Supporting Information Appendix (*SI Appendix*)

Liu and Koba et al. Nitrate is an important nitrogen source for Arctic tundra plants

Fig. S1. Concentrations of NO₃⁻ (A, B), extractable organic N (EON) (C), NH₄⁺ (D, E) in salt extracts, water extracts, soil water, snowmelt and microlysimeter of soils across Arctic tundra and non-arctic ecosystems. Mean ± Standard Error (SE) are shown. "nd" indicates not detected, "na" indicates not available or not measured. Data above the bar shows mean values. Salt-extractable N in soil at Toolik Field Station Moist Acidic Tundra (TFS-MAT, n = 135) and Toolik Field Station Moist Nonacidic Tundra (TFS-MNT, n = 54) was analyzed in June–August from 1990 to 2006 and from 1998 to 2006, respectively. Soil water of TFS-MAT (n = 4 for 1 site) was sampled in August 2012; soil water of TFS-Tussock (n = 1073 for NH₄⁺ and n = 1060for NO₃⁻ from 14 sites at Toolik Field Station) and IMT-Tussock (n = 690 for NH₄⁺ and n = 576 for NO₃⁻ from 13 sites at Imnavait Creek) was sampled in June–August from 1988 to 2011. TFS-NBR stands for Toolik Field Station near the Northern Brooks Range, and UKR stands for the Upper Kuparuk River, Alaska. Data for SAG (n = 150, from 1987 to 2005) were downloaded from the Arctic LTER database (http://arc-lter.ecosystems.mbl.edu/). Other data of N in soil extracts (salt (K₂SO₄) or water extracts) and soil solutions (n = 4-60) were cited from corresponding references (reference numbers are in the parentheses).

Arctic tundra sites

Fig. S2. Net N rates of nitrification and mineralization (A), and percentages of NO_3^- -N in salt-extractable inorganic N (EIN) or in total salt-extractable N (TEN) (B), of soils across the Arctic tundra and non-arctic ecosystems. Mean \pm SE are shown. In panel A, data of IMT were expressed as g N/m²/growing season, while those of the Brooks Range around TFS were cited from (7). In panel B, EIN is the sum of NH₄⁺-N and NO₃⁻-N, and TEN is the sum of EIN and EON (extractable organic N) and the reference numbers for the data in Arctic tundra sites are in the parentheses.

Fig. S3. Leaf nitrate reductase activities (NRA) of (A, B) tundra plants in northern Alaska and (C) terrestrial plants at lower latitude regions. Mean \pm SE are shown. In panel A, the bars of IMT showed averages across ecosystems including crest, upper backslope, lower water tracks, lower non-water track, and footslope at Imnavait Creek (n = 9-15 for each species). The bars of SAG showed averages across ecosystems types along the Sagavanirktok River toposequence (n = 4-79; cited from (23)). n = 5 for TFS-MAT or TFS-MNT. In panel B, Control and N fertilization denote the control and N-fertilization plots at TFS-MAT, respectively (n = 3-5). In panel C, bars are average values for total sample number (n) of studied plant species (S is the species number) reported at each site.

Fig. S4. Ratios of (A) leaf NO₃⁻ concentrations ([NO₃⁻]) to soil [NO₃⁻] and (B) root [NO₃⁻] to soil [NO₃⁻] across different plants and ecosystems. Concentrations in the unit of μ g-N/g dry plant or soil and mean concentrations of soil [NO₃⁻] (Fig. S2a) were used for calculating the ratios. The box encompasses the 25th-75th percentiles, whiskers are the Standard Deviation (SD) values. The line and square in each box mark the median and mean values of plants at each site, respectively. Different letters above the boxes mark significant differences at the level of *P* < 0.05.

Fig. S5. Variations of NO₃⁻ and NH₄⁺ in soil water (A, B), NO₃⁻ in plant leaves (C-F) prior to and after N additions at TFS-MAT in 2012. In panels A and B, mean \pm SE values of replicate plots (n = 3, 1 m × 1 m plot size for each) are shown. From panel C to panel F, "pristine" indicated mean \pm SE values of plant samples collected on 2nd August (n = 3 for each species), others showed mean \pm SE values of plant samples collected on 2nd August (n = 3 for each species), others showed mean \pm SE values of plant samples collected on 3rd August (n = 1 for *Betula nana* and *Polygonum bistorta;* n = 3 for *Eriophorum vaginatum* and *Sphagnum*), 4th August (n = 1 for each species), 5th August (n = 1 for each species), 7th August (n = 1 for each species) (therefore, n = 4 for *Betula nana* and *Polygonum bistorta,* n = 6 for *Eriophorum vaginatum* and *Sphagnum*). F2 and F10 represent NO₃⁻ fertilizer additions of 2 g N/m² and 10 g N/m², respectively; F10 (1:1) and F10 (1:4) represent additions of 10 g N/m² with the NO₃⁻-N:NH₄⁺-N of 1:1 and 1:4, respectively. NO₃⁻ and NH₄⁺ were added as NaNO₃ and NH₄Cl, respectively.

Fig. S6. Leaf NO₃⁻ concentrations of plants across different types of tundra ecosystems at TFS. CT/P represent samples collected from control plots or pristine sites out of the replicated block design. (A) Samples of N only (10 g N/m² as NH₄NO₃) and N+P (10 g N/m² as NH₄NO₃ + 5 g P/m² as triple superphosphate) were collected from the LTER plots of arctic heath (5 m × 20 m plot size), shrub (5 m × 10 m), wet sedge (5 m × 10 m), and MNT (moist non-acid tussock and or non-tussock tundra) (5 m × 20 m). (B-F) Samples of F0.5 (0.5 g N/m² as NH₄NO₃ + 0.25 g P/m² as triple superphosphate), F1 (1 g N/m² as NH₄NO₃ + 0.5 g P/m² as triple superphosphate), F2 (2 g N/m² as NH₄NO₃ + 1 g P/m² as triple superphosphate), F5 (5 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F0 (10 g N/m² as NH₄NO₃ + 5 g P/m² as triple superphosphate), F3 (5 g N/m² as NH₄NO₃ + 5 g P/m² as triple superphosphate), F3 (5 g N/m² as NH₄NO₃ + 5 g P/m² as triple superphosphate), F4 (10 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F2 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (10 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NH₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NA₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NA₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NA₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NA₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m² as NA₄NO₃ + 2.5 g P/m² as triple superphosphate), F4 (2 g N/m²

Fig. S7. Δ^{17} O values of NO₃⁻ in plant leaves across different ecosystems. The Δ^{17} O of soil NO₃⁻ was assumed as zero. The Δ^{17} O values of atmospheric NO₃⁻ in arctic Alaska and tropical China were cited from that of snowpack NO₃⁻ (n = 12; (24)) in Barrow, Alaska and precipitation NO₃⁻ (n = 3) in Jianfengling forests of Hainan, tropical China (25), respectively. The Δ^{17} O of atmospheric NO₃⁻ in temperate Japan and subtropical China was based on that of precipitation NO₃⁻ in TML (n = 12) and Guiyang (n = 3) in this study. Full site information is given in Table S1.

Fig. S8. $\delta^{15}N(A)$ and $\delta^{18}O(B)$ values of NO₃⁻ in plant leaves and soils across different ecosystems. Solid green circles stand for leaves (n = 1-40). Red boxes stand for soil extracts (n = 2-16). The box encompasses the $25^{th}-75^{th}$ percentiles; the solid line within each box and the upper and lower whisker of each box show the mean, maximum, and minimum values, respectively. Mean $\delta^{15}N$ of atmospheric NO₃⁻ (blue line in Panel A) and mean $\delta^{18}O$ of soil NO₃⁻ for tundra plants were cited from those measured at Barrow, Alaska (26).

Fig. S9. Leaf total N concentrations (A) and total δ^{15} N values (B) of dominant plant species across Alaskan tundra sites and non-arctic sites. Dots around the boxes show replicate data at each site. The box encompasses the $25^{th}-75^{th}$ percentiles, whiskers are the SD values. The red line and blue square in each box mark the median and mean values, respectively. *N* ranged from 4 to 260 for each site. Data of plants at Glacier Bay, Alaska and northern Alaska (N. Alaska) were cited from (27) and (28), respectively.

Fable S1. Descriptions	of study	sites, sample	collections	and	analyse	es.
1	v	ý I			·	

Site, region/Country	Site abbreviation	Climate	Latitude	Longitude	ME(m)	MT(°C)	MP(mm)
Mt. Kongming of Xishuangbanna, southwestern (SW) China	KMS	Tropical	21° 16' N	101° 6.0' E	1788	22.0	1600
Guiyang forest park of Guiyang city, SW China	GFP	Subtropical	26° 34' N	106° 45' E	1269	14.5	1100
Mt. Baofushan of Guiyang city, SW China	BFS	Subtropical	26° 34' N	106° 46' E	1230	14.5	1100
Guaijiu pine forest of Baiyi, Guiyang, SW China	GPF	Subtropical	26° 48' N	107° 1.0' E	1241	15.3	1100
Mt. Shilong of Baiyi, Guiyang, SW China	SLS	Subtropical	26° 48' N	107° 0.8' E	1329	15.3	1100
Kamigamo experimental forest of Kyoto Univ. (upperslope), western Japan	KGU	Temperate	35° 4.0' N	135° 46' E	220	15.0	1584
Kamigamo experimental forest of Kyoto Univ (lowerslope), western Japan	KGL	Temperate	35° 4.0' N	135° 46' E	200	15.0	1584
Kochi (Tsuno) forest, southern Japan	KCF	Temperate	33° 26' N	133° 01' E	710	13.1	3270
Field Museum Tama-Kyuryo (upperslope) of TUAT, central Japan	TMU	Temperate	35° 38' N	139° 23' E	110	14.8	1790
Field Museum Tama-Kyuryo (lowerslope) of TUAT, central Japan	TML	Temperate	35° 38' N	139° 23' E	100	14.8	1790
Tsukuba Forest Experimental Watershed, central Japan	TKB	Temperate	33° 10' N	140° 10' E	230	12.3	1390
Katsura forest, central Japan	KTS	Temperate	33° 31' N	140° 17' E	390	11.9	1350
Yasato forest-II, central Japan	YST-II	Temperate	33° 17' N	140° 09' E	180	13.1	1440
Yasato forest-III, central Japan	YST-III	Temperate	33° 19' N	140° 12' E	350	11.5	1460
Toolik field station (MAT), northern Alaska	TFS-MAT	Arctic	68° 38' N	149° 36' W	760	9.3*	180*
Toolik field station (MNT), northern Alaska	TFS-MNT	Arctic	68° 38' N	149° 36' W	760	9.3*	180*
Imnavait Creek, northern Alaska	IMT	Arctic	68° 36' N	149° 18' W	876	9.3*	180*
Sagavanirktok River Valley, northern Alaska	SAG	Arctic	68° 47' N	148° 52' W	552	9.3*	180*

* Data of June-August (Growing season). ME, mean elevation. MT, mean annual temperature. MP, mean annual precipitation. MAT, moist acidic tundra. MNT, moist non-acidic tundra.

Site	Type, horizon (cm)	Sampling time	Replicat e (n)	Mean pH (H ₂ O)	Measured N parameters	Methods and labs for inorganic N concentrations	Methods and labs for isotope analyses
KMS	Lateritic, M (0–20)	November, 2011	5	4.6	Concentrations of (2N KCl)-extractable NO ₃ ⁻ and NH4 ⁺	AutoAnalyzer III, SEAL Analytical GmbH, Germany; Xishuangbanna Tropical Botanical Garden, CAS	N.A
GFP	Yellow, A ₀ &M (0–10)	July, 2010	8	4.3	Concentrations and isotopes of (2N KCl)- extractable NO ₃ ⁻ , NH ₄ ⁺ , TEN&EON Net rates of N mineralization and nitrification	The indophenol blue method followed by colorimetry for NH4 ⁺ ; AutoAnalyzer (TRAACS 800, Bran+Luebbe, Tokyo, Japan) for NO3 ⁻ and TEN&EON TUAT.	The denitrifier method; An IRMS (Finnigan Delta XP) coupled with Precon and GC (Agilent, HP6890); TUAT
BFS	Calcareous & Yellow, A ₀ &M (0–10)	July, 2010	8	6.9	Same as that of GFP	Same as that of GFP	Same as that of GFP
GPF	Yellow, A ₀ &M (0–10)	July, 2010	8	4.8	Same as that of GFP	Same as that of GFP	Same as that of GFP
SLS	Calcareous & Yellow, A ₀ &M (0–10)	July, 2010	8	6.3	Same as that of GFP	Same as that of GFP	Same as that of GFP
KGL	Cinnamon, A ₀ &M (0–20)	October, 2012	9	4.0	Concentrations of (0.5N K ₂ SO ₄)-extractable	AutoAnalyzer (QuAAtro 2-HR, BL-Tech, Osaka, Japan); TUAT	The denitrifier method; An IRMS (model 20-22; Sercon Ltd) with the

(Continued, soil sampling and analysis)

					NO ₃ ⁻ , NH ₄ ⁺ , EON; Net rates of N mineralization and nitrification		same instrument setting and protocol as (29)
KGU	Cinnamon, A ₀ &M (0–20)	October, 2012	9	3.8	Same as that of KGL	Same as that of KGL	Same as that of KGL
KCF	Cinnamon, A ₀ &M (0–20)	September, 2013	9	N.A	Same as that of KGL	Same as that of KGL	Same as that of KGL
TMU	Cinnamon, A ₀ &M (0–20)	September, 2012	9	3.7	Concentrations and isotopes of (0.5N K ₂ SO ₄)- extractable NO ₃ ⁻ , NH ₄ ⁺ , EON; Net rates of N mineralization and nitrification	Same as that of KGL	Same as that of KGL
TML	Cinnamon, M (0–10)	September, 2012 for soil extractions; November, 2011 to April, 2012 for soil solutions at depths of 15, 30, 50cm, respectively	3	3.7	Same as that of TMU See Table S1	Same as that of KGL	Same as that of KGL
ТКВ	Cinnamon, A ₀ &M (0–20)	Septemb er, 2012	9	4.5	Same as that of TMU	Same as that of KGL	Same as that of KGL
KTS	Cinnamon, M (0–20)	September, 2012	6	4.7	Same as that of TMU	Same as that of KGL	Same as that of KGL

YST- II	Cinnamon, A ₀ &M (0–20)	September, 2012	9	4.9	Same as that of TMU	Same as that of KGL	Same as that of KGL
YST- III	Cinnamon, A ₀ &M (0–20)	September, 2012	9	4.2	Same as that of TMU	Same as that of KGL	Same as that of KGL
TFS- MAT	<i>Cryaquep</i> , A ₀ &M (0–15)	August, 1990-2006 July-August, 2012 (soil solutions only)	135	N.A	Same as that of KMS. See Table S1, Figs.S1&S2	Spectrophotometer and auto-analyzer; MBL	N.A
TFS- MNT	<i>Cryaquep</i> , A ₀ &M (0–15)	August, 1998-2006	54	N.A	Same as that of TFS-MAT	Same as that of TFS- MAT	N.A
IMT	Cryaquep, A ₀ &M (*)	July-August, 2000	93	N.A	Total N% and δ^{15} N; Concentrations of (2N KCl)-extractable NO ₃ ⁻ , NH ₄ ⁺ , EON; δ^{15} N-NH ₄ ⁺ ; Net rates of N mineralization and nitrification See Figs.S1 and S2	The buried-bag and field- incubation method (1 st - July to 12 th -August) for net N rates; Others same as that of TFS-MAT	EA-IRMS for total N% and δ^{15} N. Diffusion method for δ^{15} N-NH ₄ ⁺ ; MBL (30)
SAG	<i>Cryaquep</i> , A ₀ &M (0–15)	August, 1987-2005	151	N.A	Same as that of TFS-MAT	Same as that of TFS- MAT	N.A

*Samples were collected by each horizon (including Oa, Oe, Oe+a, Oi, Oi+a, Oi+e layers, if available and visible) along the landscape toposequence (crest and shoulder, footslope, lower backslope, upper backslope). Soils of tundra sites are histic pergelic cryaquepts overlying a silty mineral soil and permafrost. A₀, organic layer. M, mineral soil. EON, dissolved organic N (the difference between total dissolved N and (NO₃⁻ plus NH₄⁺-N)). CAS, Chinese Academy of Sciences; TUAT, Tokyo University of Agriculture and Technology. MBL, Marine Biology Laboratory. N.A, data not available. IRMS, isotope-ratio mass spectrometer.

Site	Dominant vegetation	Organs collected (time)	Measured N parameters	Methods and labs for total N	Methods and labs for tissue NO3 ⁻
KMS	Herbs, invaded by alien shrubberies	Mature leaves & fine roots (November, 2011)	Leaf total N & total δ^{15} N; Leaf NO ₃ ⁻ concentrations and Δ^{17} O values	EA (Flash2000) coupled with IRMS (MAT-253); IGCAS	The denitrifier method; A GC-ECD (GC-14B, Shimadzu) for concentrations
GFP	Conifer (P&S), mainly <i>Pinus</i>	Mature leaves & fine roots (July, 2010)	Total N& δ^{15} N; Tissue NO ₃ ⁻ concentrations & tissue NO ₃ ⁻ isotopes	EA (Flash1112) coupled with IRMS (Delta-XP); TUAT	Same as that of KMS for concentrations; IRMS (Delta XP) coupled with Precon and GC (Agilent, HP6890) for δ^{15} N and δ^{18} O; TUAT. Thermal decomposition coupled with an IRMS (Delta Plus Advantage) for Δ^{17} O, UW.
BFS	Shrubbery (S), a mixture of Broadleaves & evergreen shrubs	Same as that of GFP	Same as that of GFP	Same as that of GFP	Same as that of GFP
GPF	Conifer (P&S), mainly <i>Pinus</i>	Same as that of GFP	Same as that of GFP	Same as that of GFP	Same as that of GFP

(Continued, plant sampling and analysis)

SLS	Shrubbery (S), mixed by broadleaves & evergreen shrubs	Same as that of GFP	Same as that of GFP	Same as that of GFP	Same as that of GFP
KGL	Conifer (P&S), mainly <i>Chamaecyparis obtusa</i> , with understories mixed by deciduous & evergreen shrubs	Same as that of GFP (October, 2012)	Total N & total δ^{15} N; Tissue NO ₃ ⁻ concentrations (all available) & tissue NO ₃ ⁻ isotopes (available for leaf samples only)	Same as that of GFP	Same as that of KMS for concentrations and Δ^{17} O. An IRMS (model 20-22; Sercon Ltd) with the same instrument setting and protocol as (29) for δ^{15} N and δ^{18} O, TUAT.
KGU	Assembling that of KGL	Same as that of KGL	Same as that of KGL	Same as that of GFP	Same as that of KGL
KCF	Assembling that of KGL	Same as that of GFP (September, 2013)	Leaf total N & total δ^{15} N; Leaf NO ₃ ⁻ concentrations	Same as that of GFP	Same as that of KGL
TMU	Assembling that of KGL, but N-saturated	Mature leaves only for <i>Aucuba</i> <i>japonica</i> (November, 2011; March, June, November, 2012), Mature leaves & fine roots for all studying species (September, 2012)	Same as that of GFP	Same as that of GFP	Same as that of KGL
TML	With very few <i>C. obtusa</i> , but N-saturated	Same as that of TMU	Same as that of GFP	Same as that of GFP	Same as that of KGL
ткв	Assembling that of KGL	Mature leaves & fine roots (February, 2012 only for <i>C.</i> <i>obtusa</i> & <i>Cryptomeria</i> <i>japonica</i> ; September, 2012 for <i>C. obtusa</i> & understories)	Same as that of KGL	Same as that of GFP	Same as that of KGL
KTS	Assembling that of KGL	Mature leaves & fine roots (September, 2012)	Same as that of KGL	Same as that of GFP	Same as that of KGL

YST-II	Assembling that of KGL	Same as that of KTS	Same as that of KGL	Same as that of GFP	Same as that of KGL
YST-III	Assembling that of KGL	Same as that of KTS	Leaf total N & total δ^{15} N; Leaf NO ₃ ⁻ concentrations	Same as that of GFP	Same as that of KGL
TFS- MAT	Acidic tundra, mainly as the grass of <i>Eriophorum</i> , mixed with few deciduous shrubs such as <i>Betula</i> , <i>Salix</i> ; evergreen shrubs such as <i>Cassiope</i> , <i>Rhododendron</i> ; forb such as <i>Polygonum</i> ; sedge such as <i>Carex</i> ; and <i>Sphagnum</i>	Leaves (August, 2001; August, 2010); Roots (June, 2010); Leaves & roots in short-term fertilizing plots (August, 2012); Leaves & roots at pristine/control sites and leaves in LTER blocks/plots (July-August, 2012)	Leaf N% and total δ^{15} N ratios (August, 2001); Leaf NRA (control and fertilizing plots); Tissue NO ₃ ⁻ concentrations (all samples) & tissue NO ₃ ⁻ isotopes (roots collected in 2007; Part of leaves collected in 2010 and 2012)	AutoAnalyz er III for NRA; EA- IRMS for total N, CER Kyoto University	A GC-ECD (GC-2014, Shimadzu) for plants collected from fertilizing plots. Others same as that of GFP
TFS- MNT-T	Non-acidic and tussock, mainly <i>Eriophorum, Carex,</i> <i>Cassiope, Polygonum,</i> Equisetum, <i>Sphagnum</i>	Leaves & roots at pristine/control sites and leaves only in LTER blocks/plots (July-August, 2012)	Leaf NRA (control and fertilizing plots); Tissue NO ₃ ⁻ concentrations only.	Same as that of TFS- MAT	Same as that of TFS- MAT
TFS- MNT- NT	Non-acidic & non-tussock, assembling species of MNT-T	Leaves & roots at pristine/control sites and leaves only in LTER blocks/plots (July-August, 2012)	Tissue NO ₃ - concentrations only	N.A	Same as that of TFS- MAT
TFS- Heath	Low productivity, mixed by Betula, Arctous, Juniperus, Rhododendron, Vaccinium, Polygonum	Leaves & roots at pristine/control sites and leaves only in LTER blocks/plots (July-August, 2012)	Tissue NO ₃ - concentrations only	N.A	Same as that of TFS- MAT
TFS- Wet sedge	Mainly as the sedge, grass of <i>Eriophorum</i> , <i>Sphagnum</i> ,	Leaves & roots at pristine/control sites and leaves	Tissue NO ₃ ⁻ concentrations only	N.A	Same as that of TFS- MAT

	mixed with a few <i>Vaccinium</i> and <i>Betula</i> species	only in LTER blocks/plots (July-August 2012)			
TFS- Shrub	High productivity, mainly as the deciduous shrub of <i>Salix</i> , mixed with <i>Sphagnum</i> and a very few other species	Leaves & roots at pristine/control sites and leaves only in LTER blocks/plots (July-August, 2012)	Tissue NO ₃ - concentrations only	N.A	Same as that of TFS- MAT
IMT	Assembling species compositions of MAT	Leaves of plants at pristine sites along the landscape topsequence (Crest & shoulder, footslope, lower backslope, upper backslope) (July-August, 2001)	Leaf NRA (pristine sites); Leaf N% and total δ^{15} N ratios	EA-IRMS with a manual "cryoflow' system, MBL (30)	N.A

S, secondary; P, planted; M, mineral soil; O, organic layer; NRA, nitrate reductase activity. IGCAS, Institute of Geochemistry, Chinese Academy of Sciences. UA, University of Washington. N.A, data not available.

Leaf Species, Site Leaf NO₃⁻ Root NO₃-Leaf N $\delta^{15}N$ 2635.1±245. 2.1 ± 0.0 -1.1±0.2 Aucuba japonica, TKB $2.1\pm0.2(4)$ 8 (4) (4)(4) $\overline{1.0\pm0.0}$ (6) $\overline{28.6\pm3.6}(4)$ Cryptomeria japonica, TKB n.a n.a 2.1±0.3 316.9±310.3 1.5 ± 0.0 -0.9 ± 0.1 Chamaecyparis obtusa, TKB (13)(2)(4)(4)142.3±85.1 1.3±0.1 -2.3 ± 0.2 1.1 ± 0.1 (4) Eurya japonica, TKB (4)(4)(4) 292.4±49.8 2.2 ± 0.1 -4.7±0.2 Aucuba japonica, TMU $0.8\pm0.3(4)$ (4)(17)(17)1.3±0.0 -4.7 ± 0.4 26.9±3.2 (4) Chamaecyparis obtusa, TMU $0.9\pm0.3(4)$ (4)(4)546.4±83.2 1.3±0.1 -4.9 ± 0.5 Eurya japonica,TMU $0.8\pm0.2(4)$ (4)(4)(4) -1.5 ± 0.0 2.0 ± 0.1 1.1 ± 0.1 (4) Pyracantha fortuneana, BFS $0.7\pm0.0(4)$ (4)(4)2.3±0.0 -3.3±0.0 $0.8\pm0.2(4)$ $1.9\pm0.1(4)$ Quercus mongolica, BFS (4)(4)2.6±0.2 -2.0 ± 0.1 Vitex negundo, BFS $0.9\pm0.2(4)$ $4.5\pm0.9(4)$ (4)(4)1.9±0.1 271.0±78.3 -0.6 ± 0.4 $0.4\pm0.0(4)$ Aucuba japonica, YST-III (4)(4)(4)Chamaecyparis obtusa, YST-1.3±0.0 -1.4 ± 0.2 $0.9\pm0.2(4)$ $0.4\pm0.1(4)$ Ш (4)(4)1.4±0.0 1.0±0.5 $0.5\pm0.1(4)$ 55.5±6.8 (4) Eurya japonica, YST-III (4)(4)1150.7±213. 2.3±0.1 -2.9±0.3 Aucuba japonica, TML 1.5±0.7 (4) 7(4) (14)(14)225.3±32.4 1.3±0.1 -6.2 ± 0.2 0.6±0.1 (4) Eurya japonica, TML (4)(4)(4)2.2±0.1 -1.7±0.1 $1.4 \pm 0.0(4)$ Pinus massoniana, GFP $2.1\pm0.1(4)$ (4)(4) 2.0 ± 0.1 -0.5±0.1 0.8±0.1 (4) Pyracantha fortuneana, SLS $0.6\pm0.0(8)$ (8)(8) 1.5 ± 0.1 -1.6 ± 0.1 Quercus mongolica, SLS 0.7 ± 0.1 (8) $1.3\pm0.1(4)$ (8)(8) 1.9 ± 0.1 -1.4 ± 0.2 Vitex negundo, SLS $0.6\pm0.0(8)$ $1.8\pm0.2(4)$ (8)(8)1.6±0.1 -3.5 ± 0.3 Pinus massoniana. GPF $1.4\pm0.2(8)$ $0.6\pm0.1(8)$ (8)(8)281.0±112.2 2.1 ± 0.0 -0.4 ± 0.2 Aucuba japonica, KTS $0.4\pm0.0(4)$ (4)(4)(4) 1.3 ± 0.0 -0.2 ± 0.3 $0.5\pm0.2(4)$ $3.9 \pm 1.6(4)$ Chamaecyparis obtusa, KTS (4)(4)

Table S2. Mean NO₃⁻ concentrations in leaves and roots (μ g N/g, dw), total leaf N (%) and δ^{15} N (‰) in plants across arctic and non-arctic sites. Mean ± SE (number of replicate samples) are shown. n.a indicating data not available.

Europian aniog VTS	0.5 + 0.1 (4)	87.9 ± 40.2	$1.4{\pm}0.1$	$0.9{\pm}0.7$
Ευιγά μαροπιζά, ΚΤ	0.3±0.1 (4)	(4)	(4)	(4)
Imperata cylindrical KMS	0.9+0.1(2)	na	0.8 ± 0.0	-1.1±0.2
	0.7±0.1 (2)	11.a	(15)	(15)
Sporobolus virginicus KMS	0.7+0.0(2)	na	0.7 ± 0.0	-0.8 ± 0.3
Sporobotus virginicus, Kins	0.7±0.0 (2)	ii.u	(11)	(11)
Terricolous mosses. KMS	1.2 (1)	n.a	0.8 ± 0.0	-1.5±0.3
	112 (1)		(4)	(4)
Eupatorium adenophora,	3.8±2.2 (4)	n.a	2.5 ± 0.1	2.6 ± 0.7
KMS			(15)	(15)
Chamaecyparis obtusa, KGL	0.4±0.1 (4)	2.8±1.1 (4)	0.9 ± 0.0	-3.9 ± 0.7
			(4)	(4)
Eurya japonica, KGL	0.6±0.1 (4)	0.7±0.2 (4)	1.1 ± 0.0	-3.2 ± 0.1
			(4)	(4) 1 6±0 0
Pieris japonica, KGL	0.8±0.1 (4)	0.5±0.1 (4)	1.7 ± 0.0 (4)	-1.0 ± 0.0 (4)
			1 2+0 0	-6 3+0 3
Gleichenia japonica, KGL	0.9±0.1 (4)	0.3 ± 0.1 (4)	1.2 ± 0.0 (4)	(4)
~			0.8±0.0	-6.8±0.2
Chamaecyparis obtusa, KGU	0.3 ± 0.1 (4)	$0.4\pm0.0(4)$	(4)	(4)
		0.4.0.0.(4)	1.0±0.1	-2.7±0.2
Eurya japonica, KGU	0.6±0.0 (4)	0.4±0.0 (4)	(4)	(4)
	$0.5 \cdot 0.1 (4)$	$0.4 \cdot 0.1(4)$	1.0±0.0	1.4±0.1
Pieris japonica, KGU	$0.5\pm0.1(4)$	$0.4\pm0.1(4)$	(4)	(4)
Claichania ianoniaa KCU	0.8 ± 0.1 (4)	$0.1 \pm 0.0(4)$	1.6±0.1	-6.2±0.2
Спекспении јарониса, КСС	0.8±0.1 (4)	0.1±0.0 (4)	(4)	(4)
Aucuba japonica VST-II	0.6+0.1(4)	329.1±191.2	1.6 ± 0.0	-3.4 ± 0.3
	0.0±0.1 (+)	(4)	(4)	(4)
Chamaecyparis obtusa, YST-	2,2+0,3,(4)	17+05(4)	1.2 ± 0.1	-3.8 ± 0.1
<i>II</i>	2.2±0.3 (1)	1.7±0.5 (1)	(4)	(4)
Eurva japonica. YST-II	$0.5\pm0.1(4)$	18±7.7 (4)	1.3±0.0	-0.3±0.2
	0.02011 (1)	10=/// (/)	(4)	(4)
Hydrangea hirta, YST-II	1.1±0.1 (4)	2.6±1.0 (2)	2.2 ± 0.0	0.5 ± 0.1
, , , , , , , , , , , , , , , , , , , ,			(4)	(4)
Chamaecyparis obtusa, KCF	0.3±0.1 (6)	n.a	0.8 ± 0.0	-3.3 ± 0.3
			(0)	(0)
Eurya japonica, KCF	0.2±0.0 (6)	n.a	1.1 ± 0.0	0.1 ± 0.4
			(0)	22+05
Lindera triloba, KCF	0.9±0.2 (6)	0.6±0.2 (3)	2.0±0.1 (6)	-2.2±0.3
Arctostanhylos alpina TFS-			18+00	(0)
MAT	n.a	n.a	(3)	n.a
			2.5 ± 0.1	-6.4±0.4
Betula nana, TFS-MAT	$0.2\pm0.0(3)$	$0.8\pm0.2(6)$	(9)	(8)
	0.4.00.00		3.0±0.0	2.4±0.2
Carex bigelowii, TFS-MAT	0.4±0.0 (3)	$0.7\pm0.2(7)$	(8)	(8)
Cassiope tetragona, TFS-	0.2.01(4)	0.4.(1)	1.1±0.0	-4.6±0.4
MAT	0.3 ± 0.1 (4)	0.4 (1)	(8)	(5)

Dmag integrifelig TES MAT	n 0	n 0	1.6 ± 0.1	n 0
Dryas integrijotia, 1FS-MAT	11.a	11.a	(3)	11.a
Equipatum amanga TES MAT		n 0	2.5±0.1	n 0
Equiseium arvense, 1FS-MAI	n.a	n.a	(3)	n.a
Eriophorum angustifolium,			2.3±0.0	1.6 ± 0.8
TFS-MAT	n.a	n.a	(3)	(9)
Eriophorum vaginatum, TFS-	0.2.01(6)	0.0.05(2)	2.5±0.1	
MAT	0.3 ± 0.1 (6)	$0.9\pm0.5(3)$	(8)	n.a
Rhododendron tomentosum.			1.2 ± 0.1	-6.1±0.6
TFS-MAT	$0.1\pm0.0(3)$	0.4 (1)	(3)	(3)
Polygonum bistorta, TFS-	13.5+5.5		3.8+0.1	0.9+0.3
MAT	(11)a	n.a	(13)	(6)
Rhododendron lapponicum	(11)w		14+01	(0)
TFS-MAT	n.a	n.a	(3)	n.a
Rubus chamagmorus TES-			30+01	
Matin	n.a	n.a	5.0 ± 0.1 (4)	1.5 (1)
1/1/11			(-, -)	
Salix alaxensis, TFS-MAT	$0.3\pm0.0(3)$	1.2 ± 0.1 (4)	2.5 ± 0.2	-3.0 (1)
			(3)	
Salix reticulata, TFS-MAT	n.a	n.a	1.9 ± 0.2	n.a
Variation aliaina anna TES			(3)	
vaccinium uliginosum, 1FS-	n.a	n.a	2.2 ± 0.1	-4.0(1)
MAI			(3)	
Vaccinium vitis-idaea, TFS-	n.a	n.a	0.8±0.0	-7.1 (1)
MAT			(3)	
Betula nana. TFS-MNT	n.a	n.a	2.6 ± 0.1	-6.0±0.3
			(5)	(5)
Sphagnum, TFS-MAT	$0.0\pm0.0(3)$	n.a	n.a	n.a
Carex bigelowii, TFS-MNT	0.4(1)	1.2(1)	3.3±0.1	2.5 ± 0.4
	0.1 (1)	1.2 (1)	(5)	(5)
Cassiope tetragona, TFS-	0.0+0.0(4)		1.1 ± 0.0	-5.9 ± 0.2
MNT	0.0±0.0(1)		(4)	(4)
Eriophorum vaginatum, TFS-	0.2+0.0(4)	0.4.(1)	2.6 ± 0.1	2.5 ± 0.1
MNT	0.2±0.0 (+)	0.+(1)	(5)	(5)
Equisetum arvense, TFS-	0.2+0.1(5)	na	na	na
MNT	0.2±0.1 (3)	11.a	11.a	11.a
Polygonum bistorta, TFS-	29.3±16.7	0.5+0.1(18)	na	1.1 ± 0.2
MNT	(10)b	0.5±0.1 (10)	11.a	(5)
Sphagnum, TFS-MNT	$0.0\pm0.0(6)$	n.a	n.a	n.a
Arctostaphylos rubra, TFS-	0.1.(1)	0.4.(1)		
Heath	0.1 (1)	0.4 (1)	11.a	11.a
Betula nana, TFS-Heath	$0.2\pm0.0(3)$	0.3 (1)	n.a	n.a
Juniperus communis, TFS-	0.0 (1)	0.4.(1)		
Heath	0.0(1)	0.4 (1)	n.a	n.a
Rhododendron tomentosum,				
TFS-Heath	0.2 (1)	0.6(1)	n.a	n.a
Polygonum bistorta. TFS-		0.1.00.00		
Heath	$0.6\pm0.3(3)$	$0.1\pm0.0(3)$	n.a	n.a
Vaccinium TFS-Heath	0.1+0.1(2)	1.8 (1)	n a	na
Sphagnum TFS-Shrub	0.1+0.0(2)	n a	n a	n a
Spring with, 115 Sillino	0.1_0.0 (2)	11.0	11.4	11.0

Salix alaxensis, TFS-Shrub	0.1±0.0 (5)	0.4±0.1 (4)	n.a	n.a
Betula nana, TFS-Wet sedge	0.1 (1)	0.2 (1)	n.a	n.a
Vaccinium, TFS-Wet sedge	0.1 (1)	0.5 (1)	n.a	n.a
Eriophorum vaginatum, TFS-	$0.2 \pm 0.1(7)$	0.6+0.2(2)	ng	na
Wet sedge	$0.2\pm0.1(7)$	$0.0\pm0.2(2)$	n.a	11.a
Sphagnum, TFS-Wet sedge	0.1±0.0 (4)	n.a	n.a	n.a

a: Mininum=0.7, Maximum=65.8 (unit: μ g N/g, dw); b: Mininum=2.6, Maximun=177.1 (unit: μ g N/g, dw).

Reference for Supporting Information

- 1. Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. *Biogeochemistry* 73:359–380.
- 2. Darrouzet-Nardi A, Weintraub MN (2014) Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. *Soil Biol Biochem* 73:22–32.
- 3. Ludwig B, Teepe R, Lopes de Gerenyu V, Flessa H (2006) CO₂ and N₂O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods—a microcosm study. *Soil Biol Biochem* 38:3516–3519.
- 4. Nordin AI, Schmidt K, Shaver GR (2004) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. *Ecology* 85:955–962.
- 5. Semenchuk PR, et al. (2015) Deeper snow alters soil nutrient availability and leaf nutrient status in high arctic tundra. *Biogeochemistry* 124:81–94.
- 6. Harms TK, Jones JB (2012) Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils. *Glob Change Biol* 18:2958–2968.
- 7. Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska. *Ecosystems* 5:761–774.
- 8. Corzo A, Niell FX (1991) Determination of nitrate reductase activity in *Ulva rigida*, *C. agardh* by the *in situ* method. *J Exp Mar Biol Ecol* 146:181–191.
- 9. Stadler J, Gebauer G (1992) Nitrate reduction and nitrate content in ash trees (*Fraxinus excelsior* L.): distribution between compartments, site comparison and seasonal variation. *Trees* 6:236–240.
- 10. Widmann K, Gebauer G, Rehder H, Ziegler H (1993) Fluctuations in nitrate reductase activity, and nitrate and organic nitrogen concentrations of succulent plants under different nitrogen and water regimes. *Oecologia* 94:146–152.
- 11. Gebauer G, Hahn G, Rodenkirchen H, Zuleger M (1998) Effects of acid irrigation and liming on nitrate reduction and nitrate content of *Picea abies* (L.) Karst. and *Oxalis acetosella L. Plant Soil* 23:59–70.
- 12. Koyama L, Tokuchi N, Fukushima K, Terai M, Yamamoto Y (2008) Seasonal changes in nitrate use by three woody species: the importance of the leaf-expansion period. *Trees* 22:851–859.
- 13. Koba K, Tokuchi N, Yoshioka T, Hobbie EA, Iwatsubo G (1998) Natural abundance of nitrogen-15 in a forest soil. *Soil Sci Soc Am J* 62:778–781.
- 14. Koyama L, Tokuchi N (2003) Effects of NO₃⁻ availability on NO₃⁻ use in seedlings of three woody shrub species. *Tree Physiol* 23:281–288.
- 15. Koyama L, Tokuchi N, Hirobe M, Koba K (2001) The potential of NO₃⁻-N utilization by a woody shrub species *Lindera triloba*: a cultivation test to estimate the saturation point of soil NO₃⁻-N for plants. *The Scientific World J.* 1:514–9.

- 16. Koyama L, Hirobe M, Koba K, Tokuchi N (2013) Nitrate-use traits of understory plants as potential regulators of vegetation distribution on a slope in a Japanese cedar plantation. *Plant Soil* 362:119–134.
- 17. Krywult M, Karolak A, Bytnerowicz A (1996) Nitrate reductase activity as an indicator of ponderosa pine response to atmospheric nitrogen deposition in the San Bernardino Mountains. *Environ Pollut* 93:141–146.
- 18. Tang MH, Porder S, Lovett GM (2012) Species differences in nitrate reductase activity are unaffected by nitrogen enrichment in northeastern US forests. *Forest Ecol Manag* 275:52–59.
- Sakar FS, Arslan H, Kırmızı S, Güleryüz G (2010) Nitrate reductase activity (NRA) in *Asphodelus aestivus* Brot. (Liliaceae): distribution among organs, seasonal variation and differences among populations. *Flora-Morphology, Distribution, Funct Ecol Plants* 205:527–531.
- Fortier J, Truax B, Lambert F, Gagnon D, Chevrier N (2012) Clone-specific response in leaf nitrate reductase activity among unrelated hybrid poplars in relation to soil nitrate availability. *Int J Forestry Res* 2012:1–10.
- 21. Cedergreen N, Madsen TV (2003) Light regulation of root and leaf NO₃⁻, uptake and reduction in the floating macrophyte *Lemna minor*. *New Phytol* 161:449–457.
- 22. Liu XY, et al. (2012) Preliminary insights into δ^{15} N and δ^{18} O of nitrate in natural mosses: A new application of the denitrifier method. *Environ Pollut* 162:48–55.
- 23. Nadelhoffer K, et al. (1996) ¹⁵N natural abundances and N use by tundra plants. *Oecologia* 107:386–394.
- 24. Morin S, et al. (2012) An isotopic view on the connection between photolytic emissions of NO_x from the Arctic snowpack and its oxidation by reactive halogens. *J Geophys Res* 117:D00R08.
- 25. Fang YT, et al. (2015) Microbial denitrification dominates nitrate losses from forest ecosystems. *Proc Nat Acad Sci USA* 112:1470–1474.
- 26. Heikoop JM, et al. (2015) Isotopic identification of soil and permafrost nitrate sources in an arctic tundra ecosystem. *J Geophys Res* 120:1000–1017.
- Schulze ED, Chapin III FS, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. *Oecologia* 100:406– 412.
- 28. Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ^{15} N and nitrogen concentrations may indicate plant-mycorrhizal interactions. *Oecologia* 122:273–283.
- 29. McIlvin MR, Casciotti KL (2011) Technical updates to the bacterial method for nitrate isotopic analyses. *Anal Chem* 83:1850–1856.
- Fry B, et al. (1996) Cryoflow: cryofocusing nanomole amounts of CO₂, N₂, and SO₂ from an elemental analyzer for stable isotopic analysis. *Rapid Commun Mass Spectrom* 10:953–958.