Supplemental Information Appendix

Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with

differentiation in shoot and root

Wanpeng Wang^{1,2}, Paja Sijacic^{1#}, Pengbo Xu³, Hongli Lian³, Zhongchi Liu^{1*}

1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States.

2. Plant Science Graduate Program, University of Maryland, College Park, United States.

3. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China.

*: Corresponding author Zhongchi Liu (<u>zliu@umd.edu)</u> (301) 405-1586

#: Current address Department of Biology, Emory University, Atlanta, United States

Key words: MYB3R1, DREAM complex, Cell cycle, meristem, TSO1

Short title: A cell cycle regulatory module in plant meristems

Supplemental Figures

Figure S1. Scheme of the suppressor screen and constructing the mapping population.

(A) *tso1-1; 35S::TSO1-GR* seeds were treated with EMS. Seeds were then germinated on soil. Since these M1 *tso1-1; 35S::TSO1-GR* plants were completely sterile, they were sprayed with DEX at bolting to give rise to M2 seeds. M2 plants derived from ~3000 M1 families were grown and screened for their ability to set seeds in the absence of DEX treatment. (B) Individual suppressor was back crossed with its wild type parent *tso1-1; 35S::TSO1-GR*. F1 cross progeny was supplied with DEX to set F2 seeds. F2 plants were scored and separated into suppressed and unsuppressed mapping populations. F2 plants showing suppressed phenotype were pooled and their DNA sequenced for identifying linked SNPs to the suppressor mutation. BC: Backcross. Red shoot apex denotes fertile flowers.

Figure S2. Quantification of suppression based on the number of seeds produced per silique.

Box plot of seeds per silique from WT (Ler) and 19 suppressors (17 new *myb3r1* alleles and 2 new *tso1* alleles). Multiple identical mutations were isolated and were denoted identical allele number. Background mutations may contribute to the extent of the suppression. Data ranked and ordered by median. Around 10 siliques were sampled from representative M3 suppressor plants.

Figure S3. Genome wide SNP mapping of five *tso1-1* suppressors identified two distinct loci.

(A-C) Genome wide SNP mapping of F2 mapping populations for suppressor A317 (A), B636 (B), and B763 (C). Linked SNP peak in each case resides at the lower arm of *Arabidopsis* chromosome 4. In each of the three cases, a mutation was subsequently found in *MYB3R1*. (D-E) SNP mapping of F2 mapping population for suppressor A156 (D) and A176 (E). Both mapped to the top arm of chromosome 3. In each case, a mutation was found in the *TSO1* gene. Y-axis indicates the ratio of linked SNPs to all SNPs detected in a 100,000bp sliding window. X-axis denotes position on the chromosome.

Figure S4. TSO1 RNA expression in roots.

Heatmap of two clusters of genes (cluster 4 and 10) showing highest expression in the meristematic zone (especially section 2 of the meristematic zone). TSO1 belongs to cluster 4 and 10. Series cross sections of the root were collected and subjected to transcriptome profiling using ATH1 DNA microarray¹. Genes showing distinct expression pattern along the longitudinal axis of the root are clustered by fuzzy k-means clustering. The data and the root schematic drawing are from Brady et al. (2007)¹.

Figure S5. The effect of *35S::MYB3R1* and *gMYb3R1* transgenes in different backgrounds.

(A) Phenotypically wild type (WT) inflorescence of a *tso1-3/+* plant.

(B) A 35S::MYB3R1; tso1-3/+ transgenic plant showing a wild type phenotype.

(C) A *tso1-1; myb3r1-9* double mutant inflorescence showing a wild type phenotype.

(**D**) Inflorescence of a *tso1-1; myb3r1-9* double mutant showing the suppressed phenotype even in the presence of *35S::MYB3R1*, indicating that *35S::MYB3R1* failed to rescue *myb3r1-9*.

(E) Inflorescence of a *tso1-1; myb3r1-9* double mutant showing the *tso1-1* mutant phenotype in the presence of the gMYB3R1 transgene. This indicates that the gMYB3R1 transgene complemented the myb3r1-9 mutation.

Figure S6. Correlation between *gMYB3R1(S656D)* transgene expression and phenotype severity.

(A) Inflorescence shoots showing the fertility defect of three different *gMYB3R1(S656D); tso1-3* transgenic lines.

(**B**) Quantitative measurement of the fertility defect (seeds per silique) in the three gMYB3R1(S656D); tso1-3 transgenic lines in comparison to tso1-3. Total number of siliques analyzed per line (at 10 siliques per plant) is indicated beneath each column in parentheses. Enhanced sterility exhibited by each the three transgenic lines when compared with tso1-3 is statistically significant, which is indicated by two asterisks (p<=0.01) or three asterisks (p<=0.001). The statistic test used is two-tailed two-sample t.test.

(**C**) qRT-PCR results showing relative transgene expression level in each of the three gMYB3R1(S656D); tso1-3 transgenic lines. In addition, the wild type gMYB3R1(WT) transgene (line #1) did not cause any phenotypes even though it was expressed at a high level.

Supplemental References

1 Brady et al. (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. *Science* 318(5851):801–806.

Table S1. Summary of <i>tso1-1</i> suppressors						
Suppressor	Gono	Allele	Evidence	Pasa chango	Amino acid	Notation
Alec	Teo1		Monning	C A onliging donor gits of the 9th intron	change	Notation
A 150	1501	1501-7	марріпд	G-A splicing donor site of the oth intron		
A176	TSO1	tso1-8	Mapping	G-A splicing acceptor site of the 1st intron		
B378	TSO1	tso1-9	Complementation test	Complementation test		
A144	Chromosome 1		Mapping			
A317	MYB3R1	myb3r1-14	Mapping	C-T / CGA-TGA	Arg-stop	R652X
P29	MYB3R1	myb3r1-14	Complementation test	C-T / CGA-TGA	Arg-stop	R652X
B636	MYB3R1	myb3r1-9	Mapping	G-A / GGG-GAG	Gly-Glu	G119E
B763	MYB3R1	myb3r1-12	Mapping	G-A / TGG-TGA	Trp-stop	W143X
B12	MYB3R1	myb3r1-5	PCR_sequencing	G-A / GGa-AGA	Gly-Arg	G88R
B845	MYB3R1	myb3r1-10	PCR_sequencing	G-A / CGC-CAC	Arg-His	R120H
P17	MYB3R1	myb3r1-2	PCR_sequencing	C-T / CAA-TAA	Gln-stop	Q37X
B846	MYB3R1	myb3r1-4	PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
P15	MYB3R1	myb3r1-4	PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
P19	MYB3R1	myb3r1-4	PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
P32	MYB3R1	myb3r1-4	PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
P34	MYB3R1	myb3r1-4	PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
B341	MYB3R1	myb3r1-4	Complementation test/PCR_sequencing	C-T / GCT-GTT	Ala-Val	A62V
B667	MYB3R1	myb3r1-11	Complementation test/PCR_sequencing	G-A / TGT-TAT	Cys-Tyr	C125Y
B759	MYB3R1	myb3r1-6	Complementation test/PCR_sequencing	G-A / TGG-TGA	Trp-stop	W90X
P11	MYB3R1	myb3r1-8	Complementation test/PCR sequencing	G-A / GAT-AAT	Asp-Asn	D95N
B741	MYB3R1	myb3r1-13	Complementation test/PCR_sequencing	G-A / GAG-AAG	Glu-Lys	E146K

				G-A splicing donor site of the 5th intron		
D2	MVP2D1	muh2r17	Complementation	and the 6th	premature	
FJ		11190311-7	Complementation	G-A splicing acceptor site of the 3rd		
P7	MYB3R1	myb3r1-3	test/PCR_sequencing	intron/gatcagGACGA	premature stop	codon
			Complementation	G-A splicing acceptor site of the 3rd		
P8	MYB3R1	myb3r1-3	test/PCR_sequencing	intron/gatcagGACGA	premature stop	codon
P9	MYB3R1	mvb3r1-3	test/PCR sequencing	G-A splicing acceptor site of the 3rd intron/gatcagGACGA	premature stop	codon
			Complementation	G-A splicing acceptor site of the 3rd		
P10	MYB3R1	myb3r1-3	test/PCR_sequencing	intron/gatcagGACGA	premature stop	codon
D10			Complementation	G-A splicing acceptor site of the 3rd	nuovo et uno et e n	aadaa
P12	INIT BOR I	TTYD3F1-3	lest/PCR_sequencing	Intron/gatcagGACGA	premature stop	codon
A40	MYB3R1		Complementation test			
B447	MYB3R1		Complementation test			
B478	MYB3R1		Complementation test			
B783	MYB3R1		Complementation test			
P18	MYB3R1		Complementation test			
P20	MYB3R1		Complementation test			
P21	MYB3R1		Complementation test			
P22	MYB3R1		Complementation test			
P30	MYB3R1		Complementation test			
B701	Not determined					
P13	Not determined					
P14	Not determined					
P4	Not determined					
P6	Not determined					
B847	Not determined					
P5	Not determined					
P16	Not determined					

Table S	2. Summar	v of transgenic	studies using	1 35S::MYB3R1	and aMYB3R1
		,		,	

Background	Transgene →	35S::MYB3R1	gMYB3R1^	gMYB3R1 (S656D)^	gMYB3R1 (S709D)^
WT*	Transgenic phenotype	Same as WT	Same as WT	Same as WT	Same as WT
	No. lines analyzed [#]	12	10	8	2
tso1-3	Transgenic phenotype	Same as tso1-3	Same as tso1-3	Stronger than tso1-3	Same as tso1-3
	No. lines analyzed [#]	10	2	3	4
tso1-1; myb3r1-9 (B636)	Transgenic phenotype	Failed to rescue myb3r1-9	Rescued myb3r1-9	NA	NA
	No. lines analyzed [#]	4	2		

* Phenotypically wild type plants either heterozygous for *tso1* or +/+. ^ These *gMYB3R1* transgenes are all tagged by GFP

At least 20 T1 transgenic lines were generated for each construct. These transgenic lines showed the phenotype indicated in the table. The indicated number of lines refers to the number of lines further analyzed and documented.

Table S3. Primers used in this study						
Primer name	Sequence	Contruct	Purpose			
TSO1-GR.F	cgcggatcctATGgacaaatcccagaagaatc	35S::TSO1-GR	Induciable TSO1-GR system			
TSO1-GR.R	cgcggatccttaCActgatttgggttgagaga	35S::TSO1-GR				
TSO1.geno.F	ATAAGCTTCACCTTGCTGTTCCAAGACAC					
TSO1.geno.R	CTGATTTGGGTTGAGAGAAGGAAATGC		TSO1 translational reporter			
BamHI-TSO1-F	CTCGGATCCATGGACAAATCCCAGAAG					
Spe1-TSO1-R	CTGACTAGTCACTGATTTGGGTTGAGA		PHB-FLAG-TSO1 vector for Co-IP			
TSO1.3xGFP.n.R	TGATTTGGGTTGAGAGAAGGAAATGC		TSO1-NLS-3xeGFP vector			
AtU6P-F	TGGGTCGACGTAAAGCCTGTAGAAGAGGT	MYB3R1.CRISPR4				
U6P-MYB3R1-4E-R	GCTTGTGAAAGGACCGTCAATCACTACTTCGACTCT AGC	MYB3R1.CRISPR4				
U6T-MYB3R1-4E-F	GTCCTTTCACAAGCTCTGTTTTAGAGCTAGAAATAG CAA	MYB3R1.CRISPR4				
AtU6T-R	ATTGGTACCAAAAATTATATCCTGTGGTCGTATATTA	MYB3R1.CRISPR4	MYB3R1 CRIPSR construct targeting the 4th exon			
pMYB3R1.F	AACTGCAGTATTAGCCAATGAAGGTGGACTAGC	pMYB3R1:GUS	-			
pMYB3R1.R	AAGTCGACAATTAAGACGCTGAGAATCCAGATG	pMYB3R1:GUS	MYB3R1 promoter			
pMYB3R4.F	AACTGCAGAGTCGGTAACATTCTGCCAGAGATG	pMYB3R4:GUS	-			
pMYB3R4.R	AAGTCGACGAGCTTCAGAAATGGAAGTGGTTC	pMYB3R4:GUS	MYB3R4 promoter			
MYB3R1 .F	ATGAAGCGTGAGATGAAAGCAC	-				
MYB3R1 .R	CTATCTGCAACTCTTCAAAAGGTAAGATG	35S::YFP-MYB3R1	YFP-MYB3R1 vector of Co-IP			
S656D.F	AGACTTGCTTGACCCTGTGCTTGATAG					
S656D.R	CGATGCCGCTTCTTTAAG	35S::MYB3R1- S656D	S656D phospho mimiking			
S709D.F	TATATGTGCCGACCCTTCCATAGC	_				
S709D.R	TTTTTATCTTCAGGAGACTCTG	35S::MYB3R1- S709D	S709D phospho mimiking			
MYB3R4.CRIPSR.F	ATTGTCGAGGCCAATGGACAGCTG	-				
MYB3R4.CRIPSR.R	AAACCAGCTGTCCATTGGCCTCGA	MYB3R4.2nd.exon. CRIPSR	MYB3R4 CRISPR construct targeting the 2nd exon			
MYB3R1.3xGFP.n.R	CTGCAACTCTTCAAAAGGTAAGATGAT	gTSO1-NLS- 3xeGFP	gTSO1-NLS-3xeGFP translational reporter			
qPCR.GFP.R	CTCCAGTGAAAAGTTCTTCTCC		qPCR for gMYB3R1-GFP transgene			
qPCR.MYB3R1.F	TGAGTGAACACTCAGCTACGG		qPCR for gMYB3R1-GFP transgene			
AtUBC9-F	CAGTGGAGTCCTGCTCTCACAA		qPCR reference gene control			
AtUBC9-R	CATCTGGGTTTGGATCCGTTA		qPCR reference gene control			

Table S4. Summary of Illumina DNA-seq data							
	Number of plants pooled	Reads in fastq	Mapped reads	overall alignment rate	aligned exactly 1 time	aligned >1 times	
A176NS	50	37,881,321	35,463,736	93.62%	24532907 (64.76%)	10930829 (28.86%)	
A176S	34	36,524,977	34,251,910	93.78%	24009642 (65.73%)	10242268 (28.04%)	
A317NS	50	36,897,865	34,419,918	93.28%	24392999 (66.11%)	10026919 (27.17%)	
A317S	30	43,189,889	40,344,914	93.41%	28756191 (66.58%)	11588723 (26.83%)	
TSO1-GR	3	24,660,032	22,232,665	90.16%	14319121 (58.07%)	7913544 (32.09%)	
A144S	50	46,538,146	43,500,250	93.47%	31742725 (68.21%)	11757525 (25.26%)	
B636S	50	42,847,379	39,978,013	93.30%	28047532 (65.46%)	11930481 (27.84%)	
B763S	50	41,198,897	38,654,995	93.83%	26643726 (64.67%)	12011269 (29.15%)	
A156S	50	43,989,567	41,090,565	93.41%	30646817 (69.67%)	10443748 (23.74%)	
NS: Non-suppressed F2 progenies							
S: Suppressed F2 progenies							