Supporting Information

van Ginkel et al. 10.1073/pnas.1707207115

SI Methods

ClpX₆ Purification and Biotinylation. To ensure proper immobilization and hexamer formation of ClpX at low concentrations, $ClpX_6(\Delta N)$, a covalently linked hexamer containing a single biotinylation site, was used throughout the experiments. $ClpX_6$ (ΔN) was overexpressed and purified as described (1). In brief, $ClpX_6$ protein expression and biotinylation were induced in an E. coli BLR(DE3) strain at OD₆₀₀ of ~0.6 by adding 1.0 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) and 100 μ M of biotin to increase BirA-mediated biotinylation efficiency. The culture was incubated overnight at 18 °C. Cells were pelleted and resuspended in lysis buffer (20 mM Hepes, pH 7.6, 400 mM NaCl, 100 mM KCl, 10% glycerol, 10 mM β-mercaptoethanol, 10 mM imidazole) in the presence of 1 mM PMSF and lysed by French press twice at 20 psi. $ClpX_6(\Delta N)$ was purified from the supernatant first with Ni²⁺-NTA affinity resin, followed by size exclusion chromatography with a Prep Sephacryl S-300 16/60 high resolution column (GE Healthcare).

ClpP Mutations, Purification, and Labeling. Point mutations were constructed in ClpP by overlap extension PCR to produce the cysteine-free variant ClpP_{C91S-C113S} and the subsequent variants ClpP_{Q48C}, ClpP_{A139C}, and ClpP_{F31C}. The variants were overexpressed in E. coli BL21(DE3)pLysS at OD₆₀₀ of ~0.6 by adding 0.5 mM IPTG and incubated for 3 h at 30 °C. Cells were pelleted and resuspended in lysis buffer (50 mM sodium phosphate, pH 8.0, 1 M NaCl, 10% glycerol, 5 mM imidazole) in the presence of Set III protease inhibitors (Calbiochem) and lysed by French press twice at 20 psi. ClpP was purified from the supernatant first with Ni²⁺-NTA affinity resin, followed by size exclusion chromatography with a Prep Sephacryl S-300 16/60 high resolution column (GE Healthcare). ClpP was dialyzed overnight against PBS (pH 7.4) before labeling for 4 h at 4 °C with monoreactive maleimide donor dye [Cy3 (GE Healthcare) for two-color experiments, and Alexa488 (Invitrogen) for three-color experiments]. Then, 10× molar dye excess was used in PBS, pH 7.4 under nitrogen. Free dye was removed using PD Minitrap G-25 size exclusion columns (GE Healthcare). Labeling efficiency of 5.9, 1.1, and 1.7 dyes per tetradecameric ClpP_{O48C}, ClpP_{A139C}, and ClpP_{F31C}, respectively, was measured by spectrophotometry (DeNovix DS-11 FX).

ClpP Inactivation. Purified ClpP_{Q48C} was chemically inactivated as described previously (2). Briefly, ClpP_{Q48C} (4 μ M) was inacti-

 Martin A, Baker TA, Sauer RT (2005) Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. *Nature* 437:1115–1120. vated in PD buffer containing 10 mM diisopropyl fluorophosphate (DFP) (Sigma). The reaction was incubated for 6 h at 4 °C and then dialyzed twice: 1×2 h and $1 \times$ overnight against $1 \times$ PBS (pH 7.4). ClpP_{Q48C_DFP} was labeled with monoreactive maleimide donor dye, Cy3, for 4 h at 4 °C. A 10× molar excess of dye was used in PBS, pH 7.4, under nitrogen. Free dye was removed using Pierce Dye Removal Columns (Thermo Fisher). A labeling efficiency of 1.8 dyes per tetradecameric ClpP_{Q48C_DFP} was measured by spectrophotometry (DeNovix DS-11 FX).

ClpXP Cleavage Reaction. To assess the enzymatic activity of donorlabeled ClpXP, 0.9 μ M ClpX and 2.9 μ M of ClpP (WT or variants) in PD buffer (25 mM Hepes, pH 8.0, 5 mM MgCl₂, 40 mM KCl, 0.148% Nonidet P-40, 10% glycerol) were incubated at 30 °C in the presence of 10 μ M titinV13P-ssrA and 5 mM ATP. Samples were taken at t = 0 min and 30 min and analyzed using 4 to 20% precast SDS/PAGE gels (Thermo Scientific) and Coomassie staining.

Substrate Preparation. Titin-I27 (WT, V13P and dimer) with the Cterminal ssrA tag was expressed in E. coli BL21AI at OD₆₀₀ of ~0.6 by adding 0.2% arabinose and incubated for 4 h at 37 °C. Cells were pelleted and resuspended in lysis buffer (50 mM sodium phosphate, pH 8.0, 500 mM NaCl, 10 mM imidazole) and then lysed by sonication. Titin was purified from the supernatant with Ni²⁺-NTA affinity resin. Titin was dialyzed overnight against PBS (pH 7.4) before labeling for 4 h at 4 °C with 10× molar excess of monoreactive maleimide acceptor dye (Cv5; GE Healthcare) in the presence of 4 M GdnCl in PBS, pH 7.4, under nitrogen. Custom-designed polypeptides were obtained from Biomatik. Cysteine residues of the polypeptides were labeled with monoreactive maleimide-functionalized Cy5 as an acceptor for two-color measurements and with Cy3 and Cy5 as an acceptor for three-color measurements. Polypeptides were labeled in the presence of a 10x molar excess of dye overnight at 4 °C in PBS under nitrogen. For labeling with additional acceptors at the N terminus, monoreactive NHS-ester functionalized dyes (Cy3 or Cy5; GE Healthcare) were added to the reaction mixture described above, also in 10× molar excess. Free dye was removed using PD Minitrap G-25 size exclusion columns (GE Healthcare). Labeling efficiencies up to 95% were measured by spectrophotometry (DeNovix DS-11 FX) (see Table S1 for the full list of substrates).

 Harper JW, Bennett EJ (2016) Proteome complexity and the forces that drive proteome imbalance. Nature 537:328–338.

Fig. S1. ClpXP modifications. (A) Cocrystal structure of ClpXP, obtained by manually combining crystal structures from PDB:1YG6 (ClpP₁₄) and PDB: 3HTE (ClpX₆). (Inset) A structure of a monomeric ClpP. Highlighted in red are the two cysteine residues present in WT ClpP. Highlighted in green are cysteines introduced into three variants: ClpP_{Q48C}, ClpP_{A139C}, and ClpP_{F31C}. (B) Representative time trace from ClpP_{Q48C} (Top), ClpP_{A139C} (Middle), and ClpP_{F31C} (Bottom). ClpP_{Q48C} and ClpP_{A139C} exhibit higher FRET efficiency than ClpP_{F31C}. (C) CCD images (donor channel) showing immobilization of donor-labeled ClpP_{Q48C} in complex with ClpX₆ (Left) or in the absence of ClpX₆ (Right). Each spot represents a single donor-labeled ClpP₁₄ molecule. The CCD images are from over 25 × 25 μ m² field of view. (D) Degradation of titin_{V13P} by ClpXP. The degradation efficiency of unlabeled and labeled ClpP variants was compared at time 0 and 30 min. (E) Three-color time trace. The original time trace used in Fig. 2B to present a three-color FRET event. Note the original, not summed, levels of Cy3 and Cy5 signals in the *Middle*. Cy3 transfers its energy to Cy5 via FRET.

85

90

Time (s)

95

100

0.0

80

Fig. 52. Evaluation of chemically inactivated ClpX and ClpP. (*A*) Degradation of titin_{V13P} by ClpP_{Q48C} or chemically inactivated ClpP_{Q48C} + DFP. (*B*) The change of the relative amount of titin substrate when incubated with ClpXP_{Q48C} or chemically inactivated ClpXP_{Q48C} plus DFP (bulk measurements from three independent experiments). (*C*) Dwell-time histograms of single-molecule experiments of K-38-C-ssrA with ClpXP_{Q48C} (n = 239) or chemically inactivated ClpXP_{Q48C} plus DFP (n = 1,470); the dwell-time of the high FRET increases 3.5-fold when ClpP_{Q48C} plus DFP was used. (*D*) ClpX was inactivated by using an ATP analog ATP_YS; increasing the ATP_YS concentration reduces the number of binding events showing FRET. For ATP, n = 756; for ATP plus ATP_YS, n = 446; for ATP_YS, n = 554.

Fig. S3. Fingerprinting cysteine residues in titin. (*A*) Representative time traces of the titin substrate with both cysteines labeled with Cy5 (Cys64 and Cys80). A mixture of ATP and ATP_YS (*Right* trace) was used to elongate the dwell time between two of the cysteines. (*B*) The dwell-time histograms of the elongated interval between the two peaks of 1 mM ATP (n = 37) and 500 μ M ATP plus 500 μ M ATP_YS (n = 36).

Fig. S4. Distribution of total dwell time. Total dwell times ($\Delta \tau$; see the definition in Fig. 3*A*) were determined for ssrA-tagged peptides of increasing lengths and monomeric and dimeric titin. Total dwell times for all substrates showed gamma-like distributions. Errors were obtained by bootstrapping with 1,000 resamples. For K-16-C-ssrA, n = 262; for K-16-C-11-ssrA, n = 147; for K-16-C-22-ssrA, n = 312; for titin monomer, n = 91; for titin dimer, n = 82.

Table S1. Overview of the substrates used in this study

PNAS PNAS

Name	Sequence	Length, no. of amino acids	Molecular mass, kDa
NH ₃ -17-C-ssrA	ASGERDNFAPHMALVPV C AANDENYALAA	29	3.018
K-16-C-ssrA	KSGERDNFAPHMALVPV C AANDENYALAA	29	3.075
K-16-C-11-ssrA	KSGERDNFAPHMALVPV C AANDENYALAAAANDENYALAA	40	4.180
K-16-C-22-ssrA	${\tt KSGERDNFAPHMALVPV}{f C}$ aandenyalaaaandenyalaaaandenyalaa	51	5.284
K-38-C-ssrA	KSGERDNFAPHMALVPVAANDENYALAAAANDENYALAA CAANDENYALAA	51	5.284
Titin-ssrA	$\texttt{MRGSHHHHHHGLVPRGSLIEVEKPLYGVEVFVGETAHFEIELSEPDVHGQWKLKGQPLAASPD\textbf{C}{E-}$	119	13.050
	${\tt IIEDGKKHILILHN} {\tt C} {\tt QLGMTGEVSF} {\tt QAANTKSAANLKVKELRSAANDENYALAA}$		
Titin _{V13P} -ssrA	$\texttt{MRGSHHHHHHGLVPRGSLIEVEKPLYGVEPFVGETAHFEIELSEPDVHGQWKLKGQPLAASPD\textbf{C}{E-}$	119	13.048
	${\tt IIEDGKKHILILHN} {\tt C} {\tt QLGMTGEVSFQAANTKSAANLKVKELRSAANDENYALAA}$		
Titin-Titin-ssrA	$\texttt{MRGSHHHHHHGLVPRGSLIEVEKPLYGVEVFVGETAHFEIELSEPDVHGQWKLKGQPLAASPD\textbf{C}{E-}$	210	23.056
	${\tt IIEDGKKHILILHN} {\tt C} {\tt QLGMTGEVSFQAANTKSAANLKVKELRSLIEVEKPLYGVEVFVGETAH-}$		
	$\texttt{FEIELSEPDVHGQWKLKGQPLAASPD}{\textbf{C}}\texttt{EIIEDGKKHILILHN}{\textbf{C}}\texttt{QLGMTGEVSFQAANTKSAAN-}$		
	LKVKELRSAANDENYALAA		

All titin-based substrates used were derived from the WT titin-I27 domain. Dye-labeled Cystein residues are bold.