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A. PROOFS

A.1 Outline

In this section, we prove Theorems 1 and 2 from Section 4 in the main paper. The remaining sub-

sections are organized as follows. In Section A.2, we list the additional assumptions for Theorem 1

in the main paper and give the proof of Theorem 1 in the main paper. In Section A.3, we prove

a theorem on variable selection consistency for group lasso regression with errors in variables,

which itself is of independent interest. In Section A.4, we introduce Assumption S4 on the bases

ψ(·), and several technical lemmas that are useful in proving Theorem 2 in the main paper. In

Section A.5, we finish the proof of Theorem 2 in the main paper. And in Section A.6, we prove

Proposition 1 in the main paper. The proofs of the technical lemmas presented in Section A.4 are

provided in Section B.

A.2 Proof of Theorem 1

In this section, we follow closely the notation in Section 1.6 of Tsybakov (2009). We first present

some necessary notation and assumptions. Denote the local polynomial estimator of degree ` as

X̂(t;h) =
n∑
i=1

YiWni(t;h), (S1)

where

Wni(t;h) =
1

nh
UT(0)B−1nt U

(
ti − t
h

)
K

(
ti − t
h

)
, (S2)
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Bnt =
1

nh

n∑
i=1

U

(
ti − t
h

)
UT

(
ti − t
h

)
K

(
ti − t
h

)
,

U(u) =
(
1, u, u2/2!, . . . , u`/`!

)T
,

and K(·) is a kernel function. In (S2), Wni(t;h) is the weight for observation Yi in (S1), which

satisfies
n∑
i=1

Wni(t;h) = 1. (S3)

See e.g., Proposition 1.12 in Tsybakov (2009), for a rigorous proof of (S3). We introduce the fol-

lowing assumptions on the kernel function K(·) and the time points t1, . . . , tn. These assumptions

are common in the study of local polynomial estimators (see e.g. Tsybakov, 2009).

Assumption S1. There exists a real number λ0 > 0 and a positive integer n0 such that the smallest

eigenvalue Λmin(Bnt) of Bnt satisfies

Λmin(Bnt) ≥ λ0

for all n ≥ n0 and any t ∈ [0, 1].

Assumption S2. The time points t1, . . . , tn are evenly-spaced on the interval [0, 1].

Assumption S3. The kernelK has compact support belonging to [−1, 1], and there exists a number

Kmax <∞ such that |K(u)| ≤ Kmax, ∀u ∈ R.

These assumptions lead to the following lemma (Lemma 1.3 in Tsybakov, 2009).

Lemma S1. Under Assumptions S1–S3, for all n ≥ n0, h ≥ 1/(2n), and t ∈ [0, 1], the weights

Wni in (S2) satisfy:
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i. supi,t |Wni(t;h)| ≤ C3/nh;

ii.
∑n

i=1 |Wni(t;h)| ≤ C3,

where the constant C3 depends only on λ0 and Kmax.

Recall that we also assume the unknown true solutions X∗j , j = 1, . . . , p, belong to a Hölder

class in Assumption 2 in the main paper. We state the definition here for completeness.

Definition S1. Let T be an interval in R and let β1 and L1 be two positive numbers. The Hölder

class Σ(β1, L1) on T is defined as the set of ` = bβ1c times differentiable functions f : T → R

whose `th order derivative f (`)(·) satisfies

|f (`)(x)− f (`)(x′)| ≤ L1|x− x′|β1−`, ∀x, x′ ∈ T.

We are now ready to prove Theorem 1 of the main paper.

Proof.

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣2 =

∫ 1

0

{X̂j(u;h)−X∗j (u)}2 du =

∫ 1

0

{
n∑
i=1

YijWni(u;h)−X∗j (u)

}2

du

=

∫ 1

0

[
n∑
i=1

{X∗j (ti) + εji}Wni(u;h)−X∗j (u)

]2
du.
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Using the property (S3) of the weights Wni and the fact that (a+ b)2 ≤ 2a2 + 2b2,

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣2 ≤ 2

∫ 1

0

[
n∑
i=1

{X∗j (ti)−X∗j (u)}Wni(u;h)

]2
du

+ 2

∫ 1

0

{
n∑
i=1

εjiWni(u;h)

}2

du

≡ 2

∫ 1

0

bias2(u) du+ 2

∫ 1

0

g2(εj/σ, u, h) du,

(S4)

where

bias(u) =
n∑
i=1

{X∗j (ti)−X∗j (t)}Wni(u;h), (S5)

g(a, u, h) =σ
n∑
i=1

aiWni(u;h), εj = (ε1j, . . . , εnj)
T, (S6)

and where σ is defined in Assumption 1 in the main paper.

In what follows, for convenience, we denote the `th derivative of X∗j (t) as X(`)
j . Under As-

sumption 2 in the main paper and Assumptions S1–S3, it follows from Proposition 1.13 in Tsy-

bakov (2009) that |bias(u)| ≤ q1h
β1 , where q1 = C3L1/`!. Therefore,

∫ 1

0

bias2(u) du ≤ q21h
2β1 . (S7)

Next, we bound g(εj/σ, t, h) in (S6) using Theorem 5.6 in Boucheron et al. (2013). The theo-

rem states that if Z = (Z1, . . . , Zn) is a vector of n independent standard normal random variables

and f is an L-Lipschitz function, then for all v > 0,

Pr{f(Z)− Ef(Z) ≥ v} ≤ exp{−v2/(2L2)}.
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Applying the theorem to f(z) and −f(z), we get

Pr{|f(Z)− Ef(Z)| ≥ v} ≤ 2 exp{−v2/(2L2)}.

We now show that g(x, t, h) is an L3-Lipschitz function with L3 = σC3(nh)−0.5:

|g(a, u, h)− g(b, u, h)| =σ

∣∣∣∣∣
n∑
i=1

(ai − bi)Wni(u;h)

∣∣∣∣∣
≤σ

{
n∑
i=1

W 2
ni(u;h)

} 1
2

‖a− b‖2

≤σ

{
sup
i,u
|Wni(u;h)|

n∑
i=1

|Wni(u, h)|

} 1
2

‖a− b‖2

≤σC3

√
1

nh
‖a− b‖2,

where the last inequality follows from Lemma S1. Hence, from Theorem 5.6 in Boucheron et al.

(2013), we have

Pr{|g(εj/σ, u, h)− Eg(εj/σ, u, h)| ≥ v} ≤ 2 exp{−v2/(2L2
3)}.

Letting v = nα/2−0.5h−0.5 and noting that E[g(εj/σ, u, h)] = 0, we have

Pr{|g(εj/σ, u, h)| ≥ nα/2−0.5h−0.5} ≤ 2 exp{−nα/(2σ2C2
3)}. (S8)
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Combining (S4), (S7), and (S8), we have

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣2 ≤ 2

∫ 1

0

bias2(u) du+ 2

∫ 1

0

g2(εj/σ, u, h) du

≤ 2q21h
2β1 + 2nα−1h−1,

(S9)

with probability at least 1− 2 exp{−nα/(2σ2C2
3)}.

Minimizing the right-hand side of (S9) with respect to h, we find that the minimizer hn satisfies

2β1q
2
1h

2β1+1
n = nα−1.

Thus, for hn ∝ n(α−1)/(2β1+1), the error bound is

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣2 ≤ C2n

2β1
2β1+1

(α−1)
,

for some global constant C2.

A.3 Variable selection consistency of group lasso in error-in-variable models

We first review some notation that is heavily used in this section. In (17c) of the main paper, we

made use of the notation

Ψ̂0(t) = t; Ψ̂k(t) =

∫ t

0

ψ(X̂k(u;h)) du, k = 1, . . . , p.

Therefore, Ψ̂k(t) is an M -vector for k = 1, . . . , p and a scalar for k = 0. We sometimes use sets,

e.g. Sj and S0
j , as the subscripts. In this case, Ψ̂Sj(t) is an Msj-vector, which is composed of Ψ̂k
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for k ∈ Sj . Furthermore, Ψ̂S0
j

= (Ψ̂0(t), Ψ̂
T
Sj

(t))T is an (Msj + 1)-vector. Without subscripts,

Ψ̂(t) ≡ (Ψ̂0(t), Ψ̂
T
1 (t), . . . , Ψ̂T

p (t))T is of dimension Mp + 1. We will also apply subscripts to

the quantities θ∗j , θ̂j , ĝ, and R. For instance, θ̂jk = (θjk1, . . . , θjkM)T for k = 1, . . . , p, and

θ̂j = (θ̂j0, θ̂
T
j1, . . . , θ̂

T
jp)

T. The products of these vectors are defined as usual, e.g., θ̂T

jS0
j
Ψ̂S0

j
(t) is a

scalar, and Ψ̂S0
j
(t)Ψ̂T

S0
j
(t) is an (Msj + 1)× (Msj + 1) matrix.

The optimization problem (17a) in the main paper is a standardized group lasso problem (Si-

mon and Tibshirani, 2012). Because the regressors Ψ̂1, . . . , Ψ̂p are estimated, establishing variable

selection consistency requires extra attention. For ease of discussion, we re-state the optimization

problem (17a),

θ̂j = arg min
C0∈R,θj0∈R, θjk∈RM

1

2n

n∑
i=1

{
Yij − C0 − θj0Ψ̂0(ti)−

p∑
k=1

θTjkΨ̂k(ti)

}2

+

λn,j

p∑
k=1

[
1

n

n∑
i=1

{θTjkΨ̂k(ti)}2
]1/2

,

where

X̂(·;h) = arg min
Z(·)∈X (h)

n∑
i=1

‖Yi − Z(ti)‖22,

Ψ̂0(t) = t; Ψ̂k(t) =

∫ t

0

ψ(X̂k(u;h)) du, k = 1, . . . , p.

In what follows, for simplicity we assume that X∗j (0) = 0, and that λn,1 = · · · = λn,p ≡ λn. For

any 1 ≤ j, k ≤ p, let θ∗jk ∈ RM be the coefficients of the true functions f ∗jk on the bases ψ(·), i.e.,

f ∗jk(a) = ψ(a)Tθ∗jk + δjk(a), (S10)

where f ∗jk is introduced in Assumption 3 in the main paper. Here we establish variable selection

consistency for group lasso regression with errors in variables. We extend the recent work of Loh
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and Wainwright (2012) for lasso regression; related results can be found in Ma and Li (2010) and

Rosenbaum and Tsybakov (2010). In order for variable selection consistency to hold, we need four

conditions. In Section A.5, we will show that these conditions hold with high probability given

Assumptions 1–6 in the main paper and Assumptions S1–S4.

Condition S1. Suppose that

0 <
1

2
Cmin ≤ Λmin

(
1

n

n∑
i=1

Ψ̂S0
j
(ti)Ψ̂

T

S0
j
(ti)

)
,

Λmax

(
1

n

n∑
i=1

Ψ̂S0
j
(ti)Ψ̂

T

S0
j
(ti)

)
≤ 2Cmax,

0 <
1

2
Cmin ≤ Λmin

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)
, k /∈ S0

j ,

where Cmin and Cmax are introduced in Assumption 4 in the main paper.

Condition S2. Assume that

max
k/∈S0

j

∥∥∥∥∥∥
(

1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0
j
(ti)

)(
1

n

n∑
i=1

Ψ̂S0
j
(ti)Ψ̂

T

S0
j
(ti)

)−1∥∥∥∥∥∥
2

≤ 2ξ,

where ξ is introduced in Assumption 5.

The next condition was first proposed in Loh and Wainwright (2012) as the deviation condition.

Specifically, (S11) is a special case of Equation 3.1 in Loh and Wainwright (2012). Recall that

the true parameters θ∗j0 and θ∗jk are introduced in Assumption 3 of the main paper and (S10),

respectively.
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Condition S3. For j = 1, . . . , p, let ∆ ≡ maxj=1,...,p

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣. Assume that

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Yij −
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0
j
(ti)θ

∗
jS0
j

∥∥∥∥∥
2

≤ η, k = 0, . . . , p (S11)

where η = M1/2
{
sM−β2Q1/2B +BD‖θ∗S‖1∆ + nα/2−1/2

}
.

Note that the global constant Q in Condition S3 also appears in Assumption S4 in Section A.4.

Condition S4 places constraints on the quantities involved in the proof of Theorem S1. In the

proof of Theorem 2 in the main paper, we will show that Condition S4 holds with high probability.

Condition S4. The following inequalities hold:

2
√
s+ 1

Cmin

η + λn

√
8sCmax

Cmin

≤ 2

3
θmin,

2ξ
√
s+ 1 + 1

λn
η + 2ξ

√
s
√

2Cmax <
√
Cmin/2,

where θmin ≡ mink∈S0
j
‖θ∗jk‖2, and ξ, η, Cmin, and Cmax are introduced in Assumptions 4–6 of the

main paper.

We arrive at the following theorem.

Theorem S1. Suppose that Conditions S1–S4 are met. Then the estimator θ̂j from (17a) has the

correct support, i.e. Ŝj = Sj for all j = 1, . . . , p.

Proof. We establish variable selection consistency using the primal-dual witness method (Wain-

wright, 2009). For simplicity, we drop the subscript j in what follows: for instance, we drop the

subscript j in Yij and θ̂j in (17a), and in the estimated neighbourhood Ŝj .
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A vector θ̂ solves the optimization problem (17a) in the main paper if it satisfies the Karush-

Kuhn-Tucker (KKT) condition, which is

1

n

n∑
i=1

Ψ̂k(ti)
{

Ψ̂T(ti)θ̂ − Yi
}

+ λnĝk = 0, k = 1, . . . , p, (S12)

with

ĝk =

∑n
i=1 Ψ̂k(ti)Ψ̂

T
k(ti)θ̂k/n√

θ̂T
k

∑n
i=1 Ψ̂k(ti)Ψ̂T

k(ti)θ̂k/n
if θ̂k 6= 0,

ĝT

k

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)−1
ĝk < 1 if θ̂k = 0.

(S13)

The KKT condition for θ̂0 is

1

n

n∑
i=1

Ψ̂0(ti)
{

Ψ̂T(ti)θ̂ − Yi
}

= 0. (S14)

Note that, in the previous equations, we drop the parameter C0 that appears in (17a) of the main

paper to avoid cumbersome bookkeeping.

We will construct an oracle estimator θ̂ and will verify that it satisfies the KKT conditions

(S12), (S13), and (S14), which means that it solves the optimization problem (17a) in the main

paper.

We construct an oracle primal-dual pair (θ̂, ĝ) as follows:

1. Set θ̂k = 0 for k /∈ S0.

2. Let

θ̂S0 = arg min
θS0∈RsM+1

1

2n

n∑
i=1

{
Yi − θT

S0Ψ̂S0(ti)
}2

+ λn
∑
k∈S

[
1

n

n∑
i=1

{θT

jkΨ̂k(ti)}2
]1/2

. (S15)
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3. Define ĝS0 = (0, ĝT
S)T as in (S13).

4. Solve ĝk from the sub-gradient condition (S12) for k /∈ S0.

We will verify the support recovery consistency

max
k∈S
‖θ̂k − θ∗k‖2 ≤

2

3
θmin (S16)

and strict dual feasibility

max
k/∈S0

ĝT

k

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)−1
ĝk < 1. (S17)

(S16) implies that the oracle estimator θ̂ recovers the support of θ∗ exactly, and (S17) implies that

θ̂ solves (17a).

Further, if the optimal solution to (17a) is unique, then the oracle estimator is the unique es-

timator. If the optimal solution is not unique, then from Theorem 2 in Roth and Fischer (2008),

the null set of any optimal solution should contain Sc, and thus any optimal solution satisfies the

construction of the oracle estimator. Therefore, the statement of Theorem S1 holds for any optimal

solution for (17a).

We now establish (S16). The subgradient condition for the constrained problem (S15) is

1

n

n∑
i=1

Ψ̂S0(ti)
{

Ψ̂T

S0(ti)θ̂S0 − Yi
}

+ λnĝS0 = 0. (S18)
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Adding and subtracting 1
n

∑n
i=1 Ψ̂S0(ti)Ψ̂

T

S0(ti)θ
∗
S0 , we get

1

n

n∑
i=1

{
Ψ̂S0(ti)Ψ̂

T

S0(ti)θ̂S0 − Ψ̂S0(ti)Ψ̂
T

S0(ti)θ
∗
S0

}
+

1

n

n∑
i=1

{
Ψ̂S0(ti)Ψ̂

T

S0(ti)θ
∗
S0 − Ψ̂S0(ti)Yi

}
+ λnĝS0 = 0.

Rearranging the terms and letting

RS0 ≡ 1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)θ
∗
S0 −

1

n

n∑
i=1

Ψ̂S0(ti)Yi, (S19)

we get

θ̂S0 − θ∗S0 = −

(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1
(RS0 + λnĝS0) . (S20)

By the definition of RS0 in (S19), for each k ∈ S, we have that

Rk =
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0 −

1

n

n∑
i=1

Ψ̂k(ti)Yi, (S21)

and R0 = 1
n

∑n
i=1 ti{Ψ̂T

S0(ti)θ
∗
S0 − Yi}. By Condition S3, we know that ‖Rk‖2 ≤ η for k ∈ S0.

Hence,

‖RS0‖2 ≤ η
√
s+ 1. (S22)

By Condition S1, we have that

Λmax


(

1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1 ≤ 2

Cmin

. (S23)

From (S13) and the fact that the largest eigenvalue of a submatrix is no greater than the largest
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eigenvalue of the matrix,

1

2Cmax

‖ĝk‖22 ≤ ĝT

k

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)−1
ĝk = 1, k ∈ S.

Furthermore, ĝ0 = 0 by construction. Hence,

‖ĝS0‖2 =
{
‖ĝ0‖22 + ‖ĝS‖22

}1/2 ≤√2sCmax. (S24)

Therefore, combining (S20), (S22), (S23), and (S24), it follows that

max
k∈S
‖θ̂k − θ∗k‖2 ≤ ‖θ̂S0 − θ∗S0‖2 ≤

2η
√
s+ 1

Cmin

+ λn

√
8sCmax

Cmin

≤ 2

3
θmin,

where the last inequality follows from Condition S4.

Next, we verify strict feasibility (S17). For k /∈ S0, from (S12),

1

n

n∑
i=1

Ψ̂k(ti)
(
Ψ̂T

S0(ti)θ̂S0 − Yi
)

+ λnĝk = 0.

Adding and subtracting 1
n

∑n
i=1 Ψ̂k(ti)Ψ̂

T

S0(ti)θ
∗
S0 yields

1

n

n∑
i=1

{
Ψ̂k(ti)Ψ̂

T

S0(ti)θ̂S0 − Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0

}
+

1

n

n∑
i=1

{
Ψ̂k(ti)Ψ̂

T

S0(ti)θ
∗
S0 − Ψ̂k(ti)Yi

}
+ λnĝk = 0.

14



Rearranging the terms and plugging in (S20) and (S21), we get

λnĝk =
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)

(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1
(RS0 + λnĝS0)−Rk.

By Condition S2, we know that

max
k/∈S0

∥∥∥∥∥∥
(

1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)

)(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1∥∥∥∥∥∥
2

≤ 2ξ.

Recall from Condition S3 that ‖Rk‖2 ≤ η for 1 ≤ k ≤ p. Using (S22) and (S24), we have that

‖ĝk‖2 ≤
2ξ
√
s+ 1 + 1

λn
η + 2ξ

√
s
√

2Cmax, k /∈ S0.

By Condition S4, ‖ĝk‖2 <
√
Cmin/2, and thus, applying Condition S1,

ĝT

k

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)−1
ĝk ≤

2‖ĝk‖22
Cmin

< 1, k /∈ S0.

Therefore, we have established (S17).

A.4 Assumption S4 and technical lemmas

Theorem S1 characterizes the samples on which the GRADE estimator is able to reconstruct the

true network. We must now establish that with high probability, the observations satisfy Con-

ditions S1–S4. In Section A.5, Lemmas S3–S5, stated below, will be used to show that Condi-

tions S1–S4, needed for Theorem S1, hold with high probability. Lemma S2 is used to prove

Lemmas S3–S5. Lemmas S2 – S5 are proven in Appendix B.
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First, we state the regularity condition on the bases ψ mentioned in Section 4 in the main paper.

Assumption S4. The basis functions are orthonormal, i.e.,
∫ 1

0
ψjk
(
X∗k(u)

)
ψT
jk

(
X∗k(u)

)
du = IM ,

where IM is an M ×M identity matrix. The basis functions are bounded and have bounded first

order derivative, i.e. |ψm(x)| ≤ B, |ψ′m(x)| ≤ D,m = 1, . . . ,M . Further, under Assumption 3 in

the main paper, for any j, k,

∫ 1

0

δ2jk(u)du =

∫ 1

0

{
f ∗jk(X

∗
k(u))− ψT(X∗k(u))θ∗jk

}2
du ≤ Q(M + 1)−2β2 , (S25)

where θ∗jk is defined in (S10) and Q is a global constant.

Remark 1. Assumption S4 holds, for instance, when ψ(·) is the set of trigonometric basis functions

(see, e.g., Section 1.7.3 in Tsybakov (2009)).

We next state the technical lemmas used in the proof of Theorem 2 in the main paper.

Lemma S2. Suppose that Assumption 3 in the main paper and Assumption S4 hold, and ψ(t) =

(ψ0(t), ψ1(t), . . . , ψM(t))T is of degree M . Then,

∣∣∣∣∣‖θ∗jk‖2 −
{∫ 1

0

[
f ∗jk(X

∗
k(u))

]2
du

}1/2
∣∣∣∣∣ ≤√QM−β2 . (S26)

∣∣∣∣∣∣X∗j −ΨT

S0θ∗S0

∣∣∣∣∣∣ ≤ s
√
QM−2β2 , (S27)

and

1

n

n∑
i=1

{X∗j (ti)−ΨT

S0(ti)θ
∗
S0}2 ≤ s2QM−2β2 + o

(
n−2
)
, (S28)

where θ∗jk is defined in (S10) and Q is a constant in Assumption S4.
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Lemma S3. Suppose that Assumptions 3 and 4 in the main paper and Assumption S4 hold. Let

∆ ≡ maxj=1,...,p

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣. The following bounds on the eigenvalues of

∑n
i=1 Ψ̂S0Ψ̂T

S0/n hold:

Λmin

(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)
≥ Cmin −

(
2BD∆ +

BD +B2

6n2

)
(Ms+ 1),

Λmax

(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)
≤ Cmax +

(
2BD∆ +

BD +B2

6n2

)
(Ms+ 1),

and Λmin

(
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

k(ti)

)
≥ Cmin −

(
2BD∆ +

BD +B2

6n2

)
M, k /∈ S0

j .

(S29)

Lemma S4. Suppose that Assumptions 3 and 5 in the main paper and Assumption S4 hold. Let

∆ ≡ maxj=1,...,p

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣. Then,

∥∥∥∥∥∥
(

1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)

)(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1∥∥∥∥∥∥
2

≤

ξ +
{
c1Ĉ

−2
minM(Ms+ 1)3∆2

}1/2

+
{
c2M(Ms+ 1)∆2

}1/2
+
{
c3M(Ms+ 1)3/6n2

}1/2
,

(S30)

where Ĉmin ≡ Cmin −
(

2BD∆ + BD+B2

6n2

)
(Ms+ 1), and c1, c2, c3 are constants.

Lemma S5. Suppose Assumptions 1, 2, and 3 in the main paper and Assumption S4 hold. Let

∆ ≡ maxj=1,...,p

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣. For each k = 0, . . . , p,

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Yij −
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0

∥∥∥∥∥
2

≤ η, (S31)

where

η ≡M1/2
{
sM−β2Q1/2B +BD‖θ∗S‖1∆ + nα/2−1/2

}
with probability at least 1− 2M exp{−nα/(2B2σ2)}.
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A.5 Proof of Theorem 2

Proof. Notice that Theorem S1 offers the desired result of Theorem 2 in the main paper. We now

verify that Conditions S1–S4 hold with high probability given the assumptions for Theorem 2 of

the main paper. This completes the proof of Theorem 2 of the main paper.

First of all, Lemma S5 tells us that Condition S3 holds with probability at least 1−2pM exp−n
α/(2B2σ2).

This probability converges to unity as p and n grow, because M ∝ n
2

2β2+1
β1

2β1+1
(1−α)

= o(n) and

pn exp(−C4n
α/σ2) = o(1) as required in Theorem 2 of the main paper, whereC4 ≡ min{1/(2B2), 1/(2C2

3)}.

Thus, Condition S3 holds with high probability.

Next, we verify that Condition S4 holds with high probability. Given Assumptions 1–2 and

S1–S3, we know from Theorem 1 in the main paper that

max
j

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣ ≡ ∆ = O

(
n

β1
2β1+1

(α−1)
)
, (S32)

with probability at least 1−2p exp{−nα/(2C3σ
2)}. Recall that in Theorem 2 of the main paper we

require that s = O(nγ) and M ∝ n
2

2β2+1
β1

2β1+1
(1−α). Furthermore, ‖θ∗k‖1 <

√
M‖θ∗k‖2, and ‖θ∗k‖2 is

bounded by a constant due to the fact that f ∗jk is bounded and (S26). Combining these with (S32),

we know that the three terms of η in Condition S3 satisfy

sM−β2+1/2Q1/2B = O
(
n
− 2β2−1

2β2+1
β1

2β1+1
(1−α)+γ

)
,

M1/2BD‖θ∗S‖1∆ = O
(
n
− 2β2−1

2β2+1
β1

2β1+1
(1−α)+γ

)
,
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and

M1/2nα/2−1/2 = O
(
n
( 1
2β2+1

β1
2β1+1

− 1
2
)(1−α)

)
.

These lead to ∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Yij −
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0

∥∥∥∥∥
2

≤ η = O
(
n−

2β2−1
2β2+1

β1
2β1+1 (1−α)+γ

)
(S33)

with probability at least 1− 2pM exp{−nα/(2B2σ2)} for all k = 0, . . . , p, from Lemma S5.

In Theorem 2 of the main paper, we require that λn ∝ n
− β1

2β1+1
2β2−1
2β2+1

(1−α)+2γ
. Given (S33) and

s = O(nγ), we know that
√
sη = o(λn). Furthermore, define

H1(β1, β2, α) ≡ min

{
β1

2β1 + 1

2β2 − 1

4β2 + 2
(1− α),

2

3

β1
2β1 + 1

2β2 − 3

2β2 + 1
(1− α)

}
. (S34)

Then,

− β1
2β1 + 1

2β2 − 1

2β2 + 1
(1− α) + 2γ ≤ −2H1(β1, β2, α) + 2γ.

Thus, λn = o(1) for γ < H1(β1, β2, α). Further notice that M−β2 ∝ n
− 2β2

2β2+1
β1

2β1+1
(1−α)

= o(1),

which implies that θmin ≥ 3fmin/4 for sufficiently large n from (S26) in Lemma S2. As a result,

the two inequalities in Condition S4 become

o(λn) + λn

√
8sCmax

Cmin

≤ fmin

2
,

o(1) + 2ξ
√
s
√

2Cmax <
√
Cmin/2,

which hold for sufficiently large n under Assumption 6 of the main paper.

Note that the probability that (S32) and (S33) both hold is at least 1−2pM exp{−nα/(2B2σ2)}−

2p exp{−nα/(2C2
3σ

2)}. Letting C4 = min{1/(2B2), 1/(2C2
3)}, we know from Theorem 2 that

pn exp(−C4n
α/σ2) = o(1). Combining this with M ∝ n

2
2β2+1

β1
2β1+1

(1−α)
= o(n), we know that
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1−2pM exp{−nα/(2B2σ2)}−2p exp{−nα/(2C2
3σ

2)} converges to 1 as p, s, and n grow. There-

fore, Condition S4 holds with high probability.

Finally, we establish that Conditions S1 and S2 hold with high probability. Note that the

dominant terms not involving Cmin, Cmax or ξ in the bounds in (S29) in Lemma S3 and (S30) in

Lemma S4 involve sM∆ and s3/2M2∆, respectively. Given (S32), one can check that

sM∆ ∝ n
β1

2β1+1
2β2−1
2β2+1

(1−α)+γ
= o(1), and (S35)

s3/2M2∆ ∝ n
β1

2β1+1
2β2−3
2β2+1

(1−α)+ 3
2
γ

= o(1), (S36)

where we have used the fact that β2 ≥ 3 in Assumption 3 in the main paper as well as the fact that

γ < H1(β1, β2, α) from the statement of Theorem 2 in the main paper. Since (S32) and (S33) hold

with high probability, combining the inequalities in Lemmas S3 and S4 with (S35) and (S36), we

see that Conditions S1 and S2 hold with high probability given Assumptions 3, 4 and 5 in the main

paper.

In summary, we have shown that Conditions S1–S4 hold with high probability. Applying

Theorem S1 establishes that the GRADE estimator Ŝj in (17) in the main paper recovers the true

support S∗j .

A.6 Proof of Proposition 1

In Proposition 1, the choice of bandwidth hn is different from that in Theorems 1 and 2 of the main

paper. In order to prove Proposition 1 of the main paper, we establish the following concentration

inequality for
∣∣∣∣∣∣∣∣∣X̂j −X∗j

∣∣∣∣∣∣∣∣∣, where the bandwidth is chosen as specified in Proposition 1 of the

main paper.
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Proposition S1. Suppose that Assumptions 1–2 in the main paper and S1–S3 hold. Let X̂j be the

local polynomial regression estimator of order ` = bβ1c with bandwidth

hn ∝ n−1/(2β1+1).

There exists a constant C2 <∞ such that for each j = 1, . . . , p,

∣∣∣∣∣∣∣∣∣X̂j −X∗j
∣∣∣∣∣∣∣∣∣2 ≤ C2n

α− 2β1
2β1+1

holds with probability at least 1− 2 exp{−nα/(2σ2C2
3)}.

The proof of Proposition S1 is similar to that for Theorem 1 in the main paper by plugging in

hn ∝ n−1/(2β1+1) in (S9).

Given Proposition S1, the proof of Proposition 1 in the main paper follows from a similar

argument as in the proof of Theorem 2 in the main paper, and is thus omitted here. The constant

H2(β1, β2, α) is defined as

H2(β1, β2, α) ≡ min

{
β1

2β1 + 1

2β2 − 1

2β2 + 1
− α, 1

3

β1
2β1 + 1

2β2 − 3

2β2 + 1
− α

}
.

B. PROOFS OF TECHNICAL LEMMAS

B.1 Proof of Lemma S2

In this section, in the interest of clarity, we bring back the subscript j in θ∗j , θ
∗
jk, θ

∗
jS0 and f ∗jk.
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Proof. Recall that in Assumption S4, (S25) says that

∫ 1

0

δ2jk(u)du =

∫ 1

0

{
f ∗jk(X

∗
k(u))− ψT(X∗k(u))θ∗jk

}2
du ≤ Q(M + 1)−2β2 .

It follows from the triangle inequality that

∣∣∣∣∣
{∫ 1

0

[
ψT(X∗k(u))θ∗jk

]2
du

}1/2

−
{∫ 1

0

[
f ∗jk(X

∗
k(u))

]2
du

}1/2
∣∣∣∣∣ ≤√QM−β2 .

The orthogonality of ψ in Assumption S4 then leads to (S26), i.e.,

∣∣∣∣∣‖θ∗jk‖2 −
{∫ 1

0

[
f ∗jk(X

∗
k(u))

]2
du

}1/2
∣∣∣∣∣ ≤√QM−β2 .

From (S25), we can also see that

∣∣∣∣∫ t

0

δjk(u) du

∣∣∣∣ ≤{∫ t

0

δ2jk(u) du

}1/2{∫ t

0

12 du

}1/2

≤
{∫ 1

0

δ2jk(u) du

}1/2

≤
√
Q(M + 1)−2β2 ≤

√
QM−2β2 ,

where we use the fact that t ∈ [0, 1].

Recall from (15) in the main paper and (S10) that

X∗j (t) = θ∗j0t+

p∑
k=1

ΨT

k(t)θ∗jk +

p∑
k=1

∫ t

0

δjk(u) du,

where we let X∗j (0) = 0 for ease of discussion. We know that both θ∗jk and δjk are zero for k /∈ S.
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Thus, the errors that result from the use of truncated bases are bounded by

∣∣∣∣∣∣∣∣∣X∗j −ΨT

S0
j
θ∗jS0

j

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣X∗j − θ∗j0t−

∑
k∈Sj

ΨT

kθ
∗
jk

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ =

∫ 1

0

∑
k∈Sj

∫ t

0

δjk(u)du


2

dt


1
2

≤
[∫ 1

0

{
s
√
QM−2β2

}2

dt

] 1
2

≤ s
√
QM−2β2 .

The error bound in (S27) is on the whole trajectories, whereas we only observe discrete mea-

surements of the trajectories in reality. The bound in (S28) addresses this case and is proved below.

1

n

n∑
i=1

{X∗j (ti)−ΨT

S0
j
(ti)θ

∗
jS0
j
}2 =

1

n

n∑
i=1

∑
k∈Sj

∫ ti

0

δjk(u)du


2

≤
∫ 1

0

∑
k∈Sj

∫ t

0

δjk(u)du


2

dt+ o

(
1

n2

)

≤ s2QM−2β2 + o
(
n−2
)
,

where the last inequality follows from (S27) and the second to last inequality follows from the

trapezoidal rule on a uniform grid.

B.2 Proof of Lemma S3

We first review some known results on matrix norms and eigenvalues. For an m× n matrix A,

‖A‖2 = sup
x∈Rn

‖Ax‖2
‖x‖2

= sup
‖x‖2=1


m∑
i=1

(
n∑
j=1

aijxj

)2


1
2

≤

(
m∑
i=1

n∑
j=1

a2ij

) 1
2

≡ ‖A‖F , (S37)

23



where ‖ · ‖F is the Frobenius norm. We remind the reader that for a symmetric matrix A that is not

positive semi-definite, Λmax(A) ≤ ‖A‖2. The following two inequalities are useful in the proofs.

Let A and Â be two n× n symmetric matrices.

1. Weyl’s inequality (Weyl, 1912) states that

Λmin(A)− Λmax(Â− A) ≤ Λmin(Â), and Λmax(Â) ≤ Λmax(A) + Λmax(Â− A),

which leads to

Λmin(A)− ‖Â−A‖2 ≤ Λmin(Â), and Λmax(Â) ≤ Λmax(A) + ‖Â−A‖2. (S38)

2. The Gershgorin circle theorem (Gershgorin, 1931) states that

‖Â− A‖2 ≤ max
i

n∑
j=1

|(Â− A)ij| ≤ n‖Â− A‖∞, (S39)

where the norm ‖ · ‖∞ is defined as ‖A‖∞ = maxi,j |Aij|.

We are now ready to prove Lemma S3.

Proof. Let A ≡
∫ 1

0
ΨS0(t)ΨT

S0(t) dt, An ≡ 1
n

∑n
i=1 ΨS0(ti)Ψ

T
S0(ti), Ân ≡ 1

n

∑n
i=1 Ψ̂S0(ti)Ψ̂

T
S0(ti),

which are (Ms+ 1)× (Ms+ 1) matrices. Then,

Λmin(Ân) ≥Λmin(A)− ‖Ân − A‖2

≥Λmin(A)− ‖An − A‖2 − ‖Ân − An‖2,
(S40)

where the first inequality follows from (S38) and the second follows from the triangle inequality.
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Furthermore,

‖Ân −An‖2 ≤(Ms+ 1)‖Ân −An‖∞

≤(Ms+ 1)

∥∥∥∥∥ 1

n

n∑
i=1

{
Ψ̂S0(ti)Ψ̂

T

S0(ti)−ΨS0(ti)Ψ
T

S0(ti)
}∥∥∥∥∥
∞

≤Ms+ 1

n

∥∥∥∥∥
n∑
i=1

Ψ̂S0(ti)
{

Ψ̂T

S0(ti)−ΨT

S0(ti)
}∥∥∥∥∥
∞

+

Ms+ 1

n

∥∥∥∥∥
n∑
i=1

ΨS0(ti)
{

Ψ̂T

S0(ti)−ΨT

S0(ti)
}∥∥∥∥∥
∞

≤Ms+ 1

n

∥∥∥∥∥
n∑
i=1

Ψ̂S0(ti)D∆

∥∥∥∥∥
∞

+
Ms+ 1

n

∥∥∥∥∥
n∑
i=1

ΨS0(ti)D∆

∥∥∥∥∥
∞

≤2Ms+ 2

n
‖nBD∆‖∞ = 2(Ms+ 1)BD∆,

(S41)

where the first inequality follows from (S39), the last inequality follows from the bounds in As-

sumption S4, and the second to last inequality follows from the following inequality: for k ∈ S0

and m = 1, . . . ,M ,

|Ψ̂km(ti)−Ψkm(ti)| =
∣∣∣∣∫ ti

0
ψm(X̂k(u)) du−

∫ ti

0
ψm(X∗k(u)) du

∣∣∣∣
=

∣∣∣∣∫ ti

0
{ψm(X̂k(u))− ψm(X∗k(u))} du

∣∣∣∣
≤
∣∣∣∣∫ ti

0
|D{X̂k(u)−X∗k(u)}| du

∣∣∣∣
≤
{∫ ti

0
D2 du

}1/2{∫ ti

0
(X̂k(u)−X∗k(u))2 du

}1/2

≤ D
∣∣∣∣∣∣∣∣∣X̂k −X∗k

∣∣∣∣∣∣∣∣∣ ≤ D∆.

(S42)

Here the first inequality follows from the mean-value theorem and the bounds in Assumption S4.

Now, from (S39),

‖An − A‖2 ≤ (Ms+ 1)‖An − A‖∞ ≤ (Ms+ 1)
BD +B2

6n2
, (S43)
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where for each element of the matrix An − A = 1
n

∑n
i=1 ΨS0(ti)Ψ

T

S0(ti)−
∫ 1

0
ΨS0(t)ΨT

S0(t) dt,

∣∣∣∣∣ 1n
n∑
i=1

Ψkm1(ti)Ψlm2(ti)−
∫ 1

0

Ψkm1(t)Ψlm2(t) dt

∣∣∣∣∣
≤

∣∣∣{Ψkm1(u)Ψlm2(u)}
′′
∣∣∣

12n2
≤
∣∣2Ψ′km1

(u)Ψ′lm2
(u) + Ψ

′′

km1
(u)Ψlm2(u) + Ψ′km1

(u)Ψ
′′

lm2
(u)
∣∣

12n2

≤2B2 +BD +BD

12n2
=
BD +B2

6n2
,

where derivatives are taken with respect to t. By the trapezoid rule on a uniform grid, the first

inequality holds for some u ∈ [0, 1]. The second inequality makes use of the bounds in Assump-

tion S4, which imply that

|Ψ′km(t)| =

∣∣∣∣∣
(∫ t

0

ψkm(s) ds

)′∣∣∣∣∣ = |ψkm(t)| ≤ B

and

|Ψ′′km(t)| =

∣∣∣∣∣
(∫ t

0

ψkm(s) ds

)′′∣∣∣∣∣ = |ψ′km(t)| ≤ D.

In summary, combining (S40), (S41), and (S43),

Λmin(Ân) ≥Λmin(A)−
(

2BD∆ +
BD +B2

6n2

)
(Ms+ 1)

≥Cmin −
(

2BD∆ +
BD +B2

6n2

)
(Ms+ 1).

The upper bound for Λmax(Ân) and the lower bound for Λmin

(
1
n

∑n
i=1 Ψ̂k(ti)Ψ̂

T
k(ti)

)
can be

established in a similar manner.
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B.3 Proof of Lemma S4

Proof. Define A, An, and Ân as in the proof for Lemma S3. We let F =
∫ 1

0
ΨkΨ

T

S0 dt, Fn =∑n
i=1 Ψk(ti)Ψ

T

S0(ti)/n, and F̂n =
∑n

i=1 Ψ̂k(ti)Ψ̂
T

S0(ti)/n. F, Fn, and F̂n are M × (Ms + 1)

matrices. We let Ĉmin denote the lower bound of Λmin(Ân) established in Lemma S3, i.e.,

Ĉmin ≡ Cmin −
(

2BD∆ +
BD +B2

6n2

)
(Ms+ 1).

To prove the result, we need to bound ‖F̂nÂ−1n ‖2. Note that

‖F̂nÂ−1n ‖2 ≤ ‖F̂nÂ−1n − F̂nA−1n + F̂nA
−1
n − FnA−1n + FnA

−1
n ‖2

≤ ‖F̂n(Â−1n − A−1n )‖2 + ‖(F̂n − Fn)A−1n ‖2 + ‖FnA−1n ‖2

≡‖I‖2 + ‖II‖2 + ‖III‖2.

Using sub-multiplicity of the `2-norm of matrices,

‖I‖22 ≤ ‖F̂n‖22‖Â−1n − A−1n ‖22.

Applying (S37) to F̂n, we get

‖I‖22 ≤M(Ms+ 1)

(
max
i,j

F̂ 2
n,ij

)
‖Â−1n − A−1n ‖22.
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Recalling that F̂n =
∑n

i=1 Ψ̂k(ti)Ψ̂
T

S0(ti)/n and that |Ψ̂km(ti)| ≤ B,

‖I‖22 ≤M(Ms+ 1)(
n∑
i=1

B2/n)2‖Â−1n − A−1n ‖22.

Note that Â−1n − A−1n = Â−1n (An − Ân)A−1n . Thus,

‖I‖22 ≤M(Ms+ 1)B4‖Â−1n ‖22‖Ân − An‖22‖A−1n ‖22

≤M(Ms+ 1)B4Ĉ−2min‖Ân − An‖22C−2min

≤M(Ms+ 1)B4{2(Ms+ 1)DB∆}2Ĉ−2minC
−2
min,

≡c1Ĉ−2minM(Ms+ 1)3∆2,

where the last two inequalities follow from the proof of Lemma S3.

Next, note that

‖II‖22 =‖(F̂n − Fn)A−1n ‖22

≤C−2min

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)−
1

n

n∑
i=1

Ψk(ti)Ψ
T

S0(ti)

∥∥∥∥∥
2

2

≤C−2min

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)
{

Ψ̂T

S0(ti)−ΨT

S0(ti)
}∥∥∥∥∥

2

2

+

C−2min

∥∥∥∥∥ 1

n

n∑
i=1

{
Ψ̂k(ti)−Ψk(ti)

}
ΨT

S0(ti)

∥∥∥∥∥
2

2

≤2C−2minB
2D2∆2M(Ms+ 1)

≡c2M(Ms+ 1)∆2,
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where the first inequality follows from sub-multiplicity of norms of matrices, and the last from

(S37), (S42), and the bounds in Assumption S4.

Finally,

‖III‖2 =‖FnA−1n ‖2 = ‖Fn(A−1n − A−1) + (Fn − F )A−1 + FA−1‖2

≤ξ + ‖Fn‖2‖A−1n − A−1‖2 + ‖(Fn − F )A−1‖2

≤ξ +
{
M(Ms+ 1)B4‖A−1n − A−1‖22

}1/2
+ {‖Fn − F‖22C−2min}1/2

≤ξ +
{
M(Ms+ 1)B4‖A−1n ‖22‖An − A‖22‖A−1‖22

}1/2
+ {‖Fn − F‖22C−2min}1/2

≤ξ +
{
M(Ms+ 1)B4Ĉ−2minC

−2
min‖An − A‖22

}1/2

+ {‖Fn − F‖22C−2min}1/2

≤ξ +

{
M(Ms+ 1)B4Ĉ−2minC

−2
min(Ms+ 1)2

BD +B2

6n2

}1/2

+{
M(Ms+ 1)C−2min

BD +B2

6n2

}1/2

≤ξ +
{
c3M(Ms+ 1)3/6n2

}1/2
,

where the first inequality follows from Assumption 5 in the main paper and the second to last

inequality follows from (S43).

In summary,

∥∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)

(
1

n

n∑
i=1

Ψ̂S0(ti)Ψ̂
T

S0(ti)

)−1∥∥∥∥∥∥
2

≤

ξ +
{
c1M(Ms+ 1)3∆2

}1/2
+
{
c2M(Ms+ 1)∆2

}1/2
+
{
c3M(Ms+ 1)3/6n2

}1/2
.

where c1, c2, c3 are constants.
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B.4 Proof of Lemma S5

Proof. For k = 1, . . . , p,

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)Yij −
1

n

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0

∥∥∥∥∥
2

=
1

n

∥∥∥∥∥
n∑
i=1

Ψ̂k(ti)X
∗
j (ti) +

n∑
i=1

Ψ̂k(ti)εji −
n∑
i=1

Ψ̂k(ti)Ψ
T

S0(ti)θ
∗
S0+

n∑
i=1

Ψ̂k(ti)Ψ
T

S0(ti)θ
∗
S0 −

n∑
i=1

Ψ̂k(ti)Ψ̂
T

S0(ti)θ
∗
S0

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti){X∗j (ti)−ΨT

S0(ti)θ
∗
S0}

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti){ΨT

S0(ti)− Ψ̂T

S0(ti)}θ∗S0

∥∥∥∥∥
2

+∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂k(ti)εji

∥∥∥∥∥
2

≡‖I‖2 + ‖II‖2 + ‖III‖2.

First, applying the Cauchy-Schwarz inequality to ‖I‖22,

‖I‖22 ≤
M∑
m=1

[
1

n2

n∑
i=1

Ψ̂2
km(ti)

n∑
i=1

{
X∗j (ti)−ΨT

S0(ti)θ
∗
S0

}2]
.

From the bounds in Assumption S4 and (S28) ,

‖I‖22 ≤M
{

1

n2

(
nB2

) (
s2nQM−2β2

)}
= s2M−2β2+1QB2.

Next, note that Ψ̂0(ti)−Ψ0(ti) = ti−ti = 0, we have
{

ΨT

S0(ti)− Ψ̂T

S0(ti)
}
θ∗S0 =

{
ΨS(ti)− Ψ̂S(ti)

}T

θ∗S .
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Thus applying the Cauchy-Schwarz inequality to ‖II‖22,

‖II‖22 ≤
M∑
m=1

(
1

n2

n∑
i=1

Ψ̂2
km(ti)

n∑
i=1

[{
ΨS(ti)− Ψ̂S(ti)

}T

θ∗S

]2)
.

Applying the norm inequality aTb ≤ ‖a‖∞‖b‖1 to
{

ΨS(ti)− Ψ̂S(ti)
}T

θ∗S and using the inequality

(S42) as well as the bounds in Assumption S4, we get

‖II‖22 ≤M

{
1

n2
nB2

n∑
i=1

‖θ∗S‖21D2∆2

}
≤MB2D2‖θ∗S‖21∆2.

Finally, III = 1
n

∑n
i=1 Ψ̂k(ti)εji is an M -vector. For each m = 1, . . . ,M , we let g(εj/σ) =∑n

i=1 Ψ̂km(ti)εji/n. Then, for a, b ∈ Rp,

|g(a)− g(b)| =

∣∣∣∣∣σ
n∑
i=1

Ψ̂km(ti)(ai − bi)/n

∣∣∣∣∣
≤σ
n

{
n∑
i=1

Ψ̂2
km(ti)

}0.5

‖a− b‖2 ≤
σ

n

√
nB2‖a− b‖2.

This shows that g(·) is an L3-Lipshitz function with L3 = σB/
√
n. Note that Eg(εj/σ) = 0. Thus,

by Theorem 5.6 in Boucheron et al. (2013) presented in Section A.2, we have

Pr(|g(εj/σ)| ≥ v) ≤ 2 exp{−v2n/(2B2σ2)}.

Letting v = nα/2−0.5, ‖III‖22 ≤ nα−1M holds with probability at least 1−2M exp{−nα/(2B2σ2)}.

Combining all of the pieces, we find that

‖I‖2 + ‖II‖2 + ‖III‖3 ≤ η ≡M1/2
{
sM−β1Q1/2B +BD‖θ∗S‖1∆ + n

α
2
− 1

2

}
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with probability at least 1− 2M exp{−nα/(2B2σ2)}.

For k = 0,∥∥∥∥∥ 1

n

n∑
i=1

Ψ̂0(ti)
{
Yij − Ψ̂T

S0(ti)θ
∗
S0

}∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

ti

{
Yij − Ψ̂T

S0(ti)θ
∗
S0

}∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

ti{X∗j (ti)−ΨT

S0(ti)θ
∗
S0}

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

ti{ΨT

S0(ti)− Ψ̂T

S0(ti)}θ∗S0

∥∥∥∥∥
2

+∥∥∥∥∥ 1

n

n∑
i=1

tiεji

∥∥∥∥∥
2

.

Recall that t ∈ [0, 1] and, without loss of generality, let B ≥ 1. Thus, we can see from the same

argument that
∥∥∥ 1
n

∑n
i=1 ti

{
Yij − Ψ̂T

S0(ti)θ
∗
S0

}∥∥∥
2
≤ η holds with the same probability.

C. DETAILS ABOUT DATA GENERATION

In this section, we provide details about the parameters used for generating data in Section 5.1

of the main paper (see Equation 26). Three pairs of variables, (X1, X2), (X3, X4), (X5, X6), are

solutions of (26) in the main paper with the following parameters and initial values:

1. (X1, X2) are generated according to (26) from the main paper with θ1,0 = 0, θ1,1 = (1.2, 0.3,−0.6)T,

θ1,2 = (0.1, 0.2, 0.2)T, θ2,0 = 0.4, θ2,1 = (−2, 0, 0.4)T, θ2,2 = (0.5, 0.2,−0.3)T, and initial

values X1(0) = −2, X2(0) = 2.

2. (X3, X4) are generated according to (26) from the main paper with θ3,0 = −0.2, θ3,3 =

(0, 0, 0)T, θ3,4 = (−0.3, 0.4, 0.1)T, θ4,0 = −0.2, θ4,3 = (0.2,−0.1,−0.2)T, θ4,4 = (0, 0, 0)T,

and initial values X3(0) = 2, X4(0) = −2.

3. (X5, X6) are generated according to (26) from the main paper with θ5,0 = 0.05, θ5,5 =

(0, 0, 0)T, θ5,6 = (0.1, 0,−0.8)T, θ6,0 = −0.05, θ6,5 = (0, 0, 0.5)T, θ6,6 = (0, 0, 0)T, and
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Figure S1: The curves X1, . . . , X6 on [0, 20] described in Section 5.1 of the main paper and Sec-
tion C of the supplementary material.

initial values X5(0) = −1.5, X6(0) = 1.5.

Solution trajectories of X1, . . . , X6 are shown in Figure S1. For X7, . . . , X10, we drew the initial

values Xj(0), j = 7, . . . , 10, and the θj,0, j = 7, . . . , 10, from a normal distribution. All other

parameters were set to zero, so that X7, . . . , X10 represent “noise” variables. The directed graph

of X1, . . . , X10 is showing in Figure S2.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure S2: The network of {X1, . . . , X10}. A directed edge j → k indicates that the jth node
regulates the kth node.
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