfies F(z ) = 0. And vice versa, if z satisfies F(z ) = 0 whereby
F is defined by Eq. 15, then

rE =

{
(z )αE

+ , det J ≥ 0
(P(z ))αE

+ , det J < 0
, rI =

{
(P(z ))αI

+ , det J ≥ 0
(z )αI

+ , det J < 0

is a steady state of Eq. 1.

Stability Conditions
Here we show that if det J ≤ 0 and τI ≤ τE , then a steady state
corresponding to a zero crossing of the characteristic function
F with F ′(z )< 0 is always a stable node. To this end we prove
that for det J ≤ 0 and τI ≤ τE the eigenvalues λ1 and λ2 of the
Jacobian matrix at the steady state of interest are always real and
both are negative. We denote the trace of the Jacobian matrix
DG by TrDG and use the following equation for the eigenvalues
of DG :

λ1,2 =
1

2
TrDG ± 1

2

√
(TrDG)2 − 4 det DG. [S6]
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Both eigenvalues are real, if (TrDG)2 − 4 det DG ≥ 0. Using
the representation for DG in Materials and Methods we obtain

(TrDG)2 − 4 det DG

= (τ−1
I − τ−1

E )
2

+ (τ−1
E JEEαE (zE )αE−1

+ − τ−1
I JIIαI (zI )αI−1

+ )
2

+ 2(τ−1
I − τ−1

E )(τ−1
E JEEαE (zE )αE−1

+ + τ−1
I JIIαI (zI )αI−1

+ )

− 4 det J · τ−1
E τ−1

I αEαI (zE )αE−1
+ (zI )αI−1

+ . [S7]

Thus, if det J ≤ 0 and τI ≤ τE , then the eigenvalues are real.
Since for det J ≤ 0 and τI ≤ τE

TrDG < τ−1
E JEEαE (zE )αE−1

+ − τ−1
I JIIαI (zI )αI−1

+

≤
√

(TrDG)2 − 4 det DG,

then the eigenvalue corresponding to the “−” sign in Eq. S6 is
always negative. To obtain the second inequality in the above
expression we used Eq. S7. Since we consider the caseF ′(z ) < 0,
both eigenvalues have the same sign: If one is negative, then the
second eigenvalue is also negative.

In summary, we have proved that if det J ≤ 0 and τI ≤ τE ,
then the eigenvalues are always real and both eigenvalues are
negative if F ′(z )< 0. Thus, Eq. 4 implies that the steady state
corresponding to z is a stable node if F ′(z ) < 0 and a saddle if
F ′(z ) > 0.

Multiplicity of Steady States
Here, we present the details of the multiplicity analysis of zero
crossings in the nine classes outlined in Table 1. For completeness,
we present below two statements A and B which we apply in our
analysis. Statement A is Descartes’ rule of signs which we use to
determine the maximal number of zero crossings. Statement B is
a corollary of the well-known mean-value theorem, which relates
zero crossings of a function to zero crossings of its derivatives.

A) Descartes’ Rule of Signs. In a polynomial P which has order n
and real coefficients ak ,

P(z ) = anz
n + an−1z

n−1 + ...+ a1z + a0,

the number of positive zero crossings z∗ (z∗ ∈R, z∗> 0) either
is equal to the number of sign switches between subsequent
nonzero coefficients or is an even number less than that number.
Multiple roots are counted separately in this calculation.

B) Mean-Value Theorem. If a smooth real function F is zero at
two points F (a) = 0 and F (b) = 0, then there exists at least
one point a < z∗< b where F ′(z∗) = 0. This statement implies
that if there exists only one point z∗ such that F ′(z∗) = 0, then
there can exist at most two zero crossings of F in R. Otherwise,
according to the mean-value theorem F ′ would have more than
one zero crossing. Applied iteratively, this implies that if a con-
tinuous derivative F ′ has exactly N zero crossings, then the func-
tion F can have at most N + 1 zero crossings. Similarly, if the
continuous k th derivative F (k) crosses the axis exactly N times,
then the function F has at most N + k zero crossings.

Now, we analyze the form of the characteristic function F in
all nine parameter classes specified in Table 1. By z0 we denote
the point where P crosses the z axis. In each class we first address
the case n > 2 and then the case n = 2.
i) Here, we consider C+< 0 and det J > 0. Then z0> 0 and we

obtain

F(z ) =

JEE z
n − JEI (P(z ))n − z + gE , z0 ≤ z ,

JEE z
n − z + gE , 0 ≤ z < z0,

−z + gE , z < 0.

First, we assume that n > 2. The function F has at most three
zero crossings on R. To show this, we consider F in the subin-

tervals (−∞, 0), (0, z0), and (z0,+∞). Using the Proof below
we find that F ′′ has at most one zero crossing in the inter-
val (z0,+∞) and is positive at the point z0. Since F ′′ is also
positive in the interval (0, z0), we find that F ′′ has only one
zero crossing in the whole interval (0,+∞). Since F ′ = −1
in (−∞, 0], we use mean-value theorem B and conclude that
F ′ has at most two zero crossings on R. Therefore, F has at
most three zero crossings on R. Hereby, the sign of F ′ at the
zero crossings is alternating starting from F ′< 0 at the left-
most zero crossing. This leads to at most two zero crossings
with the negative derivative and therefore to at most two sta-
ble steady states.
Proof:
Now we show that F ′′ has at most one zero crossing in
the interval (z0,∞). Specifically, we prove that there exists
a unique point zcross in the interval (z0,+∞) such that
F ′′(zcross) = 0, and F ′′ is positive below zcross and negative
above zcross. To start we calculate F ′′:

F ′′(z ) = n(n − 1)
(
− JEIP

n−2(z )(P ′(z ))
2

+zn−2
(
JEE − n · det J · Pn−1(z )

))
. [S8]

We recall that z0 denotes the unique point where the monoton-
ically increasing polynomial P crosses the axis; i.e., P(z0) =
0. Then Pn−2(z0) = 0 and Pn−1(z0) = 0. We conclude that
F ′′(z0) = n(n − 1)JEE z

n−2
0 > 0. On the other hand we

observe that limz→∞F ′′(z ) =−∞. This means thatF ′′ crosses
the z axis in the interval (z0,+∞) at least once. Our next goal
is to show that a zero crossing of F ′′ in (z0,+∞) is unique.

To this end we substitute P ′(z ) = n · det J · J−1
EI zn−1 +

J−1
EI JII into Eq. S8 and reformulate the condition F ′′(z ) = 0

via

J−1
EI (n · det J · zn−1 + JII )

2

= (JEE − n · det J · Pn−1(z ))zn−2P2−n(z ). [S9]

Our next step is to show that there exists a unique point zcross,
which satisfies Eq. S9. To this end we prove that the func-
tions on the right and left sides of Eq. S9 intersect in the
interval (z0,+∞) at exactly one point zcross. Specifically, we
show that the function on the left side of Eq. S9 is finite at z0
and increases strictly monotonically to +∞ whereas its coun-
terpart on the right side is trending toward +∞ at z0 and
decreases monotonically to −∞.

Since the derivative of the function on the left side of Eq. S9
is strictly positive, it increases strictly monotonically in the
interval (z0,+∞). Next, we address the function on the right
side of Eq. S9. To simplify notation we name this function
by H :

H (z ) = (JEE − n · det J · Pn−1(z ))zn−2P2−n(z ).

First, we find that lim
z→z+0

H (z ) = +∞, which means that
H is larger in the vicinity of the point z0 than its counterpart
on the left side of Eq. S9. Next, we prove that H decreases
monotonically. To this end we show that H ′ < 0. We derive
the derivative of H as

H ′(z ) = zn−3P1−n
(
JEE (n − 2)(P − zP ′)

− n · det J · (Pn−1zP ′ + (n − 2)Pn)
)
.

H ′ is negative in the interval (z0,+∞) because the term
in the parentheses is negative at z0 and this term cannot
grow because its derivative is negative. This implies that H
decreases monotonically in (z0,+∞) and intersects the mono-
tonically increasing function on the left side of Eq. S9 in
exactly one point, zcross.

Kraynyukova and Tchumatchenko www.pnas.org/cgi/content/short/1700080115 2 of 10

http://www.pnas.org/cgi/content/short/1700080115


Next, we address the case n = 2. Here, the mean-value the-
orem B cannot be applied to the functionF ′′ since it has jumps
at 0 and z0. However,F ′ is continuous. Therefore, we proceed
with F ′ as

F ′(z ) =


∑3

k=0 ak z
k , z0 ≤ z ,

2JEE z − 1, 0 ≤ z < z0,
−1, z < 0,

where the coefficients a3 and a2 are always negative whereas
a1 and a0 are arbitrary real numbers. According to Descartes’
rule of signs A, the polynomial

∑3
k=0 ak z

k can have at most two
positive zero crossings provideda1 is positive anda0 is negative.
In this case we obtain that

∑3
k=0 ak z

k first crosses the positive
part of the z axis from below and then from above and finally
decreases to−∞. If 2JEE z0−1 is nonnegative, then

∑3
k=0 ak z

k

can cross the z axis for z > z0 only once from above. On the con-
trary, if 2JEE z0 − 1 is negative, then

∑3
k=0 ak z

k can have two
zero crossings. Altogether we obtain that F ′ can have at most
two zero crossings on R. Then via the mean-value theorem B
we conclude thatF can cross the z axis at most three times with
the negative derivative at the most left and right zero crossings.
Therefore, the result for n > 2 remains valid for n = 2.

ii) Here, we consider C−< 0 and det J < 0. Then z0> 0 and we
obtain

F(z ) =

JIE (P(z ))n − JII z
n − z + gI , z0 ≤ z ,

−JII zn − z + gI , 0 ≤ z < z0,
−z + gI , z < 0.

We first analyze the case n > 2. The function F is mono-
tonically decreasing in (−∞, z0]. Following the steps in class
i, we find that there exists a unique point zcross in the inter-
val (z0,∞) such that F is strictly concave in (z0, zcross) and
strictly convex in (zcross,+∞). Since F decreases monoton-
ically below zcross, the first derivative F ′ has only one zero
crossing, which is above zcross. Therefore, the number of pos-
sible zero crossings of F is reduced to two, whereby we find
F ′< 0 at the left and F ′> 0 at the right zero crossing. This
means if F crosses the axis, then there is a stable and a sad-
dle steady state. Finally, let us note that if we used the def-
inition of F for det J ≥ 0 also for det J < 0 in class ii, then
we would no longer be able to provide a multiplicity bound.
Our main argument is the observation that the monotonically
decreasing function on the right side of Eq. S9 intersects the
monotonically increasing function on the left side of Eq. S9
in exactly one point. This is no longer correct for det J < 0,
because both functions are not monotonic for z > z0.

For n = 2 the function F ′ is continuous. We proceed as in
class i and obtain

F ′(z ) =


∑3

k=0 ak z
k , z0 ≤ z ,

−2JII z − 1, 0 ≤ z < z0,
−1, z < 0,

whereby a3 and a2 are positive, a0 is negative, and a1 is either
a positive or a negative real number. Descartes’ rule of signs
A informs us that

∑3
k=0 ak z

k crosses the positive part of the z
axis exactly once from below and then increases to +∞. Since
this is the only intersection of F ′ with the z axis, F can have
at most two zero crossings with the negative derivative at the
left intersection. Thus, the results we derived for n > 2 remain
valid for n = 2.

iii) Now we consider C+< 0 and det J = 0. For n > 2 we
rewrite F as in the case det J > 0 in i. First, we consider

JEE < J n
IIJ

1−n
EI and find that for positive z the function F ′′

is positive below the point zcross and negative above it, where

zcross =
J−1
II JEIC+

−1 + (JEEJ
−n
II J n−1

EI )
1

n−2

. [S10]

We note that F ′ is negative for z ≤ 0. Since F ′′ has only
one zero crossing on the positive part of the z axis, then F ′
has at most two zero crossings and the function F can have
up to three zero crossings on R. F ′ starts off negative at
the leftmost zero crossing and then switches signs two times.
Therefore, the SSN model can be bistable in this class. For
JEE ≥ J n

IIJ
1−n
EI we find that F ′′ is positive for positive z .

Since F ′ is negative for z ≤ 0, it has no zero crossings there.
For z > 0 F ′ grows monotonically and converges to +∞ as z
increases. F ′ therefore has a unique positive zero crossing in
the interval z > 0. Thus, F can have up to two zero crossings.
The left crossing will have F ′ < 0 and the right one F ′ > 0.

For n = 2 we find that the maximal number of zero cross-
ings is two. If JEE < J 2

IIJ
−1
EI , then F is a linearly decreasing

function for negative z , a convex quadratic function between
0 and z0, and a concave quadratic function to the right of z0.
However, we verified that F never can be negative between
0 and z0. Thus, F has exactly one zero crossing with a neg-
ative derivative. If JEE > J 2

IIJ
−1
EI , then the form of F is the

same as for n > 2, and F has at most two zero crossings. For
JEE = J 2

IIJ
−1
EI there is a slight difference to the case n > 2,

because F(z ) = (−2JIIC+ − 1)z + gE − JEIC
2
+ for z ≥ z0.

Here, the behavior of F depends on the sign of the expres-
sion −2JIIC+ − 1. If −2JIIC+ − 1 > 0, then F has a unique
minimum as in the case JEE > J 2

IIJ
−1
EI and at most two zero

crossings. If−2JIIC+−1 = 0, thenF is a positive constant to
the right of the point z0 which is simultaneously its minimum
and does not have any zero crossings. Finally, F is monotoni-
cally decreasing if −2JIIC+ − 1 < 0 and has exactly one zero
crossing.

iv) Now, we address det J < 0 and C− > 0. We start with n >
2. In this case z0 < 0 and we obtain

F(z ) =

JIE (P(z ))n − JII z
n − z + gI , 0 ≤ z ,

JIE (J−1
IE JEE z + C−)

n − z + gI , z0 ≤ z < 0,
−z + gI , z < z0.

For z > 0 we rewrite P to have the form

(P(z ))n =

n2∑
k=0

ak z
k , ak ≥ 0,

where the coefficients depend on the connectivity and input
parameters. Then for z > 0

F(z ) = JIE

n2∑
k=n+1

ak z
k + (anJIE − JII )zn

+ JIE

n−1∑
k=2

ak z
k + (a1JIE − 1)z + (a0JIE + gI )

and we apply Descartes’ rule of signs toF for z > 0. The poly-
nomialF above has at most four sign switches for z > 0. Next,
we address the negative zero crossings of F . F does not have
zero crossings in the interval [z0, 0], because F(z ) = 0 would
be equivalent to the relation JIE (P(z ))n + gI = z which can-
not be satisfied because its right side is negative and the left
side is positive. For z ≤ z0 the function F is positive. There-
fore,F has at most four zero crossings onR. Hereby,F ′ starts
off negative at the leftmost point and then alternates signs.
The SSN network can be bistable in this parameter class and
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have two saddle steady states. An example where F has four
zero crossings is given in Fig. 2D. Finally, let us note that if we
were to use the det J > 0 definition ofF for det J < 0 in this
case (as well as in class vii), then the number of sign switches
in the polynomial (P(z ))n would grow with n and we would
not be able to derive an upper bound on the number of zero
crossings.

Now we consider the case n = 2. Here, the characteristic
function F can have at most two zero crossings for z > 0,
because the term JIE

∑n−1
k=2 ak z

k in the expression for F is
equal to zero. Using the same argument as for n > 2 we
conclude that F does not have zero crossings between z0 and
0. Thus, the overall number of zero crossings does not exceed
two for n = 2. In summary, the maximal number of steady
states for n = 2 is less than that for n > 2.

v) Here, we consider det J > 0 and C+ > 0. We start with
n > 2. In this case z0 < 0 and

F(z ) =

JEE z
n − JEI (P(z ))n − z + gE , 0 ≤ z ,

−JEI (J−1
EI JII z + C+)

n − z + gE , z0 ≤ z < 0,
−z + gE , z < z0.

We use the same representation for the polynomial P as in
class iv. Then we rewrite F for z > 0 as

F(z ) = −JEI

n2∑
k=n+1

ak z
k + (−anJEI + JEE )zn

− JEI

n−1∑
k=2

ak z
k + (−a1JEI − 1)z + (−a0JEI + gE )

and apply Descartes’ rule of signs to F ′ for n > 2. For
positive z the number of sign switches between subsequent
nonzero coefficients does not exceed two. Since F ′ is nega-
tive below 0, we obtain thatF ′ has at most two zero crossings
on R. Therefore, F can have at most three zero crossings.
F ′ starts off negative at the leftmost zero crossing and then
alternates signs. There exist at most two stable steady states
in this parameter class.

Now we address the case n = 2. Here, JIE
∑n−1

k=2 ak z
k =

0 in the expression for F ; however, the maximal number of
steady states is the same as for n > 2. This is because the sign
of coefficients in the expression for the continuous function
F ′ can still switch two times.

vi) Here, we consider det J = 0 and C+> 0. First, we consider
n > 2. The functional form of F coincides with the expres-
sion we obtained for det J > 0 and C+> 0 in class v. Fol-
lowing steps similar to those in class iii, we show that for
JEE > J n

IIJ
1−n
EI the function F ′′ has a unique zero cross-

ing zcross for z > 0 given by Eq. S10. Moreover, F is con-
cave and monotonically decreasing below and convex above
the point zcross. Thus, F has a unique minimum and can
have at most two zero crossings. The characteristic function
derivative F ′ starts off negative at the leftmost zero crossing
and then switches sign. For JEE ≤ J n

IIJ
1−n
EI F is concave and

monotonically decreasing for all z , and therefore it can have
exactly one stable steady state.

All of the conclusions hold for n = 2 with a small differ-
ence that zcross in the case JEE > J 2

IIJ
−1
EI coincides with 0.

vii) Now, we address det J < 0 and C− = 0. First, we consider
n > 2. The polynomial P intersects the z axis in 0 and there-
fore, z0 = 0. We obtain

F(z ) =

{
JIE (P(z ))n − JII z

n − z + gI , 0 ≤ z ,
−z + gI , z < 0,

whereby we still use the representation (P(z ))n =
∑n2

k=n ak z
k

with ak ≥ 0. We obtain for z > 0

F(z ) = JIE

n2∑
k=n+1

ak z
k + (anJIE − JII )zn − z + gI

and apply Descartes’ rule of signs toF ′.F ′ crosses the z axis
at most once, because F ′(z ) = −1 < 0 for z ≤ 0 and F ′ has
at most one sign switch for z > 0. Thus, F can have at most
two zero crossings on R. The sign of F ′ starts off negative
at the leftmost zero crossing and then switches sign, leaving
only the possibility for one stable steady state. The results
above remain valid for n = 2, because the same arguments
can be applied to the continuous function F ′.

viii) Now, we consider det J > 0 and C+ = 0. We start with n >
2. As in class vii we obtain z0 = 0 and

F(z ) =

{
JEE z

n − JEI (P(z ))n − z + gE , 0 ≤ z ,
−z + gE , z < 0.

Here, we also apply Descartes’ rule of signs to F ′ and use
the form of P from class vii. We obtain for z > 0

F(z ) = −JEI

n2∑
k=n+1

ak z
k + (−anJEI + JEE )zn − z + gE .

We note that for n > 2 the number of sign switches between
subsequent nonzero coefficients of F ′ for z > 0 can be at
most two. We also obtain that F ′(z ) = −1 < 0 for z ≤ 0.
Therefore, F ′ can have at most two zero crossings for all z
andF has at most three zero crossings.F ′ starts off negative
at the leftmost point and then alternates signs. Two stable
states are possible in this parameter class. A parameter set
with three zero crossings is shown in Fig. 3. Since F ′ for
n = 2 is continuous, we apply similar arguments for n = 2
to derive the same conclusions.

ix) Finally, we consider det J = 0, C+ = 0, and n ≥ 2. First,
we note that the functional form of F is the same as in class
viii except that for z ≥ 0 the expression for F simplifies to
F(z ) = (JEE−J 1−n

EI J n
II )zn−z+gE . For JEE > J n

IIJ
1−n
EI the

function F ′ has one zero crossing for z > 0 and is negative
for z < 0. Thus, F can have at most two zero crossings. F ′
starts off negative at the leftmost point and then alternates
signs. If JEE ≤ J n

IIJ
1−n
EI , then F is monotonically decreas-

ing for all z such that F always has exactly one zero crossing
with a negative derivative. Therefore, there exists at most
one stable steady state in this class.

Here, we briefly summarize our multiplicity results. We have
shown that for det J > 0 the SSN has an odd number of steady
states, either one or three. For det J < 0 the number of steady
states is even. In particular, this number is four or two or zero.
The case det J = 0 is an intermediate one: For a subclass of the
SSN parameters indicated in classes iii, vi, and ix the characteris-
tic function behaves similarly to the case det J > 0 and for the
rest of the parameters it is similar to det J < 0. Based on our
results in the section Stability Conditions in the main text we find
a unique order of steady-state types. Since both rE and rI are
strictly monotonically increasing functions of z , the steady states
can be uniquely ordered according to their distance from the ori-
gin. Hereby, stability of steady states alternates as the sign of the
characteristic function derivative switches: The steady states with
an odd number are either stable or repelling and steady states
with an even number are saddles.
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Existence of Persistent States
Here, we present the steps for finding positive, stable steady states
in the absence of inputs. Such steady states are often referred to as
persistent states. Based on the results for the characteristic func-
tion, we know that a stable persistent state of the model in Eq. 1
exists if two conditions are fulfilled. First, for zero input the char-
acteristic function F has a positive zero crossing with a negative
derivative and second, the corresponding steady state satisfies the
stability condition we derived in Eq. 5. Below, we consider these
two conditions in more detail and start with the first condition.

To find model parameters for a persistent state we start by
noting that by setting the inputs gE = gI = 0 we automatically
have C±= 0. In the previous section we identified nine parame-
ter classes of which only classes vii, viii, and ix comprise constants
C±= 0. Furthermore, we find that in these parameter classes the
trivial point z = 0 is the first zero crossing of F from the left and
that F ′(0) =− 1. Thus, to obtain a positive zero crossing z∗> 0
with a negative derivative F ′(z∗)< 0 the characteristic function
needs to have at least three zero crossings. This is possible only
in the parameter class viii where det J > 0, because in classes vii
and ix the overall number of zero crossings does not exceed two.
To obtain two positive zero crossings in addition to the trivial
zero crossing at zero, the coefficients of the characteristic func-
tion have to switch signs at least two times in accordance with
Descartes’ rule of signs. Using the representation of the charac-
teristic function for class viii in the previous section we recognize
that all terms in the characteristic function except (−J n

IIJ
1−n
EI +

JEE ) · zn are necessarily negative. Thus, for the coefficients of F
to switch signs twice we need−J n

IIJ
1−n
EI + JEE > 0 to be fulfilled.

This restricts the parameter set supporting a persistent state to
det J > 0 and −J n

IIJ
1−n
EI + JEE > 0. For consistency we rewrite

the second inequality such that it represents an upper bound for
det J . To this end we multiply it by JII , add to both sides the
term JEIJIE , and move JEEJII to the other side. The resulting
two-sided estimate for det J is

0 < det J < JEIJIE − J 1+n
II J 1−n

EI . [S11]

Outside of the parameter set specified by Eq. S11 a persistent
state does not exist. We now clarify whether it always exists when
the SSN parameters belong to this class or the actual set of
parameters is smaller. To this end we derive the exact condition
when the characteristic function has a positive zero crossing with
a negative derivative in the parameter class specified by Eq. S11.
First, we recall that the zero crossings of F for det J > 0 are
solutions of the equation

F(z ) = z (JEE z
n−1 − J 1−n

EI zn−1(det J · zn−1 + JII )
n − 1) = 0.

Since we are interested only in positive solutions of the above
equation, we cancel the factor z and obtain

zn−1(JEE − J 1−n
EI (det J · zn−1 + JII )

n
) = 1. [S12]

Next, we substitute

x = det J · zn−1 + JII [S13]

into Eq. S12 to simplify notation and obtain

(x − JII )(JEE − J 1−n
EI xn) = det J . [S14]

Eq. S13 implies that the new variable x satisfies x > JII . Since
det J > 0, Eq. S14 has solutions only on a subset of x for which
the function on the left side is positive. Therefore, Eq. S14 is con-

strained to the interval (JII , J
n−1
n

EI J
1
n
EE ). Let us note that this inter-

val is not empty because we limited the parameters to the set
JEE > J n

IIJ
1−n
EI . We recognize that the function on the left side of

Eq. S14 is strictly concave in the interval of interest and is equal
to zero at the boundary points. Therefore, it has a unique max-
imum x0 in this interval. To guarantee that this function crosses

the value det J its maximum has to be higher than det J . This is
equivalent to the requirement that the inequality Eq. 17

0 < det J < (JEE − J 1−n
EI xn

0 )(x0 − JII )

is fulfilled, which we state in Materials and Methods. For
completeness, let us note that the equation det J = (JEE −
J 1−n
EI xn

0 )(x0 − JII ) is fulfilled only by a zero crossing of the
function F with F ′ = 0; this is a local maximum which corre-
sponds to a steady state with a zero eigenvalue. Since we have
ignored throughout our article the nongeneric cases (destroyed
by any perturbation of parameters) in which there is a steady
state with a zero eigenvalue, we do not consider the case det J =
(JEE − J 1−n

EI xn
0 )(x0 − JII ) and use the < sign in the equation

above. We now proceed by recognizing that x0 is the maximum
of the function on the left side of Eq. S14. It is the unique solu-
tion of the vanishing derivative equation Eq. 18

(n + 1)xn
0 − JIInx

n−1
0 − J n−1

EI JEE = 0

in the interval (JII , J
n−1
n

EI J
1
n
EE ) presented in Materials and Meth-

ods. For n = 2 we can rewrite the upper estimate in the inequal-
ity Eq. 17 using only connectivity constants because the explicit
solution of Eq. 18 can be easily determined. We obtain x0 =
1
3
(JII +

√
J 2
II + 3JEIJEE ). Then, the upper estimate in Eq. 17

contains only the connectivity constants

det J <
2

27
J 3
IIJ
−1
EI −

2

3
JIIJEE +

2

27
J−1
EI (J 2

II + 3JEIJEE )
3/2
.

For n ≥ 2 the estimate in Eq. 17 represents an exact upper bound
for det J . This means that outside of the parameter set spec-
ified by Eq. 17 a persistent state does not exist and moreover,
if the connectivity constants and the power-law exponents ful-
fill Eq. 17, then a persistent state always exists. Let us note that
exact solutions to Eq. 18 can be found also for n = 3, 4; however,
already here the corresponding expressions are long and difficult
to interpret. Therefore, we decided to provide an easy-to-verify
upper bound for det J in Eq. 6 of the main text which is valid for
all n ≥ 2. Using Eq. 6 our readers can quickly check whether a
specific parameter set is a persistent-state candidate.

In the following, we prove that the upper bound we provide
in Eq. 6 is tighter than Eq. S11, but in general larger than the
exact upper bound in Eq. 17. To this end, we first show that the
set defined by Eq. 17 is contained in Eq. 6. Second, we verify that
Eq. 6 is tighter than Eq. S11. This would mean that the parameter
set specified by Eq. 17 is contained in the set specified by Eq. S11.
To verify that the set specified by Eq. 17 is contained in that of
Eq. 6 we use Eq. 18 to derive a lower bound for xn

0 :

xn
0 >

J n−1
EI JEE

n + 1
.

Next, we derive an upper bound on x0. Since we originally
defined x0 to be in the interval (JII , J

(n−1)/n
EI J

1/n
EE ), we obtain

that x0 is constrained by x0 < J
(n−1)/n
EI J

1/n
EE . Now we insert the

lower bound for xn
0 into the first bracket and the upper bound on

x0 into the second bracket of Eq. 17 to obtain

0 < det J < n/(n + 1)(J
(n+1)/n
EE J

(n−1)/n
EI − JIIJEE ).

We have presented this inequality as a necessary condition for a
persistent state in Eq. 6.

Now, we move on to prove that the set defined by Eq. 6 is
contained in Eq. S11. To this end, we show that if the inequality
in Eq. 6 is fulfilled, then Eq. S11 holds as well. Since n/(n+1) <
1, Eq. 6 implies the estimate

det J < J
(n+1)/n
EE J

(n−1)/n
EI − JIIJEE .
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Next, we apply the definition det J = −JEEJII + JEIJIE to the
left side of the inequality above, cancel JIIJEE , raise the relation
to the nth power, and obtain the following estimate:

JEIJ
−1
EE < J n

EEJ
−n
IE .

We have shown that the last estimate follows from Eq. 6 and now
we prove that it implies the inequality in Eq. S11. To this end we
reformulate the inequality in Eq. S11. We use the definition of
det J again and cancel the term JEIJEI on both sides of Eq. S11,
rearrange the terms, and obtain an estimate equivalent to Eq. S11:

JEIJ
−1
EE < J−n

II J n
EI .

The condition det J > 0 is equivalent to J n
EEJ

−n
IE < J−n

II J n
EI .

Then the inequality JEIJ
−1
EE < J n

EEJ
−n
IE , which follows from Eq.

6, implies the inequality JEIJ
−1
EE < J−n

II J n
EI which is equivalent

to Eq. S11, because the right side of the first inequality J n
EEJ

−n
IE

is smaller than J−n
II J n

EI . Thus, Eq. 6 is tighter than Eq. S11.
We have achieved our goal and have proved that the exact con-

nectivity range corresponding to a persistent state as given by Eq.
17 belongs to the set given by Eq. 6 and the estimate Eq. 6 is
tighter than Eq. S11. We have included Eq. 6 in the main text as
a necessary persistent-state condition because it is easy to verify
for any given J and n .

In summary, to guarantee the existence of a stable per-
sistent state the following three conditions need to be ful-
filled: First, the excitatory feedback needs to be sufficiently
strong, JEE > J n

IIJ
1−n
EI . This requirement implies that the inter-

val (JII , J
n−1
n

EI J
1
n
EE ) is not empty. Second, the inequality in Eq.

17 in Materials and Methods needs to be fulfilled. This condition
implies a specific balance between the SSN parameters such that
together they lead to a positive zero crossing of the characteristic
function with the negative derivative. The final third condition is
to verify that the persistent state is dynamically stable and thus
fulfills the stability condition in Eq. 5. This last condition can be
achieved by choosing a sufficiently large excitatory time constant
τE . Examples of parameters leading to a stable persistent state
can be found in Table 2 and a corresponding steady state is pre-
sented in Fig. 3B.

Existence of Global Oscillations
Here, we present the details for how to prove the existence of
stable limit cycles in the SSN network. To this end we determine
model parameters leading to a Hopf bifurcation. A Hopf bifurca-
tion takes place when the eigenvalues corresponding to a steady
state cross the imaginary axis while one of the model parameters
varies. Therefore, to obtain a Hopf bifurcation it is necessary to
show existence of steady states with purely imaginary eigenvalues
of the Jacobian.

We first consider the eigenvalues λ1,2 of the Jacobian DG
given by Eq. S6 and recognize that they are purely imaginary for
TrDG = 0 and det DG > 0.

The condition TrDG = 0 is equivalent to

τE
τI

=
JEEαE r

αE−1
αE

E − 1

JIIαI r
αI −1
αI

I + 1

. [S15]

Eq. S15 can be fulfilled only if the following holds:

JEEαE r
αE−1
αE

E > 1. [S16]

According to Eq. 16 the relation det DG > 0 is equivalent to

F ′(z ) < 0, [S17]

where z is a zero crossing of the characteristic function corre-
sponding to the steady-state rE , rI . With TrDG = 0 and Eq. 16
the eigenvalues reduce to

λ1,2 = ±
√
−det DG = ±i

√
−τ−1

E τ−1
I F ′(z ).

In Fig. 4 we present an example of a supercritical Hopf bifur-
cation, i.e., the bifurcation leading to a stable limit cycle. To
prove that a stable limit cycle emerges after a stable point turns
into a repeller during this Hopf bifurcation we perform the fol-
lowing steps. First, we determine a steady state which corre-
sponds to a zero crossing of the characteristic function with
F ′(z )< 0 and satisfies the condition in Eq. S16. We find that
for det J > 0 the inequality Eq. S16 can always be satisfied by
choosing a sufficiently large input gE , since rE increases strictly
monotonically with gE . Next, we ensure that the time constants
τE , τI fulfill the zero trace condition in Eq. S15. We note that
to control the frequency of the future limit cycle which is f =

(2π)−1
√
−τ−1

E τ−1
I F ′(z ), both τE and τI can be varied. This can

be accomplished because Eq. S15 places constraints only on the
ratio τE/τI but not on their absolute values. While the input gE
increases and crosses the value in Eq. S15, the stable steady state
bifurcates to a repelling one. We denote the inputs and the steady
state corresponding to the bifurcation point by g0

E and g0
I and

r0E and r0I , respectively. By meeting Eq. S15 we have achieved
that at the bifurcation point the eigenvalues corresponding to the
steady-state r0E and r0I are purely imaginary complex conjugate
numbers. Next, we cross the bifurcation point by increasing the
parameter g which we add to the excitatory input: g0

E → g0
E + g .

As g crosses the origin the real part of the eigenvalues turns pos-
itive, the stable steady-state r0E and r0I becomes repelling, and a
limit cycle emerges (Fig. 4). The next task is to verify that the
emerging limit cycle is stable.

A planar dynamical system which undergoes a Hopf bifurca-
tion can be transformed to a normal form by an appropriate
substitution of variables (ref. 1, pp. 91–99). In the normal form,
the coefficient in front of the cubic term evaluated at the bifur-
cation point is referred to as the Lyapunov coefficient. Its sign
determines whether the resulting limit cycle is stable (supercriti-
cal Hopf bifurcation) or unstable (subcritical Hopf bifurcation).
To show that the bifurcation presented in Fig. 4 is supercritical
we compute here the Lyapunov coefficient using the equation on
p. 99 in ref. 1 and prove that it is negative in the vicinity of the
bifurcation point. For this calculation we have assumed, similar
to that in Multiplicity of Steady States, that the power-law expo-
nents are equal integers αE = αI = n . To apply the theory
from ref. 1 we first move the steady state to the origin via a
g-dependent coordinate transformation r̃E = rE − r0E , r̃I =
rI − r0I . For the new variables r̃E , r̃I the SSN dynamics read

τE ˙̃rE = −r̃E − r0E + (JEE r̃E − JEI r̃I + z 0
E )

n

+

τI ˙̃rI = −r̃I − r0I + (JIE r̃E − JII r̃I + z 0
I )

n

+, [S18]

whereby the rescaled inputs are given by (z 0
E (g), z 0

I (g)) =
J (r0E (g), r0I (g)) + (g0

E + g , g0
I ) and the connectivity matrix is as

before, J = (JEE ,−JEI ; JIE ,−JII ). The Jacobian matrix DG of
the system in Eq. S18 and its eigenvalues and eigenvectors depend
on g . Since the dynamical system undergoes a Hopf bifurcation
at g = 0, the eigenvalues of DG are complex conjugates of each
other in the vicinity of the point g = 0. By q(g) we denote the
eigenvector of the matrixDG(g) corresponding to the eigenvalue

λ(g) = 1/2 TrDG(g) + i/2
√
−(TrDG(g))2 + 4 det DG(g). By

p(g) we denote the eigenvector of the transposed matrixDGT (g)
corresponding to the complex conjugate eigenvalue λ̄(g). We
assume that p and q are chosen such that they fulfill 〈p, q〉=
p̄1q1 + p̄2q2 = 1. By p1, q1 we denote the first and by p2, q2
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the second entries of the respective vectors and by p̄1, q̄1 and
p̄2, q̄2 their respective complex conjugates. For the correspond-
ing theory we refer to ref. 1. For g = 0 we have TrDG(0) = 0 and
λ(0) is a purely imaginary complex number. Now, we follow the
steps outlined in ref. 1 and make a coordinate transformation.
We substitute the 2D real variable r̃ = (r̃E , r̃I ) with a 1D complex
variable z which we define as z = 〈p, r̃〉. The inverse transforma-
tion is given via the equation r̃ = zq + z̄ q̄ . For the variable z the
system in Eq. S18 can be expressed as a Taylor series with respect
to the variables z and z̄ ,

ż = λz +
∑

2≤k+l≤3

gkl
k !l !

z k z̄ l + O(|z |4), [S19]

with the complex numbers gkl(g). Then the Lyapunov coefficient
l1 takes the form specified on p. 99 in ref. 1,

l1(0) =
1

2 det DG(0)
Re(ig20(0)g11(0) + g21(0)

√
det DG(0)),

whereby Re(·) denotes the real part. The complex numbers
g20(0), g11(0), and g21(0) are the coefficients in front of the terms
z 2, z z̄ , and z 2z̄ on the right side of the Taylor expansion in Eq.
S19 corresponding to g = 0, respectively. Using the form in Eq.
S19 we have computed these coefficients for the SSN model at
the input value g = 0 and obtained

g20 = n(n − 1)(p̄1(z 0
E )

n−2
β2
1τ
−1
E + p̄2(z 0

I )
n−2

β2
2τ
−1
I ),

g11 = n(n − 1)(p̄1(z 0
E )

n−2|β1|2τ−1
E + p̄2(z 0

I )
n−2|β2|2τ−1

I ),

g21 = n(n − 1)(n − 2)(p̄1(z 0
E )

n−3
β1|β1|2τ−1

E +

p̄2(z 0
I )

n−3
β2|β2|2τ−1

I ).

Here, (z 0
E , z

0
I ) = (z 0

E (0), z 0
I (0)), and the eigenvectors p(0) and

q(0) at g = 0 are chosen as

p(0) = (p1, p2) =
1

2b
√

det DG(0)

(√
det DG(0) + ia, ib

)
,

q(0) = (q1, q2) =
(
b,−a + i

√
det DG(0)

)
,

whereby

a = −τ−1
E + τ−1

E JEEn(z 0
E (0))

n−1
,

b = −τ−1
E JEIn(z 0

E (0))
n−1

,

β = (β1, β2) = Jq(0).

For convenience, we provide Mathematica code for our readers
(Code Availability in the main text) which implements the above
Lyapunov coefficient and calculates its value for the example we
considered in Fig. 4. We find that the Lyapunov coefficient in
Fig. 4 is approximately −1,244.41 in the vicinity of the bifurcation
point and the emerging limit cycle is therefore stable. This proves
that the SSN model can support stable limit cycles.

Rescaling the Connectivity and Input Constants to Match a
Desired Firing-Rate Range
We assume that the firing rates rE > 0 and rI > 0 satisfy the SSN
steady-state equations

rE = (JEE rE − JEI rI + gE )αE
+ rI = (JIE rE − JII rI + gI )αI

+ .

If the values of rE and rI are not within the desired range for a
given application, then it is possible to rescale them to any arbi-
trary pair of values r̄E > 0, r̄I > 0. To map {rE , rI } → {r̄E , r̄I }

such that the new values remain a steady state of the SSN we
rescale the connectivity and input constants as follows:

J̄EE = JEE

(
rE
r̄E

)1− 1
αE

, J̄EI =
JEI rI
r̄I

(
rE
r̄E

)− 1
αE

,

J̄IE =
JIE rE
r̄E

(
rI
r̄I

)− 1
αI

, J̄II = JII

(
rI
r̄I

)1− 1
αI

,

ḡE = gE

(
rE
r̄E

)− 1
αE

, ḡI = gI

(
rI
r̄I

)− 1
αI

.

The new, rescaled steady state now fulfills the following
equations:

r̄E = (J̄EE r̄E − J̄EI r̄I + ḡE )
αE

+ , r̄I = (J̄IE r̄E − J̄II r̄I + ḡI )
αI

+ .

Location of SSN Steady States Is Preserved in the Presence
of Firing-Rate Saturation
The power-law activation function in the SSN model belongs to
the class of unbounded activation functions. Other prominent
members of this class are generalized linear models (GLMs) with
exponential nonlinearities or rate models with unbounded thresh-
old linear activation functions. In general, this class of models
does not provide mechanisms to keep firing rates below a bio-
logically plausible maximal value, which exists due to physiolog-
ical constraints of neurons. Instead, these models are designed
to describe the activity in a regime that reflects the operational
state in vivo. This state is located far below the maximal firing
rate and is often fluctuation driven (2, 3). One possibility to con-
trol growth of firing rates in a rate model is enforcing saturation
in the activation function. However, it is an open question how
the presence of a maximal firing rate in the activation function
impacts the dynamics and the location of steady states. There are
two conceivable scenarios. First, the introduction of saturation
fundamentally alters the dynamics and the steady states. Second,
it is possible to identify some steady states of the saturating sys-
tem by considering a corresponding unbounded model. Below, we
show that the second scenario applies for the SSN model provided
the saturation threshold is far above the operational state of neu-
rons. Specifically, we prove that the SSN steady states calculated
for the unbounded power-law activation function (see Eq. 2) can
also be found in the corresponding bounded network (Fig. S2). At
the same time, saturation in the activation function imposes global
boundedness for the firing-rate trajectories. For convenience, we
present the corresponding upper bounds for the firing rates at the
end of this section.

To show that the steady states of the unbounded SSN model can
be found in a bounded model we consider the following saturating
activation functions for the excitatory and inhibitory neurons:

(g)αE
+,B =

0, g < 0
gαE , 0 ≤ g < B ,
BαE , B ≤ g ,

(g)αI
+,B =

0, g < 0
gαI , 0 ≤ g < B ,
BαI , B ≤ g .

[S20]

We assume B to be large but finite to keep the model tractable.
Here, we show that all steady states of the unbounded SSN model
in Eq. 1 are also steady states in the model with a saturating acti-
vation function as in Eq. S20, provided that B is chosen suffi-
ciently large. In addition to the steady states which are “inher-
ited” from the original unbounded SSN model the bounded
model can exhibit additional steady states whose location we also
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discuss below. We first introduce the characteristic function for
the bounded model

FB (z ) =

{
JEE (z )αE

+,B − JEI (PB (z ))αI
+,B − z + gE , det J ≥ 0,

JIE (PB (z ))αE
+,B − JII (z )αI

+,B − z + gI , det J < 0,

where the function PB is defined by

PB (z ) =

{
det J · J−1

EI (z )αE
+,B + J−1

EI JII z + C+, det J ≥ 0

−det J · J−1
IE (z )αI

+,B + J−1
IE JEE z + C−, det J < 0.

Now, we discuss how to find the threshold B and a point zB ≤ B
such that the interval (−∞, zB ) contains all zero crossings of the
function F and F coincides with FB on (−∞, zB ). This would
imply that steady states of the SSN can also be found in the
bounded model.

First, we choose zB to be larger than the rightmost zero cross-
ing of F if zero crossings exist; otherwise zB is arbitrary. This will
satisfy the requirement that (−∞, zB ) contains all zero crossings
of F .

The goal now is to choose B and if necessary adapt zB such
that (PB (z ))+,B coincides with (P(z ))+ and (z )+,B with (z )+
on the interval (−∞, zB ). This would imply thatF coincides with
FB on this interval.

If we choose B ≥ zB , then naturally (z )+,B = (z )+ and
PB (z ) =P(z ) on (−∞, zB ). It remains to show that the satu-
rated version of the function P , (P)+,B , coincides with (P)+
on (−∞, zB ). To fulfill this relation we need to carefully choose
zB and eventually shift it to the right, because P can theoreti-
cally exceed B before its argument z reaches the point zB . To
analyze the behavior of P and z systematically we consider four
parameter classes and explain how to choose zB and B to satisfy
(P)+,B = (P)+ on (−∞, zB ) in each of them:

• For det J 6= 0 or det J = 0 with J−1
EI JII > 1 the polynomial

P is either located above the line y = z or crosses this line from
below at some point on the z axis and remains above this line
for all larger z . In the case where P lies above the line y = z ,
the point zB can remain at the same location. If P crosses
y = z from below, we shift the point zB rightward such that it is
located to the right side from the intersection point. Then, we
set B = P(zB ). This ensures that B satisfies B > zB , because
P(zB ) > zB . This class is the most prevalent in the SSN
model.

• For det J = 0 with J−1
EI JII < 1 the line y = z intersects the

straight line P from below at one point. Here, we shift zB
rightward to ensure that zB is located to the right side from
the intersection point and set B = zB .

• For det J = 0 with J−1
EI JII = 1 and C± ≤ 0 the line y = z is

above and parallel or coincides with the straight line P on the
whole axis. Here, we do not change the location of zB and set
B = zB .

• For det J = 0 with J−1
EI JII = 1 and C± > 0 the straight line P

lies above and parallel with respect to the line y = z on the
whole z axis. Here, we do not change the location of zB and
set B = P(zB ).

Herewith we have shown how to choose a sufficiently large
threshold current B such that F and FB coincide on the inter-
val (−∞, zB ) with an appropriate zB ≤ B . Hereby, the interval
(−∞, zB ) contains all zero crossings of F . For such B , all steady
states of the SSN model are automatically also steady states of
the saturated model. In other words, introducing saturation to
the excitatory and inhibitory activation functions in Eq. 1 pre-
serves the location of the SSN steady states if B is sufficiently
large. We illustrate this finding in Fig. S2. If the threshold B is
smaller than we specified above, then F and FB will coincide

on a smaller interval and not all but only a subset of the steady
states will carry over. How many steady states will carry over will
depend on the specific magnitude of B .

In addition to the steady states which are inherited from the
unbounded activation function, new steady states can appear in
the saturating SSN model. Below we show that saturation of
the form in Eq. S20 can introduce zero, one, or even two addi-
tional steady states. For concreteness, we consider here the case
det J 6= 0. Since the zero crossings of FB and F coincide in the
interval (−∞, zB ), additional zero crossings can appear only for
z > zB and lead to the new steady states. These steady states are
unique to FB , they do not appear in the original characteristic
function F , and their location depends on B . For zB ≤ z <B we
obtain

FB (z ) =

{
JEE z

αE − JEIB
αI − z + gE , det J > 0,

JIEB
αE − JII z

αI − z + gI , det J < 0

and for z ≥ B

FB (z ) =

{
JEEB

αE − JEIB
αI − z + gE , det J > 0,

JIEB
αE − JIIB

αI − z + gI , det J < 0.

For det J > 0 the characteristic function F has an odd num-
ber of zero crossings and is negative in the point zB . The
function FB can monotonically increase between zB and B
and it monotonically decreases for z ≥B . Then the function
FB can have either two (example in Fig. S2B) or no addi-
tional zero crossings (example in Fig. S2C) for z > zB . Thus,
in cases where two additional zero crossings appear the smaller
zero crossing belongs to the interval (zB ,B) and has a positive
derivative and the larger one has a negative derivative and is
larger than B . Hereby, the steady state corresponding to the
right zero crossing is always stable because the corresponding
Jacobian is the diagonal matrix with the diagonal elements−τ−1

E

and −τ−1
I .

If det J < 0, then F has an even number of zero cross-
ings or does not have any zero crossings. In all cases FB is
positive at the point zB . Since FB is monotonically decreas-
ing for z ≥ zB , it has an additional right zero crossing with
a negative derivative (Fig. S2A). This zero crossing always cor-
responds to a stable steady state because the first row of the
corresponding Jacobian is the vector with the elements −τ−1

E

and 0 and the second element of the second row is always
negative.

Finally, we show that firing-rate saturation will guarantee that
all firing-rate trajectories will remain bounded. To show this,
we assume that the activation function for the excitatory unit
is bounded by a constant BαE

E . Then the first equation in Eq. 1
implies the estimate

τE ṙE (t) + rE (t) ≤ BαE
E . [S21]

Now we multiply Eq. S21 by et/τE to obtain

d

dt

(
rE (t) · et/τE

)
≤ BαE

E · et/τE

τE
. [S22]

Finally, we integrate Eq. S22 with respect to t and obtain an
upper bound for the function rE :

rE (t) ≤ e−t/τE (rE (0)− BαE
E ) + BαE

E ≤ max{rE (0),BαE
E }.

An analogous estimate holds for the function rI under the
assumption that the inhibitory activation function is bounded by
a constant BαI

I . Thus, both rE and rI are globally bounded:

rE (t) ≤ max{rE (0),BαE
E }, rI (t) ≤ max{rI (0),BαI

I }. [S23]
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Fig. S1. Phase space comparison between real and integer exponents. Shown is the SSN phase space as a function of the power-law exponent n. The
exponent varies from n = 3 to n = 4, and all other parameters are as in Fig. 2C and Table 2.
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Fig. S2. SSN phase space before and after firing-rate saturation is introduced. Here, we consider SSN dynamics from Fig. 2 A–C in the main text. (A) The two
steady states (a stable point and a saddle) which are present in the unbounded model are preserved after saturation is introduced. Saturation contributes
an additional stable steady state (A, Right). Here, det J < 0, B = 2, and other parameters are adapted from Fig. 2B. (B) In addition to the three steady states
which are inherited from the unbounded model, saturation introduces two steady states which are a saddle and a stable point. Here, B = 2, and other
parameters are adapted from Fig. 2C. (C) Saturation does not always introduce additional steady states. Here, we show the dynamics from Fig. 2A (B = 1.4)
where the single steady state prevails after saturation. Parameters are as in Fig. 2A.
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