SUPPLEMENTARY INFORMATION FOR ## In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation Luis Villacorta^{1,*}, Lucia Minarrieta^{2,3}, Sonia R. Salvatore⁴, Nicholas K. Khoo⁴, Oren Rom¹, Zhen Gao¹, Rebecca C. Berman¹, Soma Jobbagy⁴, Lihua Li⁴, Steven R. Woodcock⁴, Y. Eugene Chen⁵, Bruce A. Freeman⁴, Ana M. Ferreira², Francisco J. Schopfer⁴ and Dario A. Vitturi^{4,*}. ¹Department of Internal Medicine and ⁵Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, USA.; ²Cátedra de Inmunología, Facultad de Química y Ciencias, Universidad de la República, Montevideo, Uruguay; ³Institute of Infection Immunology, TWINCORE. Hannover, Germany; ⁴Department of Pharmacology and Chemical Biology, University of Pittsburgh. Pittsburgh, PA, USA. ^{*} Co-corresponding authors. **Figure S1: Structural confirmation for macrophage-generated NO₂-CLA and dihydro-NO₂-CLA.** A) High-resolution LC-MS atomic composition determination, chemical structure and MS² fragmentation analysis for 12-NO₂-CLA (peak 1) and 9-NO₂-CLA (peak 2) respectively. B) High-resolution LC-MS atomic composition and chemical structure for dihydro-12-NO₂-CLA (peak 1) and dihydro-9-NO₂-CLA (peak 2) metabolites. Figure S2: NO₂-CLA inhibits NF-κB-dependent gene expression and activates ARE/Nrf2-regulated transcription. A) Inhibition of NF-κB-dependent luciferase expression by NO₂-CLA in a HEK293 reporter cell line. B) NO₂-CLA stimulates Nrf2-dependent luciferase expression in a HepG2-based reporter cell line. Data are presented as mean \pm SEM, * p < 0.05 vs. TNF-α alone (A) or vehicle control (B) as determined by one-way ANOVA and Dunnett's multiple comparison test (n=3-5). Figure S3: Gating strategy for flow cytometry analysis of peritoneal cell populations. A) Peritoneal cells were sequentially gated based on B) Sizing (Pulse width versus side scatter (SSc); C) Exclusion of death or dying cells (DAPI positive) and D) CD11b+, CD19- to exclude B-cells and other lymphocytes from cells of the monocytic lineage including monocytes, macrophages and PMN as described in the Experimental procedures section. E) Representative dot plots of PMN (Ly-6G⁺) after gating on non-B-cells (defined in D as CD11b⁺, CD19⁻) in naïve peritoneal lavage (control) and zymosan-A challenged exudates (12h). F) Dot plots of macrophages (F4/80⁺, Ly-6C⁻) and monocytes (F4/80⁻, Ly-6C⁺) after gating on non-B-cells (defined in D as CD11b⁺, CD19⁻) in naïve peritoneal lavage (control) and zymosan-A induced inflammation (12h). Cell populations are identified as follows: 1 PMN: CD11b⁺, CD19⁻, F4/80⁻, Ly-6G⁺; 2 Macrophages: CD11b⁺, CD19⁻, F4/80^{high}; 3 Monocytes: CD11b⁺, CD19⁻, F4/80^{int}, Ly-6G⁻, Ly-6c⁺; 4 B cells: CD11b⁺, CD19⁺. Figure S4: Monocyte recruitment is not altered by NO_2 -CLA. A) Representative flow cytometry dot plot of exudate cells from either vehicle (PEG), CLA (2.5 mg) or NO_2 -CLA (2.5 mg/kg) treated animals 12 hours after zymosan-A injection. B) At the maximal amplitude of PMN recruitment (12h), monocyte infiltration proceeding to a resolving stage is not altered by CLA or NO_2 -CLA (n = 6). Table S1: Primer sequences for RT-qPCR analysis | Gene | Speci
es | Accession
Number | Forward primer | Reverse Primer | Amplic
on Size | |------|-------------|---------------------|----------------------|----------------------|-------------------| | 18s | H,R, | X03205 | 5'- | 5'- | | | RNA | M | | GGAAGGGCACCACCAGGAG | TGCAGCCCCGGACATCTAA | | | | | | T-3' | G-3' | | | NOS | M | NM 0109 | 5'- | 5'- | 127bp | | 2 | | 27 | GTTCTCAGCCCAACAATAC | GTGGACGGGTCGATGTCAC- | _ | | | | | AAGA-3' | 3' | | | IL6 | M | NM_0311 | 5'- | 5'- | 76bp | | | | 68 | TAGTCCTTCCTACCCCAATT | TTGGTCCTTAGCCACTCCTT | _ | | | | | TCC-3' | C-3' | | | NQO | M | NM_0087 | 5'- | 5'- | 144bp | | 1 | | 06 | AGGATGGGAGGTACTCGAA | AGGCGTCCTTCCTTATATGC | | | | | | TC-3' | TA-3' | | | НО- | M | NM_0104 | 5'- | 5'- | 100bp | | 1 | | 42 | AAGCCGAGAATGCTGAGTT | GCCGTGTAGATATGGTACA | _ | | | | | CA-3' | AGGA-3' | |