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Lattice Calibrations
We calibrate the lattice depth along the x direction by ampli-
tude modulation spectroscopy, observing the position of the
lowest three Bloch bands (1). The lattice depths along the y
and z directions are calibrated via Raman–Nath diffraction (2).
The lattice depths are calibrated separately for each experi-
ment, and we obtain the following parameters. In the metasta-
bility measurement,Vx = 1.56(5)×Vz,Vy = 30.7(1.6) E 671

R , and
Vz = 11.1(7)E 785

R . In the hysteresis measurement, Vx = 1.12(3)×
Vz, Vy = 26.2(1.1)E 671

R when the y lattice is present and
Vx = 1.02(4) × Vz when the y lattice is switched off, and Vz

ranges from 5.7(4)E 785
R to 12.9(2)E 785

R . In the phase diagram
measurement, Vx = 1.27(11)×Vz, Vy = 26.2(1.1) E 671

R , and Vz

ranges from 4.0(5) E 785
R to 12.9(2) E 785

R . Errors on the lattice
depths in the y and z directions incorporate uncertainties from
the calibration and residual offsets on the photodiodes.

Detuning Calibrations
The BEC couples to two linearly polarized TEM00 eigenmodes
of the cavity, which are tilted by α= 22◦ with respect to the y
and z axes. The resonance frequencies of the eigenmodes are sep-
arated due to birefringence by δB/2π= 2.2 MHz. The detuning
∆c refers to the lower-lying resonance frequency of the mainly
z -polarized mode, and the x lattice is detuned by 2π × 30 MHz
from this mode (Fig. S1). In every experimental repetition, after
atomic absorption pictures are taken, we scan the frequency of the
x lattice across the cavity resonance and fit the resulting photon
signal with a Lorentzian. We deduce a SD of ∆c/2π of 0.3 MHz.

Magnetic Fields and Gradients
We apply a magnetic gradient field levitating the atomic cloud.
In addition, we operate the experiment at a magnetic offset field
large enough to achieve a good separation between the atomic
hyperfine levels to avoid Raman-assisted spin flips induced by the
presence of the lattices and the cavity. We use a magnetic field
of B ≈ 130 G oriented along the z axis and obtain a Zeeman
splitting of about ∆E/h ≈ 90 MHz, well above the maximum
cavity detuning of ∆max

c /2π = −53 MHz.

Trapping Frequencies
In our system, the cloud is magnetically levitated and subject to
a crossed far off-resonant dipole trap. In the absence of optical
lattices, we calculate the trapping frequencies in all three direc-
tions and find (ωx , ωy , ωz ) = 2π × (96, 38, 49) Hz, respectively.
When we include a 671-nm blue-detuned y lattice of depth Vy =

30 E 671
R , which is comparable to our experimental parameters,

together with an increased dipole trap depth, we calculate trap
frequencies of (ωx , ωy , ωz ) = 2π × (116, 38, 67) Hz. In the case
of lattice depths comparable to the maximum lattice depths used
in the experiment (Vx = Vz = 14 E 785

R , Vy = 30 E 671
R ) we calcu-

late trap frequencies of (ωx , ωy , ωz ) = 2π × (219, 221, 193) Hz.
Deconfinement due to changing zero-point energies is taken into
account. We compare our calculations with experimental data
and find good agreement. We estimate an error of about 10%
resulting primarily from uncertainties in the determination of
beam waists at the position of the atoms.

Extraction of the Even–Odd Particle Imbalance ΘΘΘ and Site
Offset δoff from the Measured Photon Flux
We obtain the imbalance Θ from the mean intracavity photon
nph number via

Θ =

∣∣∣∣∣
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〈n̂i〉 −
∑
i∈o

〈n̂i〉
∣∣∣∣∣ =

√
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∆2
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η2M 2
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1
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with

F (∆c) = ∆c

∣∣∣∣∣ cos2α

∆′c − δB + iκ
+

sin2α

∆′c + iκ

∣∣∣∣∣ |∆c|�κ,|δ|,δB≈ 1. [S2]

F (∆c) takes into account the two linearly polarized TEM00

eigenmodes of the cavity. The effective two-photon Rabi fre-
quency is given by η/2π= 2.99

√
Vz/~

√
Hz, the spatial over-

lap of the interference lattice provided by the cavity mode
and the z lattice with the Wannier-function Wi(x , z ) of an
atom localized at lattice site i is given by M0 =

∫ ∫
dx dz

W ∗
i (x , z ) cos (kx ) cos (kz )Wi(x , z ), the cavity decay rate is

κ/2π= 1.25 MHz, and ∆′c = ∆c − δ takes into account the
dispersively shifted cavity resonance, where δ corresponds to
the dispersive shift with a maximum shift per atom of U0/2π=
−56.3 Hz for each of the two cavity modes. A moving average of
window size 4 ms is used on all photon data except for the phase
diagram in Fig. 6 where the window size is 10 ms. Note that tech-
nical noise on the photon detector is converted into an imbalance
Θ. Due to the dependence of Θ on ∆c and Vz, the background
noise causes a noticeable signal far from cavity resonance and
contributes to the small but nonzero imbalance visible in Figs.
2D, Left; 3 A, C, and D; and 4B, Left and to the imbalance visible
in Fig. 6, Lower Left. For further details see ref. 3.

The energy offset δoff between even and odd sites is related to
the strength of the dynamic checkerboard lattice depth formed
by the z lattice and the light scattered into the cavity. It is
defined as

δoff = 4ηM0
√
nph. [S3]

Strength of Effective Atom–Atom Interactions of Global
Range
Taking both cavity modes into account, Ul is given by

Ul = −K |ηM0|2
[

(∆′c − δB) cos2 α
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+
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We take the number of lattice sites to be the number of atoms,
K = N ; for details see ref. 3.

Derivation of the Extended Bose–Hubbard Toy Model
Our system is well described by a Bose–Hubbard Hamiltonian
with additional global-range interactions of the form (3, 4)

Ĥ
~

= −t
∑
<i,j>

(
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+
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, [S5]

where t is the nearest-neighbor tunneling rate, Vi is the site-
dependent harmonic trapping potential, b̂i and b̂†i are the
bosonic annihilation and creator operators at site i , and n̂i =

b̂†i b̂i is the corresponding number operator. In our toy model, we
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assume the limit of zero tunneling and neglect the harmonic trap-
ping potential. We consider a total of N atoms to be distributed
among a fixed number of lattice sites K = N , independent of
the strength of global-range interactions Ul. This is experimen-
tally realistic for deep lattices where an atomic wavepacket can-
not spread more than a few lattice sites during the experiment
due to very small tunneling t .

In the limit of t = 0, the eigenstates of the system are the num-
ber states, and we can replace all of the number operators in Eq.
S5 by the corresponding average values, 〈n̂i〉=ni . We introduce
the imbalance Θ as

Θ = 〈Θ̂〉 =

〈∑
i∈e

n̂i −
∑
i∈o

n̂i

〉
=
∑
i∈e

ni −
∑
i∈o

ni . [S6]

The atomic configuration of least energy for a given imbalance Θ
corresponds to part of the system being in a CDW state, namely
the fraction fCDW = |Θ|/K , while all other atoms are in an MI
state. The CDW is characterized by neven

i = 2 and nodd
i = 0 for

even and odd sites, respectively, while ni = 1 on all lattice sites
in the MI state. The energy of such a state is

〈Ĥ〉 = N ε =
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With N = K , we obtain
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. [S8]

The system changes its ground state from an MI state with
no imbalance to a CDW state with maximum imbalance (|Θ|/
N = 1) at Ul/Us = 1/2 (Fig. 1A). We use this critical point
to calculate the energy barrier per particle between the MI
and the CDW state which is defined as Ebarrier =Em − Eg .
Here Eg = 0 is the ground-state energy and Em =Us/8 is the
maximum energy as a function of Θ at |Θ|/N = 1/2. For
(Vx,Vy,Vz) = (13 E 785

R , 26 E 671
R , 13 E 785

R ), we obtain an energy
barrier of Ebarrier/h = 260 Hz which is much larger than the
single-particle tunneling rate t/2π= 46 Hz.

The presence of a trapping potential can lower the energy of
a state of intermediate imbalance and possibly reduce the height
of the energy barrier between the MI and CDW phases. This
reduction in energy can be as large as 600 Hz at the edge of the
central 2D layer. Assuming such a situation to be present every-
where in the system, the energy barrier per particle is reduced to
about Ebarrier/h = 180 Hz, which is still significantly larger than
the tunneling rate

√
2t (5).

Calculation of Atomic Density Distributions
Number of 2D Layers. We calculate the number of 2D layers based
on the measured atom number and the calculated trap frequen-
cies, following ref. 6. Since the lattice along the y direction is very
deep, we assume the atom number in each 2D layer to be fixed.

Maximum Lattice Filling. Following ref. 7, we calculate the atomic
density as a function of µ/Us and t/Us in the grand canonical
ensemble, where µ is the chemical potential. Using the local
density approximation and calculated trapping frequencies, we
obtain the full density distribution of the atomic cloud which is
used to estimate the maximum filling ni .

Number of Surface Atoms Nsurf. In the metastability measurement
the 2D lattice has different strengths in the x and z directions
(Vx = 17.3 E 785

R , Vz = 11.1 E 785
R ). We estimate Nsurf from the cal-

culated atomic density distribution in a balanced 2D square lat-
tice around the average lattice depth V = 1

2
(Vx +Vz). We obtain

Nsurf = (4−8)× 103 atoms at V = (15−13) E 785
R , respectively.

Evaluation of the Metastability Measurement
The data are taken in a range of final detunings of −36 ≤
∆f

c/2π ≤ −16 MHz with an interval of 0.5 MHz, amounting to
a total of 41 datasets. For every ∆f

c, the experiment is repeated
13−22 times. In each repetition we start with a detuning ramp in
the time interval 0 < T < 20 ms, followed by a free evolution at
20 ≤ T < 70 ms. The imbalance Θ is obtained as the mean of
the imbalance Θ in the time interval 50 < T < 60 ms. The two
distinct imbalance distributions are highlighted by coloring data
with 0 < Θ < 7×103 atoms in orange and data with Θ > 7×103

atoms in green (Fig. 2).
At each final detuning ∆f

c, we take the mean and SD of
data in the orange and green region separately, and we obtain
Fig. 2A. To quantify the gap between the two states, we con-
sider the final detuning region where we find states with both
small and large imbalance simultaneously; i.e., −24 MHz ≤
∆f

c/2π≤−19.5 MHz. We consider data above and below Θ =
7× 103 atoms separately and take the mean and SD. The differ-
ence defines the gap between the two states, which has a height of
5.2(1.4)×103 atoms. In another representation of the same data,
we split the imbalance data of each ∆f

c into 22 bins of bin size 700

atoms and construct a histogram as a function of Θ and ∆f
c (Fig.

2B). To obtain mean counts Counts as shown in Fig. 2C, we gen-
erate a histogram with respect to Θ of data in the orange region
of Fig. 2B, where we normalize counts by the respective sample
size (469), and we repeat this procedure for data in the green
region which has a sample size of 181. This way the obtained his-
togram becomes independent of the exact sample size in each
state, as the sample size is sensitive to the scan region of final
detunings.

Hysteresis Measurement: Lattice and Detuning Ramps
The BEC is initially prepared in a crossed far-off resonant dipole
trap. Then a strong y lattice is ramped within 100 ms to a
final depth of Vy, where the ramp follows an S shape of form

V (T ) =V0

[
3
(

T
T0

)2

− 2
(

T
T0

)3
]

. Here V0 is the final lattice

depth, T is time, and T0 is the total duration of the ramp. The
y lattice cuts the cloud into weakly coupled 2D layers. The sub-
sequent sequence of amplitude and detuning ramps is shown in
Fig. S2. First, the square lattice in the x−z direction is applied
using another S-shaped amplitude ramp of 50-ms duration, fin-
ishing at depths Vx and Vz. Then the z -lattice detuning ∆c/2π is
swept from −53 MHz to −13 MHz within a variable time of τ =
(30−150) ms using a ramp which varies Ul linearly in time. The

ramp has the form ∆c(T ) =
[(

1
∆c(τ)

− 1
∆c(0)

)
T
τ

+ 1
∆c(0)

]−1

,
where ∆c(0) and ∆c(τ) represent the initial and final detuning,
respectively. Subsequently, the detuning ∆c/2π is swept back to
−53 MHz, using an inverted ramp of the same duration. Finally,
the square lattice is ramped down within 50 ms, using another
S-shaped ramp.

Hysteresis Loops: Data Evaluation and Comparison of
Different Ramp Times
Extraction of Thresholds. In the hysteresis measurement, we
extract the threshold for the onset of an imbalance Θ during
ramp I and the threshold where Θ vanishes again during ramp
II. We define both of these thresholds as the point where the
intracavity photon signal is 20 times higher than the mean back-
ground level. The background level is obtained by averaging the
photon signal over 50 ms while all lattices are switched off. As a
result of this method, the imbalances Θ at the threshold positions
are of different magnitude (orange and green diamonds in Fig.
3A). The experiment is repeated at least three times for every
lattice depth Vz, and the corresponding averaged thresholds for
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the z -lattice depth Vz and detuning ∆c are shown by orange and
green diamonds in Fig. 6.

Hysteresis Loop Definition. We show closed hysteresis loops of the
imbalance Θ as a function of global-range interaction strength
Ul in Fig. 3A. The loop naturally closes at high Ul (right side of
Fig. 3A) where the detuning ramp is inverted. At low Ul (left side
of Fig. 3A) we plot data down to the point where the two curves
cross. We consider only crossing points which happen below the
thresholds of the creation and disappearance of an imbalance.
This additional condition is needed to exclude crossings happen-
ing in the middle of the hysteresis loop due to, e.g., heating; such
a case is visible in Fig. 3D. To reduce noise, we average Ul using
an averaging window of 2π × 20 Hz to find this crossing point.

Hysteresis Area. The hysteresis area A is obtained by integrating
the imbalance Θ as a function of Ul during ramp II and subtract-
ing this signal from the integrated curve during ramp I. We define
a normalized hysteresis area as the ratio of hysteresis area A and
a factor Amax. Here Amax is a fixed constant which defines the
maximum possible hysteresis area, i.e., the product of the total
number of atoms and the maximum strength of Ul. The hystere-
sis area shown in Figs. 3B and Fig. S3 is the average of at least
three repetitions for every lattice depth Vz. To ensure compara-
bility of the data, we use hysteresis area data only for those lattice
depths for which the averaged maximum imbalance Θmax satis-
fies the constraint that Θmax ≥ Θz,max−∆Θz,max, where Θz,max is
the average of the maximum imbalance obtained for the case of
deepest lattices and ∆Θz,max is the corresponding SD.

At small Ul, changes in the interaction strength stem from
ramping the lattice depth Vz which changes both Ul and Us.
However, a large fraction of the hysteresis loop is occurring dur-
ing the frequency ramps where Ul is varying while Us stays con-
stant. Taking for example the case of a frequency ramp of dura-
tion τ = 80 ms as shown in Fig. 3, Us is reduced by less than
9% at the point where the hysteresis loop closes for small Ul. At
ramp times of τ = (30−50) ms, this reduction in Us increases
to 23%.

We note that we do not use Ul/Us as an x axis for the extrac-
tion of a hysteresis area as it does not allow a direct compari-
son between the case of strong short-range interactions Us when
all 3D lattices are present and the case where the y lattice is
switched off to reduce Us.

Hysteresis Area as a Function of Ramp Time τ . A study of the hys-
teresis area is shown in Fig. S3. In all cases, we observe a qual-
itatively comparable behavior as in Fig. 3B where increasing
interactions increase the observed hysteresis area. Heating from
the presence of optical lattices reduces the overall signal with
increasing ramp time, leading to a negative hysteresis area clearly
visible in Fig. S3 C and D. The difference in the hysteresis area
between the case of strong and weak Us (with and without the y
lattice, respectively) is nearly the same for different ramp times.

Imbalance Dynamics: Data Evaluation
To quantify the position, duration, and height of the fast jump
as shown in Fig. 4, we use the following definition of an effective
derivative,

dΘ

dt
(T )

∣∣∣∣
ξ

=
1

ξ

[
max

[
Θ

(
T − ξ

2
: T +

ξ

2

)]
− min

[
Θ

(
T − ξ

2
: T +

ξ

2

)]]
, [S9]

where max and min yield the maximum and minimum value of
Θ within a time interval of ±ξ/2 around the time T , and we use
ξ = 4 ms. This effective derivative helps to improve the signal-
to-noise ratio. The fast jump is then associated with a maximum

in the amplitude of the effective derivative. We fit the signal
from the effective derivative with a Gaussian in a time window of
±10 ms around the fast jump. The central position of the Gaus-
sian fit, t0, is used to extract the position of the fast jump in terms
of the z -lattice depth and the detuning ∆c (Fig. 6). The FWHM
of the Gaussian represents the duration of the jump ξjump and is
used to extract the jump height

hjump = Θ(T0 + ξjump/2)−Θ(T0 − ξjump/2).

To extract T0, ξjump, and hjump we consider only those experi-
mental realizations where the fast jump occurs when all of the
external parameters are kept constant after the quench, and we
obtain 54 such realizations. Formally, this constraint is defined as
T0 − ξjump/2 > Tconst, where Tconst is the time from which all
external parameters are kept constant. The height ∆Θ and dura-
tion ∆T of the fast jump stated in the main text are obtained by
averaging all individual data of hjump and ξjump.

Repeating the extraction procedure described above with
reduced time interval ξ or reduced moving average window size,
we observe shorter durations of the step at the cost of a reduced
signal-to-noise ratio. The value provided in the main text is thus
an upper bound on the actual step duration.

We obtain the tunneling time in a double well in the follow-
ing way. We consider the two states |1, 1〉 and |2, 0〉 resonantly
coupled by the tunneling

√
2t , where

√
2 accounts for bosonic

enhancement. Starting in the state |1, 1〉, the system reaches the
state |2, 0〉 within the tunneling time.

Phase of the Light Field. Using our heterodyne detection we also
extract the time phase of the light field scattered into the cav-
ity with respect to the lattice in the z direction (8). Because of
residual phase drifts of the heterodyne setup, we cannot relate
the phase signals between consecutive experimental runs. To
improve clarity of the phase signal shown in Fig. 4C a mean off-
set phase is subtracted in each realization to remove these shot-
to-shot phase drifts. The mean offset phase is obtained by time
averaging of the phase signal from 20 ms ≤ T ≤ 65 ms in the
metastability measurement and from 40 ms ≤ T ≤ 80 ms in the
hysteresis measurement. Here T = 0 ms corresponds to the ini-
tial time (0 ms) in Fig. 4.

Extraction of the Change in Excitation Energy ∆∆∆E from the
Measured Photon Flux
We extract the change in excitation energy ∆E during the imbal-
ance jump (ii), where τs counts the time since the beginning of
the jump. At the beginning of the jump, superfluid surface atoms
account for an initial imbalance of Θ(τs = 0 ms). We assume that
the imbalance stemming from these surface atoms stays approx-
imately constant during the jump. As the imbalance stemming
from reordering bulk atoms increases with time τs the site offset
δoff also increases, reducing the excitation energy of all previously
imbalanced atoms. From the measured imbalance Θ(τs) and site
offset δoff(τs) we obtain

∆E(τs)

h
=

τs∫
τ ′s =0

[
δoff(τs)− δoff(τ

′
s )
] dΘ

dτ ′s
dτ ′s

︸ ︷︷ ︸
bulk

+
[
δoff(τs)− δoff(0)

]
Θ(0)︸ ︷︷ ︸

surface

. [S10]

The result is shown in Fig. 5C. We observe a released energy of
2π×7.7(2.1) MHz during the imbalance jump (ii), where surface
atoms account for 2π×5.7(1.2) MHz and bulk atoms account for
2π × 2.0(1.0) MHz.
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Energy Stored in the Superfluid Surface and the Insulating
Bulk During the Imbalance Jump
In the superfluid surface, energy can be stored in the form of
phononic excitations. As a first estimate, we use Bogoliubov
theory in a 2D lattice to calculate the bandwidth for the phonons
in the static lattice, which then reads (9)

εkin
surf/~ =

√
4(t x + t z)

(
4(t x + t z) + 2nUs

)
. [S11]

Here we take repulsive interactions in the form of Us/2π =
2.2(1) kHz into account, resulting from the overall 3D lat-
tice potential. Tunneling in the (x, z) direction is (t x, t z)/2π=
(15, 57) Hz, and we assume a lattice filling of n = 0.5. Using
the calculated number of surface atoms as Nsurf = 6(2) × 103

atoms, we obtain the kinetic energy which can be stored in
the surface as E kin

surf/h =
(
Nsurf ε

kin
surf

)
/h = 5.0(1.7) MHz. We note

that Bogoliubov theory is strictly valid only in the limit of
weak interactions 2nUs << 4(t x + t z). In the regime of
strong interactions, the atoms can sustain excitations which
are particle- and hole-like and whose energy is proportional
to Us. Hence Bogoliubov theory provides a lower bound on
the excitation energy (∝

√
Us) that can be stored in the sur-

face atoms.
In the insulating bulk, kinetic energy can be stored in the band

of particle-hole excitations which exist on top of the |2, 0〉 state.
These particle-hole excitations are formed by all atoms which are
not in the superfluid shells and not in the |2, 0〉 state. We find
the number of excitations as Nexc =N − Nsurf − N|2,0〉=N −
Θmax

jump = 16(3) × 103 atoms, where the imbalance at the end of
the imbalance jump (ii) is given by Θmax

jump = 9(1)×103 atoms and
the total number of atoms is N = 25(2) × 103 atoms. We esti-
mate the amount of kinetic energy which each excitation would
have to carry from the reduction of excitation energy ∆E during
the jump (ii). We obtain an energy per excited particle of about
130(70) Hz, which is on the order of the single-particle tunnel-
ing rates.

Number of Photons Scattered During the Imbalance Jump
We estimate the total number of photons incoherently scattered
from the z lattice—off the atoms—into the single-cavity mode. In
the bad-cavity limit we can consider a quasi-stationary intracavity
light field. In this limit, scattering of photons into the cavity mode
balances photon loss through the cavity mirrors. Photons leave
the cavity at a rate given by the inverse cavity lifetime of 2κ =
2 × 2π × 1.25 MHz. Here we neglect the low rate of scattering
of incoherent cavity photons back into the z lattice as they will
not exhibit bosonic enhancement. We observe an average mean
intracavity photon number of nph = 0.18(2) during the time of
the imbalance jump (ii) of ∆T = 4.3(6) ms. The scattering rate
into the cavity then becomes 2.8(3) × 106 photons per second

and the number of scattered photons during the jump is about
12(3)× 103 photons.

Phase Diagram Measurement: Data Evaluation
Phase Diagram Measurement. To construct the phase diagram of
the system we follow ref. 3 with the difference that we now pre-
pare a BEC of 16(1) × 103 atoms instead of 42(4) × 103 atoms.
Due to the lower atom number, states with nonzero imbalance Θ
are created closer to resonance with respect to ref. 3. The wave-
length of the square lattice is now 784.7 nm instead of 785.3 nm
previously while all other parameters are comparable.

Contrary to the metastability measurement and the hysteresis
measurement, the detuning ∆c is kept constant throughout each
experimental sequence. We start with a BEC and slowly ramp
up the lattice depth in all three directions. Then, all trapping
potentials are abruptly switched off and absorption pictures of
the atomic cloud are taken after 7 ms of ballistic expansion. We
obtain the BEC fraction from a bimodal fit of the atomic den-
sity distribution and the maximum imbalance from the maximum
photon flux leaking out of the cavity. To construct the phase dia-
gram, this experiment is repeated at different detunings ∆c and
final lattice depths Vz.

Data Evaluation. Each data point of the phase diagram is taken
on average four times. We obtain the phase boundary between
states with and without spatial coherence for each detuning ∆c
from the position of a kink in the BEC fraction as a function of
the lattice depth Vz (Fig. S4), which we associate with the loss of
superfluidity and the formation of an insulating phase (10). We
use a multiple-line fit to find the kink position. For each detuning
∆c we estimate the SD of the kink position using a bootstrapping
algorithm which resamples the data 104 times. The samples are
constructed by taking out of the four experimental iterations one
data point in the BEC fraction at random for each lattice depth
Vz. The samples are then fitted individually and a histogram of
the resulting kink positions is constructed (Fig. S4). We obtain
the position of the kink and the 1σ SD shown in Fig. 6 from a
Gaussian fit to the histogram.

We obtain information on the creation of an imbalance Θ
by detecting photons leaking from the cavity with a heterodyne
setup (11). In each experimental repetition we take a single data
point of Θ after all lattices are ramped up and just before tak-
ing atomic absorption pictures. The photon data are resampled
together with the measured z -lattice depth Vz to reduce noise.
An averaging window of 10 ms is used. We deduce the phase
diagram from the imbalance Θ and the transition between states
with and without spatial coherence, where we use the criteria
established in ref. 3: The superfluid region (SF) shows spatial
coherence but no imbalance, the lattice supersolid region (SS)
shows spatial coherence and a nonzero imbalance, the MI region
shows no spatial coherence and no imbalance, and the CDW
region shows no spatial coherence but a nonzero imbalance.
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Fig. S1. Various detunings used in the experiment. The resonances of the two linearly polarized TEM00 modes of the empty cavity are shown by the dark gray
line, and their resonance frequencies are separated by δB/2π = 2.2 MHz due to birefringence. The full width at half maximum (FWHM) of each resonance
is 2κ/2π = 2.5 MHz. Coupling of atoms to the cavity shifts the cavity resonance by the dispersive shift δ down in frequency (light gray line). The z lattice is
detuned by a variable amount of ∆c from the lower-lying resonance frequency of the mainly z-polarized mode of the empty cavity, shown by the vertical
blue line on the left half of the figure, where the neighboring light blue lines illustrate the scan direction. The x lattice is detuned by 2π × 30 MHz from the
same mode, shown by the vertical blue line on the right. Horizontal arrows depict the scan directions and ranges of the different experiments, and the short
vertical blue lines indicate where the phase diagram data are taken.

Fig. S2. Temporal sequence of lattice amplitude and detuning ramps in the hysteresis measurement. Time T = [−50, 0] ms: The square lattice in the x−z
direction is ramped to a depth of (Vx, Vz) (Top) at a constant detuning ∆c (Middle), predominantly increasing Us but also Ul (Bottom). T = [0, 80] ms: The
detunig ∆c is ramped toward resonance (ramp I) to vary Ul linearly in time while Us is kept constant. [80, 160] ms: The ramp in the detuning is inverted and
∆c is brought back to the starting point (ramp II). [160, 210] ms: The square lattice in the x−z direction is ramped down again.
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Fig. S3. Hysteresis area as a function of the ramp time τ . We obtain the hysteresis area for ramp times (A) τ = 30 ms, (B) τ = 50 ms, (C) τ = 100 ms, and
(D) τ = 150 ms in the same way as in Fig. 3B. Solid lines represent the case where lattices in all three directions are applied, while dashed lines represent the
case where the y lattice is switched off to reduce Us. Data points represent statistical means and errors are SD.

Fig. S4. Extraction of the phase boundary between states with and without spatial coherence. (A) The BEC fraction as a function of the z-lattice depth
Vz is shown for a detuning of ∆c/2π = −13 MHz. We observe a kink in the BEC fraction and we use a multiline fit to extract its position. The data are
resampled 104 times using a bootstrapping method and fitted separately to estimate the 1σ SD (gray area) around the kink position (dashed line). The blue
lines represent the fit results of 10 random samples. (B) Histogram of the kink position resulting from resampling the data. We fit a Gaussian to the histogram
and extract the kink position and the 1σ SD from this fit.
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