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A. PROOFS

A.1 OQOutline

In this section, we prove Theorems 1 and 2 from Section 4 in the main paper. The remaining sub-
sections are organized as follows. In Section A.2, we list the additional assumptions for Theorem 1
in the main paper and give the proof of Theorem 1 in the main paper. In Section A.3, we prove
a theorem on variable selection consistency for group lasso regression with errors in variables,
which itself is of independent interest. In Section A.4, we introduce Assumption S4 on the bases
¥(+), and several technical lemmas that are useful in proving Theorem 2 in the main paper. In
Section A.5, we finish the proof of Theorem 2 in the main paper. And in Section A.6, we prove
Proposition 1 in the main paper. The proofs of the technical lemmas presented in Section A.4 are

provided in Section B.

A.2 Proof of Theorem 1

In this section, we follow closely the notation in Section 1.6 of Tsybakov (2009). We first present

some necessary notation and assumptions. Denote the local polynomial estimator of degree ¢ as

X(t;h) = YiWuilt: h), (S1)
=1
where
I (it ti —t
Whi(t; h) = nhU (0)B,, U( . >K< " ) ) (S2)



1 & ti—t ti—t t—t
B = — t T ? K 7
= () o () < (45).
Ulu) = (1,u,u2/2!, . ,ue/E!)T7

and K (-) is a kernel function. In (S2), W,;(t; h) is the weight for observation Y; in (S1), which

satisfies

n

> Wailtih) = 1. (S3)

i=1
See e.g., Proposition 1.12 in Tsybakov (2009), for a rigorous proof of (S3). We introduce the fol-
lowing assumptions on the kernel function K (-) and the time points ¢, . .., t,,. These assumptions

are common in the study of local polynomial estimators (see e.g. Tsybakov, 2009).

Assumption S1. There exists a real number \g > 0 and a positive integer n such that the smallest

eigenvalue A, (B,,;) of B, satisfies
Amin(Bnt) Z )\0

for all n > ng and any ¢ € [0, 1].
Assumption S2. The time points t1, . .., ¢, are evenly-spaced on the interval [0, 1].

Assumption S3. The kernel K has compact support belonging to [—1, 1], and there exists a number

Kiax < oo such that | K (u)| < Kpax, Yu € R.
These assumptions lead to the following lemma (Lemma 1.3 in Tsybakov, 2009).

Lemma S1. Under Assumptions S1-S3, for all n > ng, h > 1/(2n), and t € |0, 1], the weights

Wi in (S2) satisfy:



i. sup;, [Whi(t; h)| < C3/nh;
ii. Z?Zl |Whi(t; h)| < Cs,
where the constant C3 depends only on \g and K .

Recall that we also assume the unknown true solutions X ;7 =1,...,p, belong to a Holder

class in Assumption 2 in the main paper. We state the definition here for completeness.

Definition S1. Let 7" be an interval in R and let 3; and L; be two positive numbers. The Holder
class 3(51, L) on T is defined as the set of ¢ = | ;| times differentiable functions f : 7" — R

whose /(th order derivative f()(-) satisfies
|f(£)(x) - f(£)<xl)| < Ly|x — I/\BFZ, Vo, o' € T.

We are now ready to prove Theorem 1 of the main paper.

Proof.

2

H‘Xj—x;f 2—/01{Xj(u;h)—X;(u)}Zdu—/(;l{iYiij(u;h)—Xj(u)} du

2

du.

1
0

-/ [Z{X;‘(ti)+€ji}an’(u; W) - X;(u)



Using the property (S3) of the weights W,,; and the fact that (a + b)? < 2a* + 2b?,

F oo / [Z{X* () Wi h)] du
+2 / 1{Zn:ejiwm(u; h)} du (S4)

i=1

1 1
= 2/ bias®(u) du + 2/ g*(e; /o, u, h) du,
0 0

where

bias(u Z{X* ()Y Wi (s ), (S5)

gla,u,h) =0 Z aWeni(us h), € = (e1j, ..., €nj)", (S6)

i=1

and where o is defined in Assumption 1 in the main paper.
In what follows, for convenience, we denote the /th derivative of X J*( ) as X . Under As-
sumption 2 in the main paper and Assumptions S1-S3, it follows from Proposition 1.13 in Tsy-

bakov (2009) that |bias(u)| < ¢, h”', where q; = C3L;/¢!. Therefore,
1
/ bias?(u) du < ¢?h?. (S7)
0

Next, we bound g(¢;/0, ¢, h) in (S6) using Theorem 5.6 in Boucheron et al. (2013). The theo-
rem states thatif Z = (73, ..., Z,) is a vector of n independent standard normal random variables

and f is an L-Lipschitz function, then for all v > 0,

Pr{f(Z) —Ef(Z) > v} < exp{—0v*/(2L7)}.



Applying the theorem to f(z) and — f(z), we get

Pr{|f(Z) —Ef(Z)| > v} < 2exp{—v?/(2L")}.

We now show that g(x,t, h) is an Ls-Lipschitz function with L3 = ¢C3(nh) ™%

n

> (@i = bi) Wy (u; )

=1
%
<U{ZW2 u; h) } lla — bl|

<o {Sup|Wm u; h) |Z|Wm u, h)|} lla — bl|s

<O'Cg“ HCL—bHQ,

where the last inequality follows from Lemma S1. Hence, from Theorem 5.6 in Boucheron et al.

’g(a7 u, h) - g<b7 u, h)‘ =0

(2013), we have

Pr{lg(e; /o u, h) — Egle; /o, u. )| > v} < 2exp{—0®/(2L3)}.

Letting v = n®/2705h =05 and noting that E[g(¢; /o, u, k)] = 0, we have

Pr{|g(e;/o,u, h)| > na/2_0‘5h_0'5} < Qexp{—na/(Qang)}. (S8)



Combining (S4), (S7), and (S8), we have

) 2 1 1
ij—X;k < 2/0 bias®(u) du—l—?/ﬂ g*(e; /o, u, h) du

(S9)
< 2¢2R%P 4 2no T

with probability at least 1 — 2 exp{—n®/(202C3)}.

Minimizing the right-hand side of (S9) with respect to h, we find that the minimizer h,, satisfies
2ﬁlq%h2/9)1+1 .
Thus, for h,, o< n(@=D/2A1+1) the error bound is

26, (a—1)
)

N 2
1% = x5 || < conmiit

for some global constant C5. [

A.3 Variable selection consistency of group lasso in error-in-variable models

We first review some notation that is heavily used in this section. In (17c) of the main paper, we

made use of the notation

A

Uo(t) = t; Uy(t) = /Otw(Xk(u; h))du, k=1,...,p.

Therefore, \f!k(t) is an M-vector for k = 1,...,p and a scalar for £ = 0. We sometimes use sets,

e.g. S; and SY, as the subscripts. In this case, \ilsj (t) is an M s;-vector, which is composed of Uy,



for £ € S;. Furthermore, \ifS;; = (Wo(t), \ilgj (t))" is an (Ms; + 1)-vector. Without subscripts,

—
~

SN—
11l

(To(t), UT(L), ..., kif;f(t))T is of dimension Mp + 1. We will also apply subscripts to
the quantities 607, éj, g, and R. For instance, éjk = (Ojk1,...,0m)" for k = 1,...,p, and

~

0, = (0,0, 0% T

RIS jp) . The products of these vectors are defined as usual, e.g., 0?50\1’ 50 (t)isa
J

scalar, and \ilsg (t)\ifg? (t)isan (Ms; + 1) x (Ms; + 1) matrix.
The optimization problem (17a) in the main paper is a standardized group lasso problem (Si-
mon and Tibshirani, 2012). Because the regressors \ifl, ceey \Tfp are estimated, establishing variable

selection consistency requires extra attention. For ease of discussion, we re-state the optimization

problem (17a),
1 & & ’
0, = arg min Y — Cy — 0:0Wo(t;) — 0% W, (¢ +
T CoeRB;0eR, 6, RM 2n — { 5= Co = Bobolts) ; ol )}
P n 1/2
/\”JZ nz{ k\I]k ] )
k=1 =1
where
X(h) = argmmz IY; = Z ()15,
Z()ex(h) ;=
o (t) = t; Wi(t) /¢Xkuh))du k=1,.
In what follows, for simplicity we assume that X j* (0) =0,and that A\,,; = --- = X, , = \,. For

any 1 < j,k <p,lett € RM be the coefficients of the true functions [}x on the bases P(-), ie.,

fix(a) = ¥(a)" 05, + djx(a), (S10)

where f7, is introduced in Assumption 3 in the main paper. Here we establish variable selection

consistency for group lasso regression with errors in variables. We extend the recent work of Loh



and Wainwright (2012) for lasso regression; related results can be found in Ma and Li (2010) and
Rosenbaum and Tsybakov (2010). In order for variable selection consistency to hold, we need four
conditions. In Section A.5, we will show that these conditions hold with high probability given

Assumptions 1-6 in the main paper and Assumptions S1-S4.

Condition S1. Suppose that

where Cy,;,, and Cy,. are introduced in Assumption 4 in the main paper.

Condition S2. Assume that

1
I e 1~ -
mex (E;\I’k(ti) qu(ﬁ)) (Ezq’sg(ti) gg(%)) <2,

where ¢ is introduced in Assumption 5.

The next condition was first proposed in Loh and Wainwright (2012) as the deviation condition.
Specifically, (S11) is a special case of Equation 3.1 in Loh and Wainwright (2012). Recall that
the true parameters 67, and 07, are introduced in Assumption 3 of the main paper and (S10),

respectively.



. Assume that

Condition S3. For j = 1,...,p, let A = max;—;

.....

n

1 A 1 N . .
H W ( Z‘I’k(fi) s0(t:)f]s0

i=1 =1

<n k=0,....p (S11)

2
Wheren — j\[l/2 {SM_'B2Q1/QB—|—BDH@ngA—I—nO‘/Q_lﬂ}.

Note that the global constant () in Condition S3 also appears in Assumption S4 in Section A.4.
Condition S4 places constraints on the quantities involved in the proof of Theorem S1. In the

proof of Theorem 2 in the main paper, we will show that Condition S4 holds with high probability.

Condition S4. The following inequalities hold:

W5 T\ V8O 2,
CYmin T’ len -3 m

2 1+1
Avs+l+l VS;+ 1+ 267/5v/2C s < v/ Conn /2,

n

where 0, = mingc 5 H@;’kag, and &, 1, Cpin, and Cay are introduced in Assumptions 46 of the

main paper.
We arrive at the following theorem.

Theorem S1. Suppose that Conditions S1-S4 are met. Then the estimator éj from (17a) has the

correct support, i.e. Sj =Sjforallj=1,...,p.

Proof. We establish variable selection consistency using the primal-dual witness method (Wain-
wright, 2009). For simplicity, we drop the subscript j in what follows: for instance, we drop the

subscript j in Y;; and 6 in (17a), and in the estimated neighbourhood S

10



A vector 0 solves the optimization problem (17a) in the main paper if it satisfies the Karush-

Kuhn-Tucker (KKT) condition, which is

with

c D, (S12)

(S13)

(S14)

Note that, in the previous equations, we drop the parameter C that appears in (17a) of the main

paper to avoid cumbersome bookkeeping.

We will construct an oracle estimator 6 and will verify that it satisfies the KKT conditions

(S12), (S13), and (S14), which means that it solves the optimization problem (17a) in the main

paper.

We construct an oracle primal-dual pair (é, g) as follows:

1. Set ), = 0 for k ¢ S°.

2. Let

n

" 1/2
o = argmin — 3 [¥; — 000 (ti)}Q NS [% Z{H;k\f/k(ti)P] 19

: n
9506R9N1+1 i1 kes

i=1

11



3. Define gso = (0, g5)" as in (S13).

4. Solve §; from the sub-gradient condition (S12) for k ¢ S°.

We will verify the support recovery consistency

. . 2
ma |6 — 2 < 56in (S16)
and strict dual feasibility
1 o -
/\T - - T A
WA Ji <ﬁ ;1 \I/k(tz>\1jk(tz)> gk < 1. (S17)

(S16) implies that the oracle estimator 6 recovers the support of 8* exactly, and (S17) implies that
0 solves (17a).

Further, if the optimal solution to (17a) is unique, then the oracle estimator is the unique es-
timator. If the optimal solution is not unique, then from Theorem 2 in Roth and Fischer (2008),
the null set of any optimal solution should contain S¢, and thus any optimal solution satisfies the
construction of the oracle estimator. Therefore, the statement of Theorem S1 holds for any optimal
solution for (17a).

We now establish (S16). The subgradient condition for the constrained problem (S15) is

1o~ . -
- > o (1) { Uho(t:)fs0 — Yi} + Angso = 0. (S18)
=1

12



Adding and subtracting = >" | U So(ti)\ll o(ti)0%0, we get

- Z {‘i’so (ti)@go(ti)éso — W0 (ti )‘Ilso(t ) SO} +

=3 {Woo 1) W50 (1)030 — Wso(1:)¥i | + Auiisn = 0.
=1

Rearranging the terms and letting

1~ - . I
RSO = E Zz:; \Ifso(ti) EO(tz‘)gso - E ; \1150 (tl)Y;, (819)
we get
1 & -
Ogo — 0% = — (ﬁ Zl W o (t;) T T (ti)> (Rgo 4+ Aniso) - (S20)

By the definition of Rgo in (S19), for each k € .S, we have that

Z Uy (¢ t:)0% — Z Uy (1 (S21)

and Ry = 251", ti{\ifgo (t;)0% — Y;}. By Condition S3, we know that || Ry|s < n for k € S°.
Hence,

|Rsoll2 < /s + 1. (S22)

By Condition S1, we have that

-1
2
A ( Z‘I’SO )Wt > <o (S23)

From (S13) and the fact that the largest eigenvalue of a submatrix is no greater than the largest

13



eigenvalue of the matrix,

-1
1 1 R .
30 sl < (ﬁ Z\I’k(ti)qu(ti)> g =1 kes
max i=1

Furthermore, g, = 0 by construction. Hence,

1/2

gsoll2 = {lIgollz + llgs3} 25Cmax-

Therefore, combining (S20), (522), (S23), and (S24), it follows that

max |0, — 0|, < |60 — 6% <
ni [ — 65l < 00 — Ofolla < 5 4 1, 5"

where the last inequality follows from Condition S4.

Next, we verify strict feasibility (S17). For k ¢ S°, from (S12),

S Bt (¥ (1o — Y5) + A = 0.

Adding and subtracting L 37 Wy (t,)WE, (¢,)0%, yields

- Z {\i! DU L (t:)0s0 — Wi (t) o (t:) 20} +

LS (B (005 — Bt} + N =0
i=1

14

2nvs +1 T vV85C nax <

Wl o

Qmina

(S24)



Rearranging the terms and plugging in (S20) and (S21), we get

—1
I .
Andr = - ; W (ti) ( Z W0 (t) Wt )) (Rso + Angso) — R

By Condition S2, we know that

1
1 -
%%% (E;\I{k(tz) Eo(&)) (ﬁZ\PSO(ti) Eo(tz)> < 2.

=1 9

Recall from Condition S3 that || Rg||2 < nfor 1 < k < p. Using (S22) and (S24), we have that
R 26v/s+ 141
Jaulls < EET D) 265 2C, e S

By Condition S4, ||gk||2 < v/Cmin/2, and thus, applying Condition S1,

1o T2l
i (E > qfk(ti)qf;(ti)> g < Cg’“_ 2<1, k¢S
i=1 min
Therefore, we have established (S17).

A.4 Assumption S4 and technical lemmas

Theorem S1 characterizes the samples on which the GRADE estimator is able to reconstruct the

true network. We must now establish that with high probability, the observations satisfy Con-

ditions S1-S4. In Section A.5, Lemmas S3-S5, stated below, will be used to show that Condi-

tions S1-S4, needed for Theorem S1, hold with high probability. Lemma S2 is used to prove

Lemmas S3-S5. Lemmas S2 — S5 are proven in Appendix B.

15



First, we state the regularity condition on the bases 1) mentioned in Section 4 in the main paper.

Assumption S4. The basis functions are orthonormal, i.e., fol Yk (X 4 (u)) ik (X by (u))du = Iy,
where [); is an M x M identity matrix. The basis functions are bounded and have bounded first
order derivative, i.e. |, (z)| < B, | ()] < D,m = 1,..., M. Further, under Assumption 3 in

the main paper, for any j, k,

[ ttn = [0 =0 (i) du < QO+ ) (s25)

where H;fk is defined in (S10) and () is a global constant.

Remark 1. Assumption S4 holds, for instance, when v(+) is the set of trigonometric basis functions

(see, e.g., Section 1.7.3 in Tsybakov (2009)).

We next state the technical lemmas used in the proof of Theorem 2 in the main paper.

Lemma S2. Suppose that Assumption 3 in the main paper and Assumption S4 hold, and 1)(t) =

(Yo(t), U1 (t), ..., (L))" is of degree M. Then,

1 , 1/2
He;kna—{ [ i du} < QM. (526)

| X5 — UEeb50

| < sv/QM—25, (27)

and

LS () — W ()05 < SQM 10 (n7?). (528)
=1

where 07 is defined in (S10) and () is a constant in Assumption $4.

16



Lemma S3. Suppose that Assumptions 3 and 4 in the main paper and Assumption S4 hold. Let

. The following bounds on the eigenvalues of > ;_, W g0 lifgo /n hold:

=1,...,

BD + B2
Ammin ( Z‘I/SO VWL (t; ) > Cloin — (QBDA+ 6—t) (Ms+1),
n

BD + B2
Apmax ( Z ot ) < Coax + <QBDA + 6—;‘2) (Ms+1), (S29)

. . BD + B?

Lemma S4. Suppose that Assumptions 3 and 5 in the main paper and Assumption S4 hold. Let

A = max;—;

(tgomeno) (Eoraen) |

2

1 /2
min

ch 2M(Ms+1) AQ} + {caM(Ms+1 A2}1/2+{03M Ms+1)%/6n*}
(S30)

where C’min = Chyin — <QBDA + BD+BQ) (Ms + 1), and c1, co, c3 are constants.

Lemma SS5. Suppose Assumptions 1, 2, and 3 in the main paper and Assumption S4 hold. Let

. Foreachk =0,...,p,

S L)

<, (S31)
2

%Z Z\I/k YW (£:)0%
i=1

where

n= M7 {sM»Q"?B + BD||f5|A +n*/>1/?}

with probability at least 1 — 2M exp{—n®/(2B%c?)}.

17



A.5 Proof of Theorem 2

Proof. Notice that Theorem S1 offers the desired result of Theorem 2 in the main paper. We now
verify that Conditions S1-S4 hold with high probability given the assumptions for Theorem 2 of
the main paper. This completes the proof of Theorem 2 of the main paper.

First of all, Lemma S5 tells us that Condition S3 holds with probability at least 1—2pM exp—""/(2B*7*)
This probability converges to unity as p and n grow, because M o nﬁ%(ka) = o(n) and
pnexp(—Cyn®/o?) = o(1) as required in Theorem 2 of the main paper, where C; = min{1/(2B?),1/(2C?)}.
Thus, Condition S3 holds with high probability.

Next, we verify that Condition S4 holds with high probability. Given Assumptions 1-2 and
S1-S3, we know from Theorem 1 in the main paper that

maxmf(j ~xtlza=0 (n%““”) , (S32)
J

with probability at least 1 —2p exp{—n®/(2C30?)}. Recall that in Theorem 2 of the main paper we

el < VM6

B
require that s = O(n”) and M n2%7125,711°%) | Furthermore,

2, and |05 |2 is
bounded by a constant due to the fact that f7; is bounded and (S26). Combining these with (S32),

we know that the three terms of 7 in Condition S3 satisfy
2651 B
sM=PF12012B — O < ~2mr1 25 1 (- O‘)‘W) 7

M'Y2BD|o5],A = 0( S (- am) |

18



and

M/2pe/2=1/2 _ (n(wﬁlgﬁﬁﬂrl 3)(1- a)) .

These lead to

<y=0(nFmmmEi-n) (833)
2

:LZ: Z\I/k YW Lo (t:)0%0

with probability at least 1 — 2pM exp{—n®/(2B?¢?)} forall k = 0, . .., p, from Lemma S5.

By 2B9-1
In Theorem 2 of the main paper, we require that A, o = 2%171 25271 =27 Given (S33) and

s = O(n"), we know that \/sn = o()\,). Furthermore, define

_ /81 252_1 . g 51 252—3 _
Hl(ﬁl’ﬂ”o‘)_mm{251+1452+2(1 ) 35 123 1 a)}‘ (534)
Then,
bi 26, -1
— 1—a)+2y < =2H(B, B2, ) + 27.
251+1252+1( ) 7> 1(81, B2, @) Y
282 By
Thus, \, = o(1) for v < H;(f3, B2, ). Further notice that M~ o n~ 2%+ o) o(1),

which implies that 0,,;, > 3 fi.in/4 for sufficiently large n from (S26) in Lemma S2. As a result,

the two inequalities in Condition S4 become

V max fmln
Omln 2

O(An)

1) + 26v/5v/2Cmax < v/Chin/2,

which hold for sufficiently large n under Assumption 6 of the main paper.

Note that the probability that (S32) and (S33) both hold is at least 1—2pM exp{—n®/(2B%c?)}—
2p exp{—n®/(2C30%)}. Letting Cy = min{1/(2B%),1/(2C3)}, we know from Theorem 2 that
pnexp(—Cyn®/o?) = o(1). Combining this with M oc nmT () _ o(n), we know that

19



1—2pM exp{—n®/(2B?c?)} —2pexp{—n®/(2C30?)} converges to 1 as p, s, and n grow. There-
fore, Condition S4 holds with high probability.

Finally, we establish that Conditions S1 and S2 hold with high probability. Note that the
dominant terms not involving C\;,,, Criax Or € in the bounds in (S29) in Lemma S3 and (S30) in

Lemma S4 involve sM A and s%/2M?A, respectively. Given (S32), one can check that

B 289 —1
SMA o n##1 2551070 — (1) and (S35)
S2MEA oc i e (13T _ oq) (S36)

where we have used the fact that 55 > 3 in Assumption 3 in the main paper as well as the fact that
v < Hi(ph, P2, o) from the statement of Theorem 2 in the main paper. Since (S32) and (S33) hold
with high probability, combining the inequalities in Lemmas S3 and S4 with (S35) and (S36), we
see that Conditions S1 and S2 hold with high probability given Assumptions 3, 4 and 5 in the main
paper.

In summary, we have shown that Conditions S1-S4 hold with high probability. Applying
Theorem S1 establishes that the GRADE estimator S’j in (17) in the main paper recovers the true

support S57. U

A.6 Proof of Proposition 1

In Proposition 1, the choice of bandwidth h,, is different from that in Theorems 1 and 2 of the main
paper. In order to prove Proposition 1 of the main paper, we establish the following concentration

inequality for H’X j — X7 |||, where the bandwidth is chosen as specified in Proposition 1 of the

main paper.

20



Proposition S1. Suppose that Assumptions 1-2 in the main paper and S1-S3 hold. Let X ; be the

local polynomial regression estimator of order { = | 31 | with bandwidth

h,, oc n~ Y/ @PHD),

There exists a constant Cy < 0o such that for each j = 1,...,p,

281

~ 2 2By
H‘Xi - X7 < Con® ™ 2P+

holds with probability at least 1 — 2 exp{—n®/(202C3)}.

The proof of Proposition S1 is similar to that for Theorem 1 in the main paper by plugging in
hy, o /@A) in (S9).

Given Proposition S1, the proof of Proposition 1 in the main paper follows from a similar
argument as in the proof of Theorem 2 in the main paper, and is thus omitted here. The constant

Hy(B1, B2, ) is defined as

H2(51,5270é)5m1n{ Pr 26 —1 Br 2B —3 }

1
—a, - -«
201+ 1268, + 1 32601 +126,+1

B. PROOFS OF TECHNICAL LEMMAS

B.1 Proof of Lemma S2

In this section, in the interest of clarity, we bring back the subscript j in 07, 07, , 070 and [

21



Proof. Recall that in Assumption S4, (S25) says that

/ 5321@ / {f]k X (u PH(X( ))e;k}Z du < Q(M + 1),

It follows from the triangle inequality that

|{/01 [w(X;:(u))e;fk]Qdu} - { /0 g f}‘k<X;‘<u))}2du}m

The orthogonality of ¥ in Assumption S4 then leads to (S26), i.e.,

Il - { [ 1 [f;k<X;<u>>}2du}l/2

1/2

< \/@M_BQ'

< \/@M—ﬁz‘

From (S25), we can also see that

[ st <{ [ 20 du}“ ([ )

<VQUM + 1) < QM %,

1/2 1/2

< {/01 5, (1) du}

where we use the fact that ¢ € [0, 1].

Recall from (15) in the main paper and (S10) that

Pt
_9*0t+Z\I/T k+2/0 9k (u) du
k=1

where we let X7(0) = 0 for ease of discussion. We know that both 6%, and d;; are zero for k ¢ S.

22



Thus, the errors that result from the use of truncated bases are bounded by

2 2
1 t
155 = wstr| =15 = 050t = > wio —/ Z/(Sjk(u)du dt
kes 0 | kes; /0
1 3
< / {s QM—%} dt] < s\/ QM-
0

The error bound in (S27) is on the whole trajectories, whereas we only observe discrete mea-

surements of the trajectories in reality. The bound in (S28) addresses this case and is proved below.

2

L) - g = 2> 4 S [
=1 keS;

g/ Z/ n(w)du dt+o<nl2)

keS;

< 32QM’252 +o0 (n’Q) ,

where the last inequality follows from (S27) and the second to last inequality follows from the

trapezoidal rule on a uniform grid.

B.2 Proof of Lemma S3

We first review some known results on matrix norms and eigenvalues. For an m X n matrix A,

2 % 1
A m n m n 2
1Al = sup 1AZlz _ Z(Z%xj> S(Z a%) = || Allp,  (S37)

a:eR” [|]]2 \Illz Lli=1 =1

23



where || - || ¢ is the Frobenius norm. We remind the reader that for a symmetric matrix A that is not
positive semi-definite, Ap.x(A) < ||Al|2. The following two inequalities are useful in the proofs.

Let A and A betwon x n symmetric matrices.

1. Weyl’s inequality (Weyl, 1912) states that

~

Amin(A) - Amax(A - A) S Amin(A)a and Amax(A) S Amax<A) + Amax(A - A):

which leads to

Amin(A) — [|A = All2 < Amin(A), and Apax(A) < Amax(A) + || A — Alf2. (S38)

2. The Gershgorin circle theorem (Gershgorin, 1931) states that

A= Allz < max ) (A~ A)y| < A~ Al (S39)
j=1
where the norm || - || is defined as || 4|« = max; ; |A;;|.

We are now ready to prove Lemma S3.

Proof. Let A= [ Woo(t)Wh(t)dt, Ay = L 370 Wgo ()WL (i), A, = 230 Ugo(t,) UL (t,),

which are (M s + 1) x (Ms + 1) matrices. Then,

Amin<An) ZAmin<A> - HAn - AH2
(540)

>Amin(A) = 40 = Allz = |4, = Aullz,

where the first inequality follows from (S38) and the second follows from the triangle inequality.
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Furthermore,
| A, — Aplls <(Ms+ 1)
<(Ms+1)

Ms+1
n

<

Ms+1
n

Ms+1

||An _AnHoo

‘Tll Z {@50 (ti)‘i’go (ti) — U0 (ti)Vgo (tl)}
i=1 00
Z \ilso(ti) {\i’gvo(ti) - §o(tz’)} +
izl oo (S41)
Z Ugo(t;) {\ifgo (ti) — Vo (tl)}
=1 oo
zn: Ugo(t;) DA + MS; ! Zn: Wgo(ti) DA
i=1 00 i=1 o

n

<2M8+2
n

[nBDA|loo = 2(Ms + 1)BDA,

where the first inequality follows from (S39), the last inequality follows from the bounds in As-

sumption S4, and the second to last inequality follows from the following inequality: for k € S°

andm=1,..., M,

(W n (t:) — g (ti)]

IN

IN

<

| ) du / (X ()
0 0

/O (W (K (0)) — o (X7 (1))} du

(542)

0 |D{X(w) — Xf(u)}] du

{/Oti D2du}1/2{/O“(Xk(u)—x,j(u))2 du}

DH’Xk _X;

1/2

< DA.

Here the first inequality follows from the mean-value theorem and the bounds in Assumption S4.

Now, from (S39),

[An = Allz < (Ms + 1| A — Alloe < (Ms +1)

BD + B?
6m2

(S43)

Y
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where for each element of the matrix A, — A = 23" | Woo(t;)UEo(t;) — f W0 (t)Weo(t) dt,

1
Z\vkm Pina(t) = [ Wi, (6 i 1)

0

]{wkml () Wiy (1)}

< = 2%, ()W, () + W, () Wiy (1) + W, (1) i, ()]
- 12n? - 1902

_2B°+BD+BD _ BD+ B

- 12n2 6n2 '

where derivatives are taken with respect to ¢. By the trapezoid rule on a uniform grid, the first
inequality holds for some u € [0, 1]. The second inequality makes use of the bounds in Assump-

tion S4, which imply that

(1)) = ‘( ) ds) _ ()] < B

and

In summary, combining (S40), (S41), and (S43),

2
n
BD + B?
>Clnin — (2BDA + 6—+2) (Ms +1).
n

The upper bound for Amax(fln) and the lower bound for A, (% Yoy \i/k(tl)\i/g(tl)> can be

established in a similar manner. ]
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B.3 Proof of Lemma S4

Proof. Define A, A,, and A, as in the proof for Lemma S3. We let F = [ U, UL, dt, F, =
Yoy Wi(ti) Vo (t;)/n, and E, =", \i/k(tl)‘f[fgo(tl)/n F.F, and F, are M x (Ms + 1)

matrices. We let émin denote the lower bound of Amin(fln) established in Lemma S3, i.e.,

BD + B?

Cmin = Cmin — 2BDA
( * 6n?

) (Ms+1).
To prove the result, we need to bound || £, A>"|l. Note that

HFnA;wZ < HﬁnfL? - ﬁnAgl + FnA;Ll - FnA;I + FnA;1”2
< Fu(A = ANz + 1(Fn = F) A 2 + 1 FLAL |2

=||Il2 + (|12 + [[TIT][.

Using sub-multiplicity of the /5-norm of matrices,

TS < [IFAlI2N AL = AL 5.

Applying (S37) to E,, we get

17]

112 <M(Ms + 1) (me) JAZ - A2z
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Recalling that E, = Yoy \i/k(tz)\ilgo (t;)/mn and that |\ilkm(tz)| < B,

I3 <M (Ms +1)(Y_ B /n)*| At — A5

i=1

Note that A-' — A-1 = A-1(A4, — A,) A", Thus,

I3 <M (Ms + 1) B A, 511 A, — Aull3] A5 3
<M (Ms +1)B'CLiIAL — Aull3C,0,
<M (Ms+1)B*{2(Ms + 1)DBAYC;2C2,

=c;C22 M (Ms +1)°A2,

min

where the last two inequalities follow from the proof of Lemma S3.

Next, note that

”HH§ :”(Fn - Fn)Angg

- 1 = T, T 1 - T
<Coin - D Wt Vo (t:) — - > Wt Wo(t:)
=1 =1
2
— 1 - T, T T
<Coi |15 22 nlt) { Whot) — Who(t) || +
=1 2
2
Ll .
Croin - > {‘I’k(tz‘) - ‘I’k(ti)} Wo (i)
i=1 2

<2C. 2 B*D*A*M(Ms + 1)

min

=coM(Ms + 1)A?,
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where the first inequality follows from sub-multiplicity of norms of matrices, and the last from
(837), (S42), and the bounds in Assumption S4.

Finally,

T[]y =[|Fu AL s = (| Fa(A" = A7) + (B — F)A™ 4+ FA7Y,
<E+ | Falloll A = A7V o + (B — F)A™ s
<€+ {M(Ms+ D)BY A — A3} 4+ {|IF, - FIECL2 32
<€+ {M(Ms + 1) B A, 211 A0 — APZIATYZY + {|I F — FIRCLENY
<+ {MOMs+ )BCROR A~ AR} + (IF, ~ FIZC)Y

min ~ min

<t {M(Ms LB (Ms + 1)

6m2

BD+B2}/

{M(Ms +1)C;2 M}m

min 6712

<€+ {esM(Ms +1)*fon*}7*

where the first inequality follows from Assumption 5 in the main paper and the second to last
inequality follows from (S43).

In summary,

n -1
%Zﬁ/k(ti)A ( Z\IJSO Yo (¢ ) <
=1 9

€+ {aM(Ms+ 1P A + {e,M(Ms + 1)A2} 4 {esM(Ms + 1) f6n*}?.

where ¢, co, c3 are constants. L]

29



B.4 Proof of Lemma S5

Proof. Fork=1,...,p,

NN
z%

)Y — —nyk
2
+ Z\I’k 6]1 Z\I’k \I/So
W — 3 )
=1

)050 }

2

Z‘Pk

IN
I

=3 X (1) — (1)

=l + [T}l + [[TIL]].

First, applying the Cauchy-Schwarz inequality to ||T||3,
M 1 n
<3 3,003 (50

1 =1

From the bounds in Assumption S4 and (S28),

050+

0 (ti) 150

2

Solts) }] .

I3 <M{ ! (nB2) (S2nQM_2/52)} _ MR,

~ ~ ~ T
Next, note that Wo(t;)—Wo(t;) = t,—t; = 0, we have {\pg (t;) — T, (ti)} 0% = {\Ifg(ti) - \Ifs(ti)} 0.
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Thus applying the Cauchy-Schwarz inequality to ||II||3,

) < i (ni S0 103 [{wste) - \Ps(ti)}Te;f) .

=1

. T
Applying the norm inequality a™b < ||a||«||b]1 to {\I/S(ti) - \Ifs(ti)} 6% and using the inequality

(S42) as well as the bounds in Assumption S4, we get
2 1 2 - * (12712 A2 2211 0*% 12 A2
S {ﬁnB S l65]20°A } < MBD?||95|20”.
i=1

Finally, Il = £ 3> | Wy (t;)e;; is an M-vector. For each m = 1,..., M, we let g(¢;/0) =

Sy \ifkm(ti)ej,-/n. Then, for a,b € R?,

l9(a) —g(b)| =

o Z U (t) (@i — b;) /m0

n 0.5
g T g
- {;‘I’im(ti)} la=bll> < —vnB[la = bll>.

This shows that g(-) is an Ls-Lipshitz function with L3 = 0 B/+/n. Note that Eg(¢; /o) = 0. Thus,

by Theorem 5.6 in Boucheron et al. (2013) presented in Section A.2, we have
Pr(|g(e;/o)] > v) < 2exp{—v*n/(2B%0?)}.

Letting v = n®/2705_||TI||2 < n®~' M holds with probability at least 1 —2M exp{—n®/(2B%?)}.

Combining all of the pieces, we find that

[+ 1z + [T < 5 = MY2 {sM~* Q2B + BD||03],A +n? 4}
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with probability at least 1 — 2M exp{—n®/(2B%5?)}.

For k = 0,
ig%(ti) {Yij—‘i’gt)( }‘ th{ ij — Vgol(ts) 50} 2
< igti{X;‘(tz) UL ego} th{\yso b — W (1) )05 R

Recall that ¢ € [0, 1] and, without loss of generality, let B > 1. Thus, we can see from the same

argument that H% Yot {Y;j — \ilgo (t:)0%0 } H2 < 7 holds with the same probability.

C. DETAILS ABOUT DATA GENERATION

In this section, we provide details about the parameters used for generating data in Section 5.1
of the main paper (see Equation 26). Three pairs of variables, (X, X3), (X3, X4), (X5, X¢), are

solutions of (26) in the main paper with the following parameters and initial values:

1. (X3, X») are generated according to (26) from the main paper with 6, o = 0, 6, ; = (1.2,0.3, —0.6)",
91’2 = (01, 02, 0.2)T, 6270 = 04, 9271 = (-2, O, O.4)T, 92,2 = (057 027 —0.3>T, and initial

values X;(0) = —2, X»(0) = 2.

2. (X3, X4) are generated according to (26) from the main paper with 659 = —0.2,033 =
(0,0,0)",054 = (—0.3,0.4,0.1)", 640 = —0.2,045 = (0.2,—0.1,-0.2)",044 = (0,0,0)",

and initial values X5(0) = 2, X4(0) = —2.

3. (X5, Xg) are generated according to (26) from the main paper with 05, = 0.05, 055 =
(0,0,0)", 656 = (0.1,0,—0.8)", 5o = —0.05, b5 = (0,0,0.5)", 6s6 = (0,0,0)", and
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X1
X3
X5

X2
X4
X6

Figure S1: The curves X, ..., Xs on [0, 20] described in Section 5.1 of the main paper and Sec-
tion C of the supplementary material.

initial values X5(0) = —1.5, X4(0) = 1.5.

Solution trajectories of X, ..., Xg are shown in Figure S1. For X5, ..., X;o, we drew the initial
values X;(0),5 = 7,...,10, and the #;0,j = 7,...,10, from a normal distribution. All other
parameters were set to zero, so that X7, ..., X, represent “noise” variables. The directed graph

of Xi,..., Xy 1s showing in Figure S2.

bidoe

Figure S2: The network of {Xi,..., X0}. A directed edge j — k indicates that the jth node
regulates the £th node.
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