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SUMMARY

Diet, genetics, and the gut microbiome are determi-
nants of metabolic status, in part through produc-
tion of metabolites by the gut microbiota. To under-
stand the mechanisms linking these factors, we
performed LC-MS-based metabolomic analysis of
cecal contents and plasma from C57BL/6J, 129S1/
SvImJ, and 129S6/SvEvTac mice on chow or a
high-fat diet (HFD) and HFD-treated with vancomy-
cin or metronidazole. Prediction of the functional
metagenome of gut bacteria by PICRUSt analysis
of 16S sequences revealed dramatic differences in
microbial metabolism. Cecal and plasma metabo-
lites showed multifold differences reflecting the
combined and integrated effects of diet, antibiotics,
host background, and the gut microbiome. Eighteen
plasma metabolites correlated positively or nega-
tively with host insulin resistance across strains
and diets. Over 1,000 still-unidentified metabolite
peaks were also highly regulated by diet, antibi-
otics, and genetic background. Thus, diet, host
genetics, and the gut microbiota interact to create
distinct responses in plasma metabolites, which
can contribute to regulation of metabolism and insu-
lin resistance.
INTRODUCTION

Over the past decade, it has become clear that one factor

affecting systemic metabolism is the composition of the gut

microbiota (Le Chatelier et al., 2013; Lynch and Pedersen,

2016; Schroeder and Bäckhed, 2016). The nature of the

microbial community and its changes in response to environ-

mental factors such as dietary nutrients, fiber, and antibiotics

is dependent on the genetic background of the host (Cho
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et al., 2012; Fujisaka et al., 2016; Parks et al., 2015; Tamburini

et al., 2016; Ussar et al., 2016). These changes in the micro-

biota have been linked to development of obesity, diabetes,

and metabolic syndrome, and many of these phenotypes can

be transferred, at least in part, via the microbiome to germ-

free mice (Ridaura et al., 2013; Turnbaugh et al., 2006). The

gut microbiota can also affect intestinal function and the im-

mune system. Intestinal microbes utilize dietary components

to produce energy and metabolites, many of which are taken

up into the blood stream where they can be further metabolized

or affect host metabolism (Pedersen et al., 2016; Wikoff et al.,

2009).

The effects of bacterial metabolites on host metabolism can

be both beneficial and harmful. For example, short-chain fatty

acids (SCFAs), derived from otherwise undigestible fiber, have

generally beneficial effects on the host, including anti-obesity

and anti-diabetic actions (Chang et al., 2014; Kimura et al.,

2013; Tolhurst et al., 2012). On the other hand, N-nitroso com-

pounds, ammonia, and hydrogen sulfide derived by bacteria

from dietary protein can induce reactive oxygen species (ROS)

and DNA damage and activate inflammatory pathways (Kim

et al., 2013). Trimethylamine-N-oxide (TMAO), an endmetabolite

of dietary choline, has been shown to promote arteriosclerosis

and correlate with cardiovascular disease (CVD), stroke, and

death (Tang et al., 2013; Wang et al., 2011b). Deoxycholic

acid, a secondary bile acid produced by the gut microbiota, pro-

motes development of hepatocellular carcinoma (Yoshimoto

et al., 2013).

C57BL/6 and 129 mice are excellent models to study the

different metabolic phenotypes that occur in response to a

high-fat diet (HFD). C57BL/6J (B6J) mice from Jackson Labora-

tories (Jax) are obesity- and diabetes-prone, whereas 129S1/

SvImJ (129J) mice from the same vendor are obesity- and dia-

betes-resistant (Almind and Kahn, 2004). 129S6/SvEvTac

(129T) mice, which are genetically similar to 129J mice but

bred at Taconic Farms, are obesity-prone but remain metaboli-

cally healthy (Fujisaka et al., 2016; Ussar et al., 2015). The

better insulin sensitivity in 129T and 129J mice is explained

in part by their genetically based anti-inflammatory potential
rs.
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Figure 1. Effect of Diet, Genetics, and Anti-

biotics on Phenotype and the Gut Microbial

Community

(A) Weight gain of mice on chow (green), HFD

(blue), HFD+vancomycin (purple), and HFD+

metronidazole (red) from age 7 to 11 weeks

(n = 3–4 /group). *p < 0.05 by ANOVA, followed by

Tukey-Kramer post hoc test.

(B) Blood glucose levels in the fed state at

11 weeks of age.

(C) Calculated HOMA-IR (n = 3–4 /group).

(D) Cecum weight of B6J, 129T, and 129J mice

on chow, HFD, HFD+vancomycin, or HFD+

metronidazole (n = 3–4 /group). Right: cecal

weight of HFD-fed GF B6 mice (yellow) and GF B6

mice colonized with bacteria from B6J mice

on either an HFD, HFD+vancomycin, or HFD+

metronidazole, weighed 2 weeks after transfer

(n = 3/GF, n = 8–9 /colonized groups). *p < 0.05,

**p < 0.01 by ANOVA, followed by Tukey-Kramer

post hoc test. In (A)–(C), results are shown as the

mean ± SEM.

(E) Principal component analysis (PCA) of cecal

16S rRNA sequencing data for B6J, 129T, and

129J mice on chow, HFD, HFD+vancomycin, or

HFD+metronidazole at 11 weeks of age.

(F) Representation of bacterial phyla in the cecal

bacteria of mice from each group (n = 3–4) at

11weeks of age (4 weeks on the chow diet or HFD,

5 weeks on antibiotics).
(Fujisaka et al., 2016). However, some of the difference between

strains is due to differences in their gut microbiotas (Ussar et al.,

2015). When the gut microbiotas of three mouse strains are

decreased by antibiotics, bacterially derived secondary bile

acids, especially deoxycholic acid, are decreased both in the

cecum and plasma, and this leads to attenuation of high fat

diet-induced inflammation in B6J mice, improving insulin

sensitivity. But, among these three strains, this only occurs in

B6J mice.

There are many classes of bacterial metabolites in addition to

bile acids that can be modified by factors such as diet and anti-

biotic treatment (Brown and Hazen, 2017; Nieuwdorp et al.,

2014). Many of these metabolites are absorbed into the circula-

tion, where they can act directly or be further metabolized by the

host, leading to bioactive compounds that can act on tissues and

affect the host metabolism (Wikoff et al., 2009). In the present

study, we have dissected the complex relationship between

host microbiota, genetic background, and environmental factors

by performing untargeted metabolomics analysis of the plasma

and cecal contents of B6J, 129J, and 129T mice on chow, a

HFD, and aHFD supplemented with either vancomycin or metro-

nidazole and correlated these datawith physiological responses.

We have used phylogenetic investigation of communities by

reconstruction of unobserved states (PICRUSt) analysis and un-

targeted liquid chromatography-mass spectrometry (LC-MS)

metabolomics to assess gut microbiota and systemic metabolic

changes in response to these manipulations. We found that
different classes of metabolites exhibit unique host- and micro-

biome-dependent changes in both the cecum and plasma and

that a number of metabolites are positively or negatively associ-

ated with insulin resistance across strains, indicating an impor-

tant role for the metabolome as an integrator of the effects of

diet, genetics, and the microbiome.

RESULTS

Diet, Genetics, and Antibiotics Affect Gut Microbial
Structure
To assess the effects of diet and antibiotics on the gutmicrobiota

and metabolism, 6-week-old normal chow-fed (22% fat by

calories) B6J, 129J, and 129T mice were given drinking water

(placebo) or drinking water containing vancomycin (1 g/L) or

metronidazole (1 g/L). One week later, both antibiotic-treated

groups and half of the control mice were challenged with an

HFD (60% fat by calories) for 4 weeks. Consistent with previous

reports (Fujisaka et al., 2016; Ussar et al., 2015), body weight

gain on the chow diet was greater in B6J mice than that in

129J mice, and 129T mice fell in between (Figure 1A). HFD

feeding increased body weight gain, with its greatest effects in

B6J > 129T > 129J, and this was not significantly affected by

either vancomycin or metronidazole (Figure 1A). Blood glucose

was higher in B6J mice than in either 129 strain and modestly

increased by 4 weeks of HFD feeding; this did not quite reach

statistical significance (Figure 1B) but does so after longer
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Figure 2. Modifications of the Gut Micro-

biota Affect Predicted Functional Metabolic

Pathways

(A) Heatmap of metabolic pathways of each

group obtained from PICRUSt analysis of 16S

rRNA sequencing data. C, chow placebo;

P, HFD+placebo; V, HFD+vancomycin; M, HFD+

metronidazole.

(B) PCA of identified metabolites in the cecum

for B6J, 129T, and 129J mice on either chow,

HFD, HFD+vancomycin, or HFD+metronidazole at

11 weeks of age.
periods of HFD challenge (Fujisaka et al., 2016). We have previ-

ously shown, in 8- to 12-week studies, that antibiotics improve

insulin resistance in HFD-fed B6J mice (Fujisaka et al., 2016),

and, in these short-term cohorts, insulin levels and insulin resis-

tance (homeostatic model assessment for insulin resistance

[HOMA-IR]) were higher in B6J than 129 mice on a HFD and

tended to be reduced by vancomycin treatment in B6J mice Fig-

ures 1C and S1).

It has been previously shown that cecum size is increased in

germ-free mice (Jakobsdottir et al., 2013). Interestingly, HFD

feeding markedly reduced the weight of the cecum in all strains

of mice, and this was restored to chow diet levels or above by

treatment with either antibiotic (Figure 1D). This effect on cecum

size could be reproduced by microbiome transfer to germ-free

mice. Thus, the cecum size in HFD-fed germ-free B6J mice

was reduced by �80% following colonization with fecal material
3074 Cell Reports 22, 3072–3086, March 13, 2018
from HFD conventional mice but remained

large in germ-free B6 mice colonized with

gut bacteria of HFD-fed mice treated with

vancomycin or metronidazole (Figure 1D).

Principal-component analysis of 16S

rRNA sequence data of cecal contents

showed clear differences in community

structure between the different experi-

mental groups (Figure 1E), with both HFD

andantibiotic treatment havingastrongef-

fect on the bacterial structure, with lesser

but clear differences among strains. At

the phylum level, the relative abundance

of Firmicutes to Bacteroidetes was higher

in both chow-fed 129 strains compared

to B6J mice (Figure 1F). HFD feeding

reduced Bacteroidetes in all strains of

mice. Both antibiotics resulted in elimina-

tion of most of the bacteria, except for

Firmicutes inB6J and 129Jmice,whereas,

in 129Tmice, considerable Proteobacteria

and Verrucomicrobia remained.

Microbial Modifications Affect
Predicted Functional Pathways in
the Microbiome
To understand the potential implications

of the different bacterial communities, we
performed PICRUSt analysis, a computational approach that

predicts the functional composition of the bacterial metagenome

using 16S rRNA data (Allegretti et al., 2016). As shown in Fig-

ure 2A, dynamic and consistent changes in Kyoto Encyclopedia

pf Genes and Genomes (KEGG) metabolic pathways were

observed in the different strains of mice depending on diet, ge-

netic background, and antibiotic treatment. For example, carbo-

hydrate metabolism, pyrimidine metabolism, starch and sucrose

metabolism, cyanoamino acid metabolism, phenylpropanoid

biosynthesis, tyrosine metabolism, pyruvate metabolism, and

gluconeogenesis pathways were markedly upregulated by van-

comycin treatment of HFD-fed mice but not by metronidazole

treatment (Figure 2A). Interestingly, this effect occurred only in

B6J and 129J mice and was not observed in 129T mice. Like-

wise, phenylalanine, tyrosine, and tryptophan biosynthesis path-

ways were decreased by vancomycin in HFD-fed B6J and 129J



mice but not in HFD-fed 129T mice. By comparison, pathways

of galactose metabolism and arginine and proline metabolism

were downregulated by both antibiotics in all strains of mice.

Metronidazole treatment increased aldehyde dehydrogenase,

branched-chain amino acid degradation, butanoate meta-

bolism, and fatty acid metabolism pathways in all strains, but

the effect was greatest in B6J > 129J > 129T. Even with the

HFD alone, a variety of metabolic pathways were regulated

in a strain-dependent manner (Figure S2). Thus, changes in bac-

terial communities produced by HFD and antibiotic treatment

have the potential to change on multiple microbial metabolic

pathways, and these effects are different in these three strains

of mice.

Cecum and Plasma Metabolites Are Altered by Gut
Microbial Modification
To assess the effects of these changes in predicted metabolic

pathways of the gut microbiota, we performed an untargeted

metabolomic analysis of cecal contents and plasma using a

panel of LC-MS protocols. In the cecum, a total of 49,712 repro-

ducible peaks or features were detected. Because somemetab-

olites and contaminants may produce several peaks, this likely

represents �20,000–25,000 different low-molecular-weight

(most < 1 kDa) molecules. Of these, 482 corresponded to previ-

ously identifiedmetabolites, and the remaining represent an esti-

mated 20,000+ unknown molecules. In the plasma, 19,627

peaks were detected, of which 374 were previously identified

metabolites, and �11,500 were unknown molecules (Table S1).

Despite being on identical diets and in the same vivarium, prin-

cipal-component analysis (PCA) of cecal metabolites showed a

clear separation among the three strains and between the diet-

and antibiotic-treated groups (Figure 2B).

Heatmaps showing 75 of the most changed known metabo-

lites in the cecum with their parallel changes in the plasma are

shown in Figures 3A and 3B. Changes in response to diet were

generally larger in the cecum than in the plasma (note the scales).

As expected, a high-fat diet markedly increased the levels of

multiple bile acids in the cecum in all strains of mice, and this

was largely reversed by treatment with either vancomycin or

metronidazole (Figure 3A). In the plasma, chow and HFD mice

had similar levels of most bile acids, but antibiotic treatment

did lower the levels of the secondary bile acid taurodeoxycholic

acid, reflecting the change in the cecum (Figure 3B).

For some metabolites, the changes in the plasma in response

to diet or antibiotics correlated with those in the cecum, but this

varied by bothmetabolite and by strain. For example, changes in

triacylglycerols (Figure 3C) and fatty acids (Figure 3D) in the

plasma correlated well with changes in the cecum, suggesting

that absorption of these metabolites by the intestine is a signifi-

cant determinant of plasma level, although there were differ-

ences in the slope of this relationship by strain and metabolite.

By contrast, acyl carnitines, mono- and diacyl-glycerols, glycer-

ophospholipids, and amino acids showed no significant correla-

tions between changes in the cecum and changes in the plasma

when considered as a class (Figures 3E–3H).

Not unexpectedly, a high-fat diet affected lipid metabolites in

the cecum, but, surprisingly, the most dramatic changes were

decreases in many high-molecular-weight polyunsaturated tria-
cylglycerols (C52:7 to C60:12), C36:4 phosphatidylcholine (PC),

and C20:5 and C20:3 cholesterol ester (CE), and these were not

further affected by antibiotic treatment. Both diet and antibiotics

also had a considerable effect on these metabolites in the

plasma. One of the most dramatically changed classes of lipids

was the acylcarnitines. In the cecum, virtually all acylcarnitines,

especially short-chain (C5-C9) acylcarnitines, showed modest

increases on HFD and even more dramatic increases following

antibiotic therapy, indicating effects of the changing microbiome

on lipid metabolism in the gut (Figures 3A, 3E, and S3F–S3I). By

contrast, in the plasma, the short-chain acylcarnitines decreased

on an HFD, and there was little effect of antibiotics (Figures 3B

and S3F–S3I).

Some changes depended on the strain or breeding site of the

mouse and the resulting differences in bacterial composition. For

example, both antibiotics elevated allantoin in the cecumbut had

a reverse effect in the plasma uniquely in Jax-bred mice (Figures

3A, 3B, and S3A). Likewise, both B6J and 129J mice showed a

marked decrease in cecal g-aminobutyric acid (GABA) levels in

response to vancomycin and an increase by metronidazole,

which was not seen in 129T mice (Figures 3A, 3B, and S3B).

Both B6J and 129J mice also showed an increase in cecal

threonine by vancomycin and a decrease by metronidazole,

which was not observed in 129T mice (Figures S3C and S3D).

On the other hand, antibiotic treatment of HFD-fed mice pro-

duced a decrease in asparagine in only 129T Tac-derived

mice. None of the latter changes were observed in the plasma,

suggesting that gut bacterial metabolism is not the primary driver

controlling the plasma levels of these metabolites (Figure S3E).

Hexose (fructose/glucose/galactose) levels in the cecum were

decreased by an HFD and partially rescued by vancomycin in

B6J and 129J mice but not in 129T mice, which matched the

PICRUSt analysis; however, smaller changes were observed in

plasma levels (Figures 3B and S3J).

Robust Metabolite Responses in HFD Antibiotic-
Treated Mice
The complete dataset of known metabolites in the cecum and

plasma and their response to diet/antibiotics is available at

http://www.metabolomicsworkbench.org and highlighted in Fig-

ure 4. Compared with chow-fed mice, the levels of pyrimidine

metabolites (uridine, thymidine, cytosine, and 2-deoxcytidine)

in the cecum were decreased by an HFD in both Jax-derived

strains, and this decrease was reversed by vancomycin treat-

ment but potentiated by metronidazole treatment (Figure 4A).

These changesmatched the PICRUSt predictions (compare Fig-

ures 3A and 2A). However, the plasma levels did not reflect the

cecum levels. Thus, metronidazole treatment decreased

the levels of uridine in the cecum but increased the levels in

the plasma. The HFD also induced large decreases in cecal

levels of AMP, ADP, and cytidinemonophosphate (CMP) and nu-

cleosides such as inosine (Figures 4A, S3K, and S3L). These

changes weremost dramatic in B6J and 129Jmice and reversed

by vancomycin but not metronidazole. Interestingly, an HFD also

significantly increased cyclic AMP (cAMP) levels in the cecum in

all strains ofmice, and thesewere further increased by vancomy-

cin treatment (Figure 4A). Although some of these changes were

observed in the plasma, overall, the differences were small.
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Figure 3. Modifications of the Gut Microbiota Affect Cecal and Plasma Metabolites

(A and B) PCA of cecal (A) and plasma (B) metabolites for B6J, 129T, and 129J mice on chow, HFD, HFD+vancomycin, or HFD+metronidazole. Shown is the

correlation of the log-fold change in response to HFD between cecum contents and plasma.

(C–H) Metabolic classes of (C) triacylglycerols, (D) fatty acids and conjugates, (E) acyl carnitines, (F) monoacylglycerols and diacylglycerols, (G) amino acids and

derivatives, and (H) glycerophospholipids are shown.
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Figure 4. Robust Metabolite Responses to HFD

and Antibiotic Treatment across Three Strains

of Mice

(A–F) Shown are comparisons of metabolites between the

cecum (top) and plasma (bottom) in each group. Mice

were 11 weeks of age (4 weeks on the chow diet or

HFD, 5 weeks on antibiotics). Pink, chow+placebo, green,

HFD+placebo; blue, HFD+vancomycin; purple, HFD+

metronidazole.

The upper whisker extends from the hinge to the largest

value no further than 1.5 * IQR from the hinge (where IQR is

the inter-quartile range, or distance between the first and

third quartiles). The lower whisker extends from the hinge

to the smallest value at most 1.5 * IQR of the hinge. Data

beyond the end of the whiskers are called ‘‘outlying’’

points and are plotted individually.

Cell Reports 22, 3072–3086, March 13, 2018 3077



As reported previously (Newgard et al., 2009), branched-chain

amino acids (BCAAs) such as valine, leucine, and isoleucine

were elevated in the plasma by an HFD. This occurred in all

strains despite differences in propensity to obesity or insulin

resistance and despite variable effects on cecal levels of BCAAs

(Figure 4B). The effects of antibiotics to modify this response

were strain- and amino acid-dependent. Thus, vancomycin

decreased all BCAAs in the cecum, especially in the two

obesity-prone strains (B6J and 129T), whereas metronidazole

tended to decrease the levels of leucine and isoleucine and in-

crease the levels of valine (Figure 4B). Interestingly, both antibi-

otics increased the levels of BCAAs in the plasma of all mice,

despite the fact that antibiotics improved insulin sensitivity.

With regard to aromatic amino acids, metronidazole treatment

resulted in big decreases in phenylalanine, tyrosine, and trypto-

phan in the cecum of all mouse strains (Figure 4C), as predicted

by PICRUSt analysis (Figure 2A). Despite the changes in the

cecum, the levels of these metabolites in the plasma were

elevated by metronidazole, suggesting that metronidazole may

have additional effects on the absorption or turnover of these

metabolites.

Fatty acids can have pro- or anti-inflammatory effects (Ertunc

and Hotamisligil, 2016). An HFD had almost no effect on the

levels of saturated fatty acids in the cecum, despite deriving

60% of calories from fat, mostly lard. An HFD accompanied by

either antibiotic, but especially metronidazole, resulted in

increased cecal levels of stearic acid (C18) but decreasing levels

of palmitic (C16) and myristic acids (C14) (Figure 4D). In the

plasma, a high-fat diet alone increased the levels of stearic

acid in all strains, and this was not modified by antibiotic treat-

ment. The effect of metronidazole on cecal fatty acids was pre-

dicted by PICRUSt analysis, but this analysis did not predict the

effect of vancomycin. Ingestion of anHFD had variable effects on

many of the unsaturated and short-chain fatty acids found in the

cecum, but, except for adrenic acid (C24:4), these were largely

unchanged by antibiotic treatment (Figure 4D). In the plasma,

an HFD was associated with a major decrease in eicosopenta-

noic acid; this closely mirrored the changes in the cecum. By

contrast, an HFD increased the plasma levels of adrenic acid in-

dependent of cecal content. The plasma levels of these unsatu-

rated fatty acids were not influenced by antibiotic treatment.

Overall, the changes in plasma fatty acid levels on an HFD re-

flected an increase in proinflammatory fatty acids, such as

adrenic and stearic acid, and a decrease in anti-inflammatory

fatty acids, such as eicosopentaenoic and docosohexanoic

acids (Kuda et al., 2016; Yamada et al., 2017). However, anti-

biotic administration had little effect on these changes in free

fatty acids in B6J mice despite improving insulin sensitivity,

and the changes in free fatty acid (FFA) were similar in the insu-

lin-sensitive 129 substrains, thus disconnecting the FFA levels

from the level of insulin resistance.

The plasma levels of metabolites also showed a dynamic

variation in response to strain, diet, and antibiotics, even for

metabolites that were not changed or not changed in the same

direction in the cecum. For example, short-chain fatty acids

are well-known bacterial metabolites (Koh et al., 2016), but pro-

pionate levels were unchanged in the cecumof any strain byHFD

alone, but the HFD increased propionate in the plasma of B6J
3078 Cell Reports 22, 3072–3086, March 13, 2018
mice. Both antibiotics decreased propionate in the cecum and

plasma in B6J mice but had variable effects in 129 mice (Fig-

ure 4D), indicating differences dependent on genetic back-

ground, the site (vendor) where the mice were born, as well as

diet and antibiotic treatment. The plasma levels of C34:3 phos-

phatidylethanolamine (PE) plasmalogen and C5-carnitine were

4-fold higher in both strains of 129 mice compared with B6J

mice under all conditions, whereas C30:0 PC was higher in

B6J compared with 129 mice (Figure 4E), indicating that genetic

background/strain is an important factor affecting plasma

metabolite levels.

Other plasma metabolites were mildly or not affected by diet

but dramatically affected by antibiotics, indicating that they are

likely direct or indirect products of intestinal bacterial meta-

bolism. For example, indoxylsulfate, a bacterial metabolite that

acts as a uremic toxin, was increased in the cecum of all three

strains by both antibiotics, whereas plasma levels in B6J but

not 129mice decreased with antibiotics (Figure 4F). Both plasma

and cecal levels of phenylacetylglycine were decreased about 4-

to 8-fold by both antibiotics in all strains (Figure 4F). In contrast,

the plasma levels of trimethylamine-N-oxide, another bacterial

metabolite that has been linked to cardiovascular disease risk

(Tang et al., 2013;Wang et al., 2011b), weremarkedly decreased

by vancomycin, but not metronidazole, in B6J and 129J mice,

whereas cecal levels showed no consistent pattern (Figure 4F).

These results indicate that, to the extent that gut microbiota

affect levels of plasma metabolites, this not only varies in a

host-dependent manner but may also involve processes in re-

gions of the intestine other than the cecum.

Metabolic Pathway Analysis of Plasma and Cecal
Contents
To more completely understand the relationship between the

cecal and plasma metabolite profiles and the gut microbiome,

we focused on metabolic pathways for histidine and the aro-

matic amino acids tyrosine, tryptophan, and phenylalanine. An

analysis of the histidine pathway is shown in Figure 5A, with

the levels of cecal metabolites highlighted with blue boxes

and the data for the same metabolites in the plasma highlighted

in red.

In the cecum, histidine levels were not affected by an HFD,

but in mice from Jax (B6J and 129J), histidine was increased

by vancomycin and decreased by metronidazole treatment. By

contrast, in 129T mice, histidine was decreased by both antibi-

otics. L-histamine, N-acetyl-histamine, histadinal, histadinol,

1-methyl-histamine, and anserine in the cecum were all

decreased by an HFD and not rescued by either antibiotic. Of

these, only L-histamine and anserine can bemade inmammalian

cells and were found in the plasma, and both tended to go up,

not down. However, N-acetylhistamine showed identical pat-

terns in the plasma and cecum, suggesting that the levels of

this metabolite in the plasma are purely derived from gut micro-

bial metabolism.

Histidine can also be converted to urocanate and imidazole

derivatives by both bacteria and, to some extent, mammalian

cells (Figure 5A). In the cecum, urocanate showed a dramatic

decrease with both antibiotics, whereas dihydrourocanate (imid-

azole proprionate), a product of microbial but not murine



(legend on next page)
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metabolism, showed a variable decreasewith anHFDbut rose to

above chow diet levels in HFD-fed mice on metronidazole, and

this was mirrored almost exactly in the plasma. Urocanate can

be converted to glutamic acid, isoglutamate, and alpha-ketoglu-

tarate, but each of these showed unique patterns. Thus, the

cecal and plasma levels of alpha-ketoglutarate were decreased

by the HFD and further decreased in the cecum by both antibi-

otics, whereas the plasma levels of alpha-ketoglutarate were

rescued by antibiotics. Isoglutamate in the cecum was selec-

tively increased by metronidazole treatment in all strains of

mice, indicating a role of gut microbes resistant to metronidazole

in the production of this metabolite; however, isoglutamate was

not detected in the blood (Figure 5A). Thus, among histidine

metabolites, only the blood levels of N-acetylhistamine and

dihydrourocanate, and to some extent alpha-ketoglutarate,

appear to be determined primarily by what is made or available

in the gut.

Aromatic amino acids have been linked to insulin resistance

(Chen et al., 2016; Wang et al., 2011a) and showed multiple

pathway-specific changes (Figure 5B). Tryptophan levels in

the cecum were decreased by metronidazole in all strains and

by vancomycin in 129T mice, indicating the role of gut micro-

biota in tryptophan metabolism; however, this was not reflected

by changes in the plasma. On the other hand, indole 3-acetate in

the cecum decreased moderately with an HFD and markedly

with both antibiotics, and this was mirrored in the plasma, indi-

cating a strong dependence of this metabolite on the gut micro-

biota. 5-Hydroxytryptophan was increased in the cecum and

plasma by an HFD, and anthranilate in the cecum and plasma

were reduced in all vancomycin-treated groups. Likewise,

although 3-indoleproprionic acid was not detected in the

cecum, in the plasma, it was reduced to undetectable levels

on an HFD or an HFD with antibiotics (Figure 5B), suggesting

that different tryptophan metabolites are regulated by the gut

microbiota, but this affects the plasma levels for only some of

these.

Phenylalanine and tyrosine metabolites are illustrated in Fig-

ure 5B. In the cecum, phenylalanine was unchanged by an

HFD but decreased by both antibiotics, indicating a role for the

gut microbiota, whereas in the plasma, phenylalanine was

decreased by vancomycin in B6J mice and increased by metro-

nidazole in all strains. On the other hand, phenylacetylglycine in

the cecum was markedly decreased by both antibiotics in all

strains, consistent with its role as a known gut microbial metab-

olite, with virtually identical changes in the plasma. Hippurate

was markedly decreased in the cecum and plasma by an HFD

in all strains but not rescued by antibiotics. Tyrosine levels in

the cecum were decreased by vancomycin in B6J and 129T

mice and by metronidazole in all three strains but increased in

the plasma. Tyramine levels in the cecum were decreased by
Figure 5. Pathways for Aromatic Amino Acid Metabolism Illustrating P

(A–C) Analysis of metabolites in (A) the histidine pathway, (B) the tryptophan pathw

cecum are shown in blue boxes and those in plasma in red boxes. Thick black arr

pathway is absent in the mouse.

The upper whisker extends from the hinge to the largest value no further than 1.5 *

the first and third quartiles). The lower whisker extends from the hinge to the smalle

called ‘‘outlying’’ points and are plotted individually.
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an HFD, further decreased by vancomycin, and increased to

above chow levels by metronidazole, but these occurred with

no consistent changes in the plasma. Thus, although the intesti-

nal levels of phenylalanine, phenylacetylglycine, phenylacetyl-

glutamine, tyrosine, and tyramine are dependent on the gut

microbiota, gut metabolism is the primary driver of blood levels

of phenylacetylglycine and, to some extent, hippurate.

Many Metabolites Are Associated with Insulin
Resistance
To investigate the potential role of the changes in metabolite

levels with insulin resistance, we performed a Spearman correla-

tion analysis of plasma metabolite abundances to insulin

resistance scores across mouse diet and treatment groups

(Supplemental Experimental Procedures). Using this approach,

the plasma levels of a number of metabolites showed strong

positive correlations with insulin resistance, including aminoadi-

pate, alpha-hydroxybutyrate, acetylglycine, C16-carnitine,

N-carbamoyl-beta-alanine, thymidine, carnosine, 4-pyridoxate,

C34:4 PC, and C30:0 PC (Figure 6A). On the other hand, adipate,

C34:2 PC plasmalogen, C36:2 PC plasmalogen, C38:6 PC

plasmalogen, C58:6 triacylglycerol (TAG), C58:7 TAG, taurolitho-

cholic acid, and guanidinoacetate all showed negative correla-

tions with insulin resistance (Figure 6B). Importantly, 2-aminoa-

dipoate, alpha-hydroxybutyrate, and N-acetylglycine have also

been previously identified in humans as potential biomarkers

for diabetes risk and insulin resistance (Gall et al., 2010; Menni

et al., 2013; Wang et al., 2013), as have patterns of lipids with

lower fatty acyl carbon number and double bond content

(Rhee et al., 2011).

The levels of the metabolites linked to insulin resistance corre-

lated with specific bacterial operational taxonomic units (OTUs)

(Figure 6C). Most of the OTUs that were highly correlated with in-

sulin resistance were Firmicutes of the order Clostridiales and

the family Lachnospiraceae. Lachnospiraceae have been identi-

fied as over-represented in the gut microbiome of obese mice,

and colonization of germ-free obese mice with Lachnospiraceae

induces hyperglycemia (Kameyama and Itoh, 2014). Lachnospir-

aceae have also been shown to affect short- and long-chain fatty

acid synthesis (Zhang and Davies, 2016). Other Clostridiales,

such as Clostridium XIVa, showed a positive correlation with

C58:7 TAG, a metabolite negatively correlated with insulin resis-

tance and negative correlation with N-carbamoyl-beta-alanine

and alpha-hydroxybutyrate, which correlates positively with in-

sulin resistance. Adipate, which is negatively linked to insulin

resistance, on the other hand, positively correlated with three

Bacteroides species (Otu00115, Otu00119, and Otu00179).

Thus, many metabolites linked with insulin resistance correlate

with specific gut microbiotas, but these correlations show a

complex pattern.
lasma and Cecal Contents of Each Metabolite

ay, and (C) the phenylalanine and tyrosine pathway. Levels of metabolites in the

ows indicate the pathway is present in the mouse, and gray arrows indicate the

IQR from the hinge (where IQR is the inter-quartile range, or distance between

st value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are



Figure 6. Metabolites Correlated with Insulin Resistance across Diets and Antibiotic Treatment

(A and B) Plasma metabolite levels that correlated with insulin resistance score positively (A) or negatively (B). Insulin resistance score were determined as

described in the Supplemental Experimental Procedures.

(C) Heatmap showing OTUs that correlate with metabolites linked positively or negatively to insulin resistance. Rho in the color key represents the Spearman rank

correlation coefficient.

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between

the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are

called ‘‘outlying’’ points and are plotted individually.
Dynamic Changes in Unknown Plasma Metabolites
Detected by Untargeted Metabolomics
In addition to the �400 identified metabolites profiled in the

plasma using untargeted LC-MS, there were approximately

20,000 reproducible unknown peaks, andmany of these showed

dramatic changes in response to diet or antibiotics. Figure 7A

shows a heatmap of the top 1,066 peaks that change signifi-

cantly in the plasma under at least one condition (note the trun-

cated log2 scale with many changes several log2 orders of

magnitude different). Multiple interesting groups were identified,

including unknowns that were markedly increased or decreased

by an HFD or by one or both antibiotics. Other metabolites were
markedly different in level among the three strains of mice. Using

theMETLINmetabolomics database (https://metlin.scripps.edu)

(Smith et al., 2005) and reference standards, we have begun to

identify a few of these. One unidentified peak that was uniquely

increased in the threemetronidazole-treated groups of mice cor-

responded by mass-to-charge ratio to metronidazole itself (Fig-

ure S4A), demonstrating the ability of this approach to identify

unknowns. Another peak that was detected in both the cecum

and plasma was identified as imidazole propionate, part of the

histidine pathway (Figures 5 and S4B). Imidazole propionate in

the plasma was decreased by �80% in mice on an HFD, and

this was corrected by metronidazole, but not vancomycin, in
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Figure 7. Dynamic Changes in Unknown Plasma Metabolites

(A) Heatmap of the top 1,066 still-unidentified peaks that are significantly changed in the plasma in response to diet, antibiotics, or strain differences.

(B) Representative examples of unknown peaks that show features of diet, strain, and antibiotic dependence. The upper whisker extends from the hinge to the

largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker

extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called ‘‘outlying’’ points and are plotted

individually.
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both the cecum and plasma, consistent with the notion that

changes in intestinal bacteria contribute to the change in plasma

level. Three other features have been identified as N-acetyl-

lysine, cortexolone, and 5-hydroxy-4-metyluracil (Figure S4C).

Although most of the unknowns remain to be identified, it

is important to note that many of these changed more than

26-fold (64-fold) in response to diet and/or antibiotic treatment,

andmany show equally large differences among the three strains

of mice (Figure 7A). Representative examples that exhibit strong

biological correlates are shown in Figure 7B. For instance,

metabolite m15618 was unaffected by an HFD but decreased

in the plasma of B6J and 129J mice by 215-fold (32,768-fold)

with vancomycin but not metronidazole treatment. Clearly, iden-

tifying these highly regulated metabolites will lead to greater

insight into how the gut microbiome can affect systemic

metabolism.

DISCUSSION

Microbiotas in the gastrointestinal track are seeded just after

birth. Although the composition is influenced by both host ge-

netics and environmental factors, the gut microbiome can be re-

modeled throughout life, depending on many factors, including

diet, antibiotics, and gastrointestinal disease (Schroeder and

Bäckhed, 2016; Tamburini et al., 2016). Gut microbiotas play

important roles in maintaining host homeostasis by aiding in

metabolism of indigestible components of the diet, gut develop-

ment and homeostasis, immune cell development, and protec-

tion from colonization by pathogenic bacteria. Gut microbiotas

also produce and degrade various metabolites that can be taken

up and affect the host. For example, primary bile acids are con-

verted to secondary bile acids by gut microbiotas, and these

secondary bile acids not only aid in fat absorption, but they

also are reabsorbed into the circulation, where they serve as li-

gands for the bile acid receptors farnesoid X (FXR) and TGR5

on host cells, leading to effects on energy metabolism and the

immune system (Gadaleta et al., 2011; Jiang et al., 2015; Thomas

et al., 2009). Similarly, bacterially produced short-chain fatty

acids such as acetate, butyrate, and propionate not only serve

as important energy sources for the intestinal epithelium and

the liver but can also can modify insulin secretion, immune sys-

tem function, appetite, and adipose function (Bouter et al., 2017;

Canfora et al., 2015; Holmes et al., 2012; Perry et al., 2016). It is

not surprising, therefore, that changes in the communities of

organisms in the intestine can contribute to the pathogenesis

of metabolic diseases, including obesity, type 2 diabetes, and

the metabolic syndrome (Mikkelsen et al., 2015; Schroeder

and Bäckhed, 2016).

We and others have previously shown that different strains of

mice and mice from different vendors exhibit different rates of

obesity and diabetes when challenged with a high-fat diet (Parks

et al., 2015; Ussar et al., 2016). On an HFD, C57BL/6J mice from

Jax (B6J) and 129 mice from Taconic Farms (129T) are obesity-

prone, whereas 129 mice from Jax (129J) are obesity-resistant.

On the other hand, whenmade obese, only B6J mice develop in-

sulin resistance with diabetes andmetabolic syndrome, whereas

129T mice remain insulin-sensitive and non-diabetic. This differ-

ence between 129 mice from Jax and Taconic is, at least in part,
due to differences in the gut microbiome present in these mice

from these two vendors because the difference can be mini-

mized by breeding the mice in a common facility for three gener-

ations (Ussar et al., 2015). Likewise, some of the differences

between B6J and 129T mice appear to be due to influences of

the gut microbiota because transfer of microbiotas from these

two strains to germ-free mice can transfer some aspects of the

phenotypic difference. More recently, we have shown that modi-

fying gut microbiotas with vancomycin or metronidazole can

improve HFD-induced inflammation and insulin resistance both

at the physiological and signaling level in C57BL/6J mice,

whereas the same antibiotic treatment has no effect on either

substrain of 129 mice. At least one contributor to these effects

appears to be bile acids because the metabolic phenotype

closely correlates with changes in plasma levels of deoxycholic

acid and its anti-inflammatory bile acid receptor TGR5 (Fujisaka

et al., 2016). However, bile acids are only one class of metabo-

lites that can be modified by the presence of different gut

bacteria.

In the present study, we have begun to dissect the complex

relationship between metabolite changes, diet, host microbiota,

and genetic background by performing an untargetedmetabolo-

mics analysis of the plasma and cecal contents as well as 16S

rRNA sequence analysis of cecal contents from B6J, 129J, and

129T mice on chow or an HFD or HFD-treated with one of two

antibiotics widely used in humans: vancomycin, a non-absorb-

able antibiotic that targets Gram-positive bacteria, and metroni-

dazole, an absorbed antibiotic that targets anaerobic bacteria. In

agreement with our previous study (Fujisaka et al., 2016), we find

that, although an HFD and antibiotics produce shifts in the

composition of the gut microbiota, each strain of mice shows a

distinctly different pattern ofmicrobes in response to these treat-

ments. These differences are large enough to be detected with

statistical significance even with a relatively small number,

although one does need to be cautious about potential cage-

related differences that can affect the microbiome and, thus,

the metabolome.

One interesting and unexpected effect of the changing micro-

biome at the level of the gut is the effect on the cecum itself. It is

known that mice receiving short-term antibiotics or germ-free

mice show enlargement of the cecum (Furusawa et al., 2013;

Savage and Dubos, 1968). This enlargement of the cecum is

thought to be due to a defect in fermentation of dietary fiber,

and, in the latter, can be reversed by bacterial recolonization

(Jakobsdottir et al., 2013). In our study, the HFD decreased

cecum size in all mouse strains, which was returned to or above

normal by antibiotic treatment. This change in cecum size was

reproduced by transfer of gut microbiotas, indicating that these

changes in cecum size are mediated by the changing microbial

composition. Although the mechanism of changing cecum size

remains to be determined, the potential function effects of the

different microbial communities in the three strains on different

diets and antibiotics is apparent in a PICRUSt analysis of the

16S rRNA data that predicts effects of diet and antibiotics to up-

regulate and downregulate genes for many different metabolic

pathways, often in a strain-dependent manner.

The complex interactions between diet, antibiotics, and host

genetics on gut bacterial metabolism were even more apparent
Cell Reports 22, 3072–3086, March 13, 2018 3083



in the analysis of metabolites in the cecum of themice. Indeed, of

the over 20,000 known and unknown compound peaks detected

in the LC-MS analyses, over 70% showed a highly significant

(false discovery rate [FDR] < 0.01) change under one or more

conditions in at least one strain of mice. Although it was impos-

sible to assess these large number of metabolites in a truly

quantitative manner (i.e., with standards for each metabolite),

changes in many metabolites were more than 64-fold based

on relative peak heights. A number of the metabolite changes

in cecal contents matched well with the PICRUSt predictions.

For example, the galactose metabolism pathway is mildly

decreased by the HFD and further decreased by antibiotics.

Another good prediction was observed for pyrimidine metabo-

lites (uridine and cytosine), which are decreased by the HFD

and restored by vancomycin treatment in Jax-derived mice but

not Taconic Farms mice. Histidine levels in the cecum, on the

other hand, are increased by vancomycin and decreased by

metronidazole in Jax-derived mice and decreased by both anti-

biotics in 129T mice, reflecting intrinsic differences in the gut

flora of these vendor-bred strains. The PICRUSt prediction

also indicates decreased synthesis of aromatic amino acids in

Jax mice on antibiotics with a lesser effect in 129T mice, and

this agrees well with decreased levels of phenylalanine, tyrosine,

and tryptophan in the cecum of antibiotic-treated mice, espe-

cially in B6J and 129J mice.

However, the relationship between plasma and cecal levels of

metabolites is complex and depends on both the class ofmetab-

olite and the specific metabolites within a given class. For some

metabolite classes, such as triacylglycerides and fatty acids, the

response in the cecum is highly correlated with that in the

plasma, indicating that these circulating metabolites are likely

products of intestinal bacteria. For these metabolites, there is a

clear potential role in crosstalk between the gut environment

and systemic metabolism.

For most other classes of metabolites, the plasma levels do

not correlate with cecal levels for the group as a whole, but

manymetabolites within a given class plasma level are still tightly

linked to gut microbial metabolism. Among metabolites showing

little correlation, for example, are C10–C14 carnitines, whose

levels in the cecum are increased dramatically by antibiotics,

with no changes being observed in the plasma. Likewise, hista-

mine, fumarate, malate, monophosphate, AMP, ADP, and CMP

levels are decreased in the cecum by an HFD, with no change

or an increase in plasma levels. This suggests that intestinal

metabolism is not the only or major source of these metabolites

in plasma, although there are several other reasons why this may

occur. First, we have assessed the levels of these metabolites

only in the systemic circulation, and it is possible that some

gut metabolites that enter the portal circulation are taken up or

metabolized by the liver, reducing the magnitude of change in

the systemic circulation. Another possible reason for amismatch

may be the fact that levels of intestinal metabolites were only

analyzed in the cecum, and some of the relevant changes may

be occurring elsewhere in the gut. It is also possible that some

metabolites, such as lipids, are preferentially taken up into the

lymphatic circulation before entering the blood. It is also impor-

tant to keep in mind that changes in metabolite concentrations in

the cecum may have physiological effects even when levels do
3084 Cell Reports 22, 3072–3086, March 13, 2018
not change in the plasma because some of these metabolites

may act as neurotransmitters or regulatory molecules on the

gut epithelium itself. In this regard, it is interesting to note that

that cAMP and acetylcholine levels in the gut were significantly

increased by vancomycin treatment, and cecal histamine levels

were downregulated by an HFD, without parallel changes in

the plasma. The potential biological consequences of these

changes in cecal metabolites will need further study.

Among products of microbial metabolism, several bile acids,

especially deoxycholic acid and taurodeoxycholic acid, are

decreased in both the cecum and plasma following antibiotic

treatment (Fujisaka et al., 2016, and this study). This is due to

depletion of Clostridium clusters XI and XIVa, which have the

bile acid 7a-dehydratase BaiE that converts primary bile

acids to secondary bile acids. We have previously shown that

antibiotic treatment also increases the level of the anti-inflamma-

tory bile acid receptor TGR5 in the liver (Fujisaka et al., 2016),

which, together with the change in bile acids, could contribute

to decreasing the systemic inflammation induced by an HFD.

Dietary tryptophan is metabolized by the gut microbiota to

indole and then to indoxylsulfate, which is absorbed into the

circulation and eventually excreted in the urine. Interestingly,

indoxylsulfate in the cecum is increased by an HFD and by both

antibiotics in all three strains of mice, suggesting a role of vanco-

mycin- andmetronidazole-resistant bacteria in its production.On

the other hand, plasma indoxylsulfate shows an increasewith an-

tibiotics only in 129J and 129T mice, whereas, in B6J mice,

plasma indoxylsulfate decreased with antibiotic treatment. This

implies another metabolic pathway of indoxyl sulfate that is

unique to this strain of mice. Another bacterial metabolite re-

ported to have a negative effect on glucose metabolism (Dam-

brova et al., 2016) that is decreased by antibiotics in the plasma

is TMAO, and this occurs with little effect on the cecal levels of

themetabolite.On theother hand,propionate,whichhasbeen re-

ported to have a favorable effect on insulin resistance (De Vadder

et al., 2014), is also decreased in antibiotic-treated mice despite

their improved insulin sensitivity. These findings point to the com-

plex changes in metabolites, which can affect metabolism.

Despite this complexity, Spearman correlation analysis of

plasmametabolites reveals a number ofmetabolites that strongly

correlate positively or negatively with insulin resistance across all

strains of mice, diets, and antibiotics. Three of the metabolites

identified to be positively correlated with insulin resistance have

been previously associated with insulin resistance in humans.

Thus, individuals with 2-aminoadipate levels in the top quartile

have a more than 4-fold increased risk of future diabetes (Wang

et al., 2013). On the other hand, administration of 2-aminoadipate

lowers blood glucose levels in mice and enhances insulin secre-

tion by b cells in vitro, suggesting that 2-aminoadipate is a both

biomarker and a potential regulator of diabetes pathogenesis.

Likewise, a-hydroxybutyrate and N-acetylglycine have also

been reported as possible risk markers for type 2 diabetes melli-

tus (T2DM) in humans (Gall et al., 2010; Menni et al., 2013). The

present study shows there is a larger family of metabolites that

could be biomarkers or mediators of insulin resistance and/or

type 2 diabetes mellitus (T2DM). There are other metabolites

that negatively correlate with insulin resistance and could offer

protective effects on metabolism. Many of these metabolites



correlate well with the relative abundance of different bacterial

taxa (OTUs), but many of the taxa that appear to be driving these

metabolic changes are still poorly characterized. Thus, further

work will be required to clarify the mechanisms of regulation of

metabolites by these gut microbiota.

In summary, our data demonstrate that gut microbiota have

dramatic effects on the nature and quantity of many metabolites

in multiple chemical classes in the gut and that these changes

are reflected to varying degrees in changes in plasma levels of

the same metabolites. The changes at the level of the gut and

blood are dramatically influenced by diet, exposure to antibi-

otics, genetic background, and site of original bacterial coloniza-

tion. The differences between strains and sites of breeding are, in

many cases, as great as the effects of diet and antibiotics.

Although a number of knownmetabolites positively or negatively

correlate with insulin resistance, there is even greater numbers of

unknown metabolites that show equally strong differences. Un-

derstanding the full set of metabolites and their responses to

perturbation will open new insights into how changes in the gut

microbiome affect systemic metabolism and its alterations in

diabetes and obesity.

EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures for detailed procedures. All

mouse experiments were performed on males between 5 and 12 weeks of

age, complied with regulations and ethics guidelines, and were approved by

the International Animal Care and Use Committee (IACUC) of the Joslin Dia-

betes Center (97-05) and Harvard Medical School (05131).

Statistical Analysis

Statistical significance was evaluated using ANOVA and a post Tukey-Kramer

test. A p value of less than 0.05 was considered significant.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the metabolomics data reported in this study are

Metabolomics Workbench: ST000879 and ST000880. The accession number

for the 16S rRNA datasets containing the analysis of gut microbiota is SRA:

SRP132006.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at
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Fujisaka Supplemental Methods 

Mouse procedures 

Male C57BL/6J mice (B6) and 129S1 mice (129J) were purchased from Jackson Laboratory (Bar 

Harbor, ME) and 129S6 mice (129T) were purchased from Taconic Farms (Germantown, NY). Mice were 

maintained on normal chow containing 22% calories from fat, 23% from protein and 55% from 

carbohydrates (Mouse Diet 9F 5020, PharmaServ, Framingham, MA) or a high fat diet (Open Source 

Diet, D12492, Research Diets, New Brunswick, NJ) containing 60% calories from fat, 20% from protein 

and 20% from carbohydrates. For antibiotic treatment, 6-week old mice were treated with either placebo, 

vancomycin (1g/L) or metronidazole (1g/L) (Sigma-Aldrich, St. Louis, MO) in drinking water then 

started on HFD from age 7 to 11 weeks. The mice were fasted for 2 hours and anesthetized with 

isoflurane before collecting cecum and plasma. Insulin resistance scores were based on the observation 

that B6J on HFD were the most insulin resistant (score = 4); this was improved by metronidazole (score = 

3) and improved even more by vancomycin (score = 2); that chow-fed B6J mice were even more insulin 

sensitive (score = 1); and that 129 mice regardless of diet or antibiotics were the most insulin sensitive 

(score = 0).  

 

16S rRNA sequence analysis 

DNA was extracted from mouse cecum contents using a MoBio Fecal DNA extraction kit 

(MoBio Laboratories Inc., Carlsbad, CA). A multiplexed amplicon library covering the 16S rDNA gene 

V4 region was generated from DNA extracted samples. Reads were generated on the MiSeq instrument 

from the amplicon library and clustered into Operational Taxonomic Units (OTUs). A total of 1,353,060 

sequence reads were generated, corresponding to an average of 27,331.5 (range 16,657 to 69,861) reads 

per sample. Differences in microbial community structure were visualized using phylogenetic methods. 

The number of OTUs per sample were then scaled so each sample had the same mean, filtered to only 

include OTUs that were present at 0.1% of the total counts in at least 3 samples, log-transformed (using 

log2(count+0.5)), and plotted in PCA space using the R software. 16S rRNA datasets have been deposited 

in Sequence Read Archive (SRA) database (accession number: WILL BE PROVIDED AT TIME OF 

PUBLICATION). 

 

Untargeted metabolomic analysis 

Metabolomic analyses of plasma samples. Four separate liquid chromatography tandem mass 

spectrometry (LC-MS) methods were used to measure polar metabolites and lipids in each sample. 

Method 1. Positive ion mode MS analyses of polar metabolites were conducted using a Nexera X2 U-
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HPLC system (Shimadzu Scientific Instruments; Marlborough, MA) coupled to an Exactive Plus orbitrap 

mass spectrometer (Thermo Fisher Scientific; Waltham, MA). LC-MS samples were prepared from 

plasma (10 µL) via protein precipitation with the addition of nine volumes of 74.9:24.9:0.2 v/v/v 

acetonitrile/methanol/formic acid containing stable isotope-labeled internal standards (valine-d8, Isotec; 

and phenylalanine-d8, Cambridge Isotope Laboratories; Andover, MA). The samples are centrifuged (10 

min, 9,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 mm Atlantis HILIC 

column (Waters; Milford, MA). The column was eluted isocratically at a flow rate of 250 µL/min with 

5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 1 minute followed by 

a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10 minutes. MS 

analyses were carried out using electrospray ionization in the positive ion mode using full scan analysis 

over m/z 70-800 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion 

spray voltage, 3.5 kV; capillary temperature, 350°C; probe heater temperature, 300 °C; sheath gas, 40; 

auxiliary gas, 15; and S-lens RF level 40. 

Method 2. Negative ion mode, targeted MS analyses of polar metabolites we conducted using an 

ACQUITY UPLC (Waters) coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX). 

Plasma samples (30µL) were extracted using 120 µL of 80% methanol (VWR) containing 0.05 ng/µL 

inosine-15N4, 0.05 ng/µL thymine-d4, and 0.1 ng/µL glycocholate-d4 as internal standards (Cambridge 

Isotope Laboratories). The samples were centrifuged (10 min, 9,000 x g, 4ºC) and the supernatants (10 

µL) were injected directly onto a 150 x 2.0 mm Luna NH2 column (Phenomenex) that was eluted at a 

flow rate of 400 µL/min with initial conditions of 10% mobile phase A (20 mM ammonium acetate and 

20 mM ammonium hydroxide (Sigma-Aldrich) in water (VWR)) and 90% mobile phase B (10 mM 

ammonium hydroxide in 75:25 v/v acetonitrile/methanol (VWR)) followed by a 10 min linear gradient to 

100% mobile phase A. The ion spray voltage was -4.5 kV and the source temperature was 500°C. 

Method 3. Negative ion mode analysis of metabolites of intermediate polarity (e.g. bile acids and free 

fatty acids) were analyzed using a Nexera X2 U-HPLC system (Shimadzu Scientific Instruments; 

Marlborough, MA) coupled to a Q Exactive orbitrap mass spectrometer (Thermo Fisher Scientific; 

Waltham, MA). Plasma samples (30 µL) were extracted using 90 µL of methanol containing PGE2-d4 as 

an internal standard (Cayman Chemical Co.; Ann Arbor, MI) and centrifuged (10 min, 9,000 x g, 4°C). 

The supernatants (10 µL) were injected onto a 150 x 2.1 mm ACQUITY BEH C18 column (Waters; 

Milford, MA). The column was eluted isocratically at a flow rate of 450 µL/min with 20% mobile phase 

A (0.01% formic acid in water) for 3 minutes followed by a linear gradient to 100% mobile phase B 

(0.01% acetic acid in acetonitrile) over 12 minutes. MS analyses were carried out using electrospray 

ionization in the negative ion mode using full scan analysis over m/z 70-850 at 70,000 resolution and 3 

Hz data acquisition rate. Additional MS settings were: ion spray voltage, -3.5 kV; capillary temperature, 
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320°C; probe heater temperature, 300 °C; sheath gas, 45; auxiliary gas, 10; and S-lens RF level 60. 

Method 4. Polar and nonpolar lipids were analyzed using a Nexera X2 U-HPLC system (Shimadzu 

Scientific Instruments; Marlborough, MA) coupled to an Exactive Plus orbitrap mass spectrometer 

(Thermo Fisher Scientific; Waltham, MA). Lipids were extracted from plasma (10 µL) using 190 µL of 

isopropanol containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine as an internal standard (Avanti 

Polar Lipids; Alabaster, AL). After centrifugation (10 min, 9,000 x g, ambient temperature), supernatants 

(10 µL) were injected directly onto a 100 x 2.1 mm ACQUITY BEH C8 column (1.7 µm; Waters; 

Milford, MA). The column was eluted at a flow rate of 450 µL/min isocratically for 1 minute at 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic acid), followed by a 

linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/acetic acid) over 2 minutes, a linear 

gradient to 100% mobile phase B over 7 minutes, and then 3 minutes at 100% mobile-phase B. MS 

analyses were carried out using electrospray ionization in the positive ion mode using full scan analysis 

over m/z 200-1100 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion 

spray voltage, 3.0 kV; capillary temperature, 300°C; probe heater temperature, 300 °C; sheath gas, 50; 

auxiliary gas, 15; and S-lens RF level 60. 

Raw data from orbitrap mass spectrometers were processed using Progenesis QI software 

(NonLinear Dynamics) for feature alignment, untargeted signal detection, and signal integration. Targeted 

processing of a subset of known metabolites was conducted using TraceFinder software (version 3.1, 

Thermo Fisher Scientific; Waltham, MA). Raw data from the 5500 QTRAP MS system were processed 

using MultiQuant 2.1 software (AB SCIEX). Compound identities were confirmed using reference 

standards and reference samples. 

 

Metabolomic data analysis 

Metabolomics data was analyzed in the R software. To preprocess the metabolomics 

abundances, missing values were imputed by half the minimum observed for that metabolite, the data was 

quantile normalized using the preprocess Core package and then log2-transformed, metabolites that were 

present in only two or fewer samples were filtered out, and one sample that had very low initial 

abundance and was deemed to be of poor quality by an unbiased quality weighting algorithm (Ritchie et 

al., 2006) was discarded. Between group comparisons were analyzed with the linear modeling package 

limma accounting for the data’s mean-variance trend (Law et al., 2014; Ritchie et al., 2015). Cecum and 

plasma metabolite abundances were tested for association using Pearson correlation. Plasma metabolite 

abundances were then tested for association to 16S levels using Spearman rank correlation. Tests were 

adjusted for multiple testing using the Benjamini-Hochberg false discovery rate (FDR). Heatmaps were 

plotted with the gplots package, and boxplots, PCA plots, and scatterplots were plotted with the ggplot2 
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package.  

 

Statistical analysis 

Statistical significance was evaluated using ANOVA and a post Tukey-Kramer test. A p value less 

than 0.05 was considered significant. The results were presented as the means ± SEM. 

 

Study approval 

All experiments complied with regulations and ethics guidelines and were approved by the 

IACUC of Joslin Diabetes Center (97-05) and Harvard Medical School (05131). 
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Figure S1, Insulin levels in mice in response to HFD and antibiotic 

Treatment, Related to Figure 1
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Plasma insulin levels of mice on chow (green), HFD (blue), HFD + vancomycin (purple) and HFD + metronidazole 

(red) in the random fed state at 11 weeks of age. (n = 3-4 /group). *P<0.05 by ANOVA, followed by Tukey-Kramer 

post-hoc. The results are shown as the mean ± SEM. 



Figure S2, Heatmap of Metabolic Pathway Comparing Chow and HFD, 

Related to Figure 2
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Heatmap of all significantly altered metabolic pathways obtained from PICRUSt analysis of 16S rRNA sequencing data from 

Chow (C) versus HFD+placebo (H). 



Figure S3, Comparison of Metabolites in Cecum and Plasma, Related to Figure 4
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Supplementary Figure 3: 

Comparisons of metabolites between 

cecum and plasma in each group. Mice 

were 11 weeks of age (4 weeks on the 

chow or HFD; 5 weeks on antibiotics). 

Pink: chow+placebo, green: 

HFD+placebo, blue: HFD+vancomycin, 

purple: HFD+metronidazole
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Figure S4, Identifying Unknown Features in the Mass Spec Analysis of 

Metabolites, Related to Figure 7

C

Supplementary Figure 4: 

(A) Representative chromatograms of metronidazole with the raw abundance in plasma samples. (B) Representative 

chromatograms of imidazole propionate with the raw abundance in plasma and cecum. (C) Plasma levels of newly identified 

metabolites. 



Table S1, Overview of Mass Spec Analysis of Metabolites, Related to Figure 3

PLASMA Features Annotated Compounds
Unannotated

Compounds

C18-neg 41 41 (41 Features) none

C8-pos* 6,244 157 (779 Features) 3,679 (5,465)

HILIC-neg 80 80 (80 Features) none

HILIC-pos* 13,262 96 (446 Features) 7,364 (12,816)

TOTAL 19,627 374 (1,225 Features) 11,043 (18,281 Features)

CECAL Features Annotated Compounds
Unannotated

Compounds

C18-neg 10,716 39 (283 Features) 6,206 (10,433)

C8-pos* 11,387 254 (679 Features) 5,520 (10,708)

HILIC-neg 71 0 (Features) none

HILIC-pos* 27,538 118 (629 Feaures) 12,870 (26,909)

TOTAL 49,712 491 (1,591 Features) 24,596 (48,050 Features)

Supplementary Table 1: 

The number of compounds detected and the features representing them were estimated as follows: For each individual 

untargeted method (*), the Pearson correlation of features co-eluting within a 0.03 retention time window was calculated 

and clusters trimmed based on a minimum correlation coefficient of 0.8. Ions with the highest mean abundance were 

selected as representative within each cluster. 
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