Title

"Current model systems for the study of preeclampsia"

Journal name: Experimental Biology and Medicine

Authors

ML Martinez-Fierro, GP Hernández-Delgadillo, V Flores-Morales, E Cardenas-Vargas, M Mercado-Reyes, IP Rodriguez-Sanchez, I Delgado-Enciso, CE Galván-Tejada, JI Galván-Tejada, JM Celaya-Padilla, I Garza-Veloz[†].

[†]Corresponding author

Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S.

Universidad Autonoma de Zacatecas.

Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, C.P. 98160,

Zacatecas, Mexico

E-mail address: idaliagv@uaz.edu.mx

Туре	Models	Method	Species	Description	Advantages	Disadvantages	References
Cell	- To understand	Trophoblast cell	Human	Cell cultures of	Isolated primary	- Although a panel of markers	(1-3)
culture	trophoblast cell	lines:		trophoblast.	trophoblast no	and phenotypic criteria have	
	biology,	- ED27			longer proliferates	been established to characterize	
	immunology,	- ED31			in culture. Thus,	the cell lines so they can be	
	endocrine function	- ED77			only short-term	considered a trophoblast cell,	
	and placental	- HP-A1			cultures can be	very few of them have been	
	development.	- HP-A2			performed with	evaluated for expression of	
	- To assess the	- HP-W1			primary cells.	these specific factors, probably	
	effect of	- HT			Therefore,	due to the availability of well-	
	differentiation and	- HT-116			respective cell lines	characterized reagents for	
	fusion on the	- HTR-8			have been	evaluation.	
	expression and	- HTR-8/Svneo			developed to	- The methods employed to	
	release of a PE	- IST-1			overcome the	extend lifespan (transfection or	
	marker.	- NHT			handicap of	spontaneous	
	- To study the	- NPC			missing	immortalization/transformation)	
	regulation of	- RSVT-2			proliferation of	alter regulation of cell division	
	trophoblast	- RSVT2/C			primary	and may impact on	
	apoptosis and	- SGHPL-4			trophoblasts in	differentiated functions and	
	placental	- SGHPL-5			culture.	gene expression not usually	
	development under	- SGHPL-6				observed in trophoblast cells in	
	hypoxic conditions.	- SGHPL-7				vivo or in primary culture.	
		- SPA-26+7 lines					
		- TCL-1					
		- TL					
		Malignant					
		choriocarcinoma					
		cell lines:					
		- AC1					
		- AC1-1					
		- AC1-5					
		- AC1-9					
		- AC-1M32					
		- AC-1M46					
	1	- AC-11/140				l	

Table 1. Preeclampsia *in vitro* research model systems

To determine:- Oxidative stress Effects ofsyncytiotrophoblast- derivedmicroparticles in the maternalcirculation, serum or plasma from patients with PE on proliferation, injury and apoptosis of human umbilical vein endothelial cells Effects of PE biomarkers or molecules with therapeutic potentials.	- AC-1M59 - AC-1M81 - AC-1M88 - BeWo - BeWo MC-1 - BeWo MC-2 - JAR - JEG Embryonal lines with trophoblast differentiation: - H9 - HT-H - NCC-EC-3 - NCCIT - NCR-G3 Normal primary umbilical vein endothelial cells (HUVECs).	Human	HUVECs cultured with syncytiotrophoblast- derived microparticles, serum, plasma, molecules or drugs for the evaluation of proliferation, apoptosis rates of the HUVECs and therapeutic properties.	- This cell line is ideal for evaluating immune response, wound healing, cellular response to viral or bacterial infection, oxidative stress, angiogenesis, arteriolosclerosis, drug screening and tubule formation, mechanisms implicated in PE.	- HUVECs are limited to 10–15 population doublings. Continued passaging beyond 15 doublings (4–5 passages after receipt) may result in decreased growth rates and loss of biological responsiveness.	(4-8)
---	---	-------	--	--	--	-------

 To evaluate:	- Connexins and	Mouse	- Generation of	Placentation in	Generation of trophoblast stem	(9, 10)
- Basic mechanisms	trophoblast cell	wiouse	trophoblast stem cell	mice involves	cells from knockout blastocysts	(9, 10)
			lines from connexin-	similar cell	seems to be accompanied by	
of gene regulation	lineage		deficient mice. This		more methodological problems,	
in trophoblast cell	development. - Placental vascular			biological events to		
lineage			may be used to	humans, without	especially if the genes that are	
differentiation.	development		elucidate the	the ethical	deleted alter the differentiation	
- Placenta	through ubiquitin		mechanism of	problems of	pathway.	
development.	ligase Ankyrin		differentiation and the	abortion and the		
- Vascularization of	repeat.		role of genes and cell	availability of		
the placenta.			types in the	sufficient tissues		
			development of the	for research. One		
			placenta.	major point is that		
			- Differentiation of	the most important		
			embryonic stem cell	steps of trophoblast		
			to vascular lineage	differentiation		
			through ubiquitin	occur within the		
			ligase Ankyrin	first weeks of		
			repeats.	gestation.		
- Human	- Cytotrophoblast	Human	- Generation of	- First human	- To acquire the physiology of	(11)
placentation and its	stem (CTBS) cell		cytotrophoblast cell	CTBS cell lines to	CTBS cells, spheroidal	
potential in cell	lines derived from		lines isolated from	be derived from	trophoblast bodies and matrigel	
therapy	human embryonic		embryoid bodies and	human embryonic	are required to resemble the	
applications.	stem cells.		selected for	stem cells and then	implanting embryo and mimic	
- Invasive			trophoblast	maintained	the endometrial deciduas,	
implantation events.			enrichment by rounds	independently	respectively.	
1			of cellular	without feeder		
			aggregation and	cells.		
			disaggregation.	- Differ from		
				immortalized		
				placental lines in		
				that they have		
				multipotent		
				capacity to		
				differentiate to		
				various trophoblast		
				phenotypes		
				including		
				syncytiotrophoblast		
		l		syncynou opnoblast		

					and extravillous cytotrophoblast.		
Explants	Trophoblast invasion	- First-trimester villous explants (to study postimplantation events, early stages of placentation and cytotrophoblast invasion).	Human	First-trimester floating villi in contact with a permissive extracellular matrix substrate stimulates cytotrophoblast proliferation and its column formation.	- Trophoblast is conditioned by co- culture with appropriate cells.	 Inability to identify the activities of individual cell types. Drugs, oxygen, infections, nutrients, hormones, xenobiotics or cytokines can affect tissue functions and survival. 	(12, 13)
		- Trans-filter cytotrophoblast migration (to study the phase of migration when single cells move through the decidual or myometrial environment)	Human, mouse	Purified primary first- trimester cytotrophoblast cell suspension.	It can be used quantitatively, providing good quality control.	 Minimal contamination by connective tissue cells may migrate or proliferate faster than trophoblast during the assay period. Cytotrophoblasts are not unequivocally identifiable by morphological criteria. 	(13, 14)
	Trophoblast invasion of spiral arteries	Spiral artery invasion and remodeling, developed using spiral artery explants, extravillous trophoblast cell lines and primary cytotrophoblasts.	Human	Fluorescently labeled trophoblasts (either primary first- trimester extravillous trophoblasts or an extravillous trophoblast cell line) are seeded on top of spiral artery segments (obtained from uterine biopsies at Caesarean section) embedded in fibrin gels (to study	It is useful for studies that lack suitable models directly examining cellular interactions during invasion.	Difficult to manipulate arteries and handle the co-culture.	(15)

Probe preventive	Extravillous	Human	interstitial invasion) or perfused into the lumen of arteries (to study endovascular invasion). Both interstitial and endovascular interactions/invasion can be detected and immunohistochemical analyses carried out.	- Although the	- It has been reported that these	(16)
and therapeutic agents for PE	trophoblast.		placentas was digested and extravillous trophoblast isolated, then it was used to investigate the effect of unfractionated, low-molecular-weight heparin and aspirin on <i>in vitro</i> extravillous trophoblast differentiation.	model was developed to study thrombophilia, it is useful to apply in the study of PE. - It is a useful tool for demonstrating any effect of putative therapeutics on extravillous trophoblast, especially during very early placentation since defects in extravillous trophoblast function could play an important role in the etiology of pregnancy disorders such as PE.	kinds of cells are only partly involved in the release of any of the predictive biomarkers available today. - They no longer proliferate in culture. Hence, only short-term cultures for some days can be performed. At the same time these cells spontaneously syncytialize in culture and thus may be of use to study the release of syncytial fragments and factors <i>in vitro</i> .	
Oxidative stress	Villous trophoblast and amniotic tissue	Human	Term placenta was digested and villous	This culture represents a useful	- They no longer proliferate in culture. Hence, only short-term	(8, 17)

- Placental	Villous explants.	Human	cytotrophoblasts isolated, then they were used to evaluate the effects of antioxidant vitamins C and E on trophoblast in culture. Villous and amniotic tissue cultures and stimulation with 4- hydroxy-nonenal, natrium fluoride and xanthine/xanthine oxidase. - First- and third- trimester human	<i>in vitro</i> model system to assess drug effectiveness. Useful to study	 cultures for some days can be performed. At the same time these cells spontaneously syncytialize in culture and thus may be of use to study the release of syncytial fragments and factors <i>in vitro</i>. Deficient availability of fresh meterial for explant cultures. 	(18, 19)
metabolism an syncytiotropho death. - Effect of anti hypertensive d on placental hormones and angiogenic pro synthesis, know be altered in P	- rugs otein wn to E.		trimester human placental explants were cultured with antiphospholipid antibodies, and several metabolites with important roles in cell death regulatory pathways were analyzed. - Placental villous explants from late onset PE were cultured at 20% oxygen with variable doses of anti- hypertensive drugs. The levels of different molecules were measured in explant culture media.	various facets of the materno-fetal interface, including analysis of placental endocrine function, metabolism, transport and to dissect cellular processes such as proliferation, differentiation, apoptosis and syncytial fusion.	material for explant cultures. - Villous explants are not regularly stored frozen. Hence, placental tissues can only be used directly after delivery, and explant cultures using tissues from a single placenta cannot be repeated at a later date. So to overcome this problem a larger number of villous explants derived from a single placenta could be explored.	
Co- Immune respon	nse - Macrophage-	Human	- Isolation and cell	None of the co-	- The type of cytokines	(20-24)

		1				
cultures	trophoblast		culture of	cultured cells affect	produced by a macrophage	
	interactions.		macrophages,	proliferation,	depends on its activation state.	
	- Trophoblast-		primary trophoblasts,	apoptosis and cell	- The type of effect in the	
	derived cell line		peripheral blood	column formation.	inflammatory response depends	
	co-cultured with		mononuclear cell,		upon the state of trophoblast.	
	peripheral blood		neutrophils and		- The co-cultures need a	
	mononuclear cells		natural killer cells.		scaffold that allows a 3D	
	under hypoxic		- Co-culturing of		conformation leading to cell-	
	conditions.		macrophages-		cell interaction and column	
	- Maternal		trophoblast,		formation.	
	neutrophils co-		trophoblast-peripheral			
	cultured with the		blood mononuclear			
	syncytiotrophoblast		cells, neutrophils-			
	microvillous		syncytiotrophoblast			
	membranes.		microvillous			
	Factors in plasma		membranes, and			
	of PE women		natural killer-villous			
	activate endothelial		explants.			
	cells to produce IL-		- Evaluating the co-			
	8 resulting in		culture interactions.			
	transendothelial					
	migration of					
	neutrophils.					
	- Interaction					
	between natural					
	killer cells and					
	villous explants					
	from concordant					
	first-trimester					
	pregnancies co-					
	cultured in a					
	collagen model of					
	placentation.					
Trophoblast	HTR-8/SVneo	Human	Trophoblast	- To evaluate the	- These models only identified	(25-27)
proliferation,	trophoblast cells or		migration and	effect of each cell	the maternal physical properties	
migration, invasion	trophoblast-derived		interactions with	line co-cultured on	of the invasion.	
and endothelial cell	JEG-3 cells co-		endometrial	the proliferative	- The difficulty in obtaining the	
interactions.	cultured with		endothelial cells were	and invasive	samples on a regular basis also	

		human uterine myometrial		measured using Transwell permeable	properties of the other.	prohibited these models' widespread use.	
		microvascular		support or co-cultured	- To evaluate	-	
		endothelial cells or		in matrigel.	antihypertensive		
		with human			and anti-		
		endometrial			inflammatory drugs		
		endothelial cells			that can modulate		
		into formation of			the interaction		
		capillary-like			between		
		cellular networks.			trophoblast and endothelial cells.		
					- These are 3D		
					models (cellular		
					networks) that		
					likely mimic the		
					trophoblast		
					interaction with		
					endothelium during		
					remodeling.		
	Cytotrophoblast	Cytotrophoblast	Human	Transwell migration	Cytotrophoblast	Because placental	(28)
	invasion	co-cultured with		assay was used to	cultured alone with	immunological tolerance is	
		human uterine		detect the invasive	normal or	regulated by many factors, this	
		spiral artery		ability of	preeclamptic serum	in vitro model might not fully	
		smooth muscle		cytotrophoblast co-	was lower than	represent the in vivo situation of	
		cell.		cultured with human	cytotrophoblast	uterine spiral artery remodeling	
				uterine spiral artery	cultured with	in PE.	
				smooth muscle cell,	human uterine		
				incubated with normal or	spiral artery smooth muscle cells.		
					muscle cells.		
Placental	Placenta biology	Placenta-on-a-	Human	preeclamptic serum. A 'Placenta-on-a-	- Replicates the	- Although the microfluidic	(29)
organ	i iacenta bibliogy	Chip.	Tuillall	Chip' is a	architecture and	culture system provides a	(27)
culture		Cmp.		microsystem that	function of the	greater physiological cell	
culture				consists of two	placenta.	culture environment than	
				polydimethylsiloxane	- Provides new	conventional static cultures, the	
				microfluidic channels	opportunities to	levels of shear stress generated	
				separated by a thin	simulate and	in the model are substantially	
				extracellular matrix	analyze critical	lower than those in fetal	

		т.	. 1 1	
		membrane. To	physiological	capillaries. This is mainly due
		reproduce the	responses of the	to the large size of the cell
		placental barrier,	placental barrier.	culture chambers.
		human trophoblasts	- It is a low-cost	- It has only been proved by
		(JEG-3) and human	experimental	employing the JEG-3 cell line
		umbilical vein	platform with a	and HUVECs to represent
		endothelial cells	broad range of	trophoblast and endothelial
		(HUVECs) are	applications.	cells, respectively. It could be
		seeded on the	- Overcomes the	better if it employs primary
		opposite sides of the	limitations that the	human trophoblasts and fetal
		membrane and	current in vitro	capillary endothelial cells.
		cultured under	models have in	
		dynamic flow	recapitulating the	
		conditions to form	organ-specific	
		confluent epithelial	structure and key	
		and endothelial layers	physiological	
		in close apposition.	functions of the	
			placenta.	

References

1. King A, Thomas L, Bischof P. Cell culture models of trophoblast II: trophoblast cell lines--a workshop report. Placenta. 2000;21 Suppl A:S113-9.

2. Shiverick KT, King A, Frank H, Whitley GS, Cartwright JE, Schneider H. Cell culture models of human trophoblast II: trophoblast cell lines--a workshop report. Placenta. 2001;22 Suppl A:S104-6.

3. Jeon SY, Lee HJ, Na KH, Cha DH, Kim JK, Park JW, et al. Hypoxia-induced downregulation of XIAP in trophoblasts mediates apoptosis via interaction with IMUP-2: implications for placental development during pre-eclampsia. Journal of cellular biochemistry. 2013;114(1):89-98.

4. Chen Y, Huang Y, Jiang R, Teng Y. Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 2012;119(3):234-8.

5. Li LX, Li XF, Zhang LL, Zhang Y, Guo RX, Zhang XY, et al. [Effects of plasma from patients with preeclampsia on the proliferation and apoptosis of human umbilical vein endothelial cells and its relationship with lysophosphatidic acid receptors]. Zhonghua fu chan ke za zhi. 2013;48(2):102-6.

6. Wu C, Yuan J, Sui R, Li S, Sun J. Tanshinone II-A is protective against human umbilical vein endothelial cell injury after exposure to serum from preeclampsia patients. Gynecologic and obstetric investigation. 2014;78(2):101-8.

7. Borges LE, Bloise E, Dela Cruz C, Galleri L, Apa R, Petraglia F, et al. Urocortin 1 expression and secretion by human umbilical vein endothelial cells: In vitro effects of interleukin 8, interferon gamma, lipopolysaccharide, endothelin 1, prostaglandin F-2alpha, estradiol, progesterone and dexamethasone. Peptides. 2015;74:64-9.

8. Tskitishvili E, Sharentuya N, Temma-Asano K, Mimura K, Kinugasa-Taniguchi Y, Kanagawa T, et al. Oxidative stress-induced S100B protein from placenta and amnion affects soluble Endoglin release from endothelial cells. Molecular human reproduction. 2010;16(3):188-99.

9. Kibschull M, Winterhager E. Connexins and trophoblast cell lineage development. Methods in molecular medicine. 2006;121:149-58.

10. Townley-Tilson WH, Wu Y, Ferguson JE, 3rd, Patterson C. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PloS one. 2014;9(2):e89451.

11. Harun R, Ruban L, Matin M, Draper J, Jenkins NM, Liew GC, et al. Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events. Hum Reprod. 2006;21(6):1349-58.

12. Miller RK, Genbacev O, Turner MA, Aplin JD, Caniggia I, Huppertz B. Human placental explants in culture: approaches and assessments. Placenta. 2005;26(6):439-48.

13. Aplin JD. In vitro analysis of trophoblast invasion. Methods in molecular medicine. 2006;122:45-57.

14. Suenaga A, Tachi C, Tojo H, Tanaka S, Tsutsumi O, Taketani Y. Quantitative analysis of the spreading of the mouse trophoblast in vitro: a model for early invasion. Placenta. 1996;17(8):583-90.

15. Cartwright JE, Wareing M. An in vitro model of trophoblast invasion of spiral arteries. Methods Mol Med. 2006;122:59-74.

16. Quenby S, Mountfield S, Cartwright JE, Whitley GS, Vince G. Effects of low-molecular-weight and unfractionated heparin on trophoblast function. Obstetrics and gynecology. 2004;104(2):354-61.

17. Tannetta DS, Sargent IL, Linton EA, Redman CW. Vitamins C and E inhibit apoptosis of cultured human term placenta trophoblast. Placenta. 2008;29(8):680-90.

18. Pantham P, Heazell AE, Mullard G, Begley P, Chen Q, Brown M, et al. Antiphospholipid Antibodies Alter Cell-Death-Regulating Lipid Metabolites in First and Third Trimester Human Placentae. Am J Reprod Immunol. 2015;74(2):181-99.

19. Gangooly S, Muttukrishna S, Jauniaux E. In-vitro study of the effect of anti-hypertensive drugs on placental hormones and angiogenic proteins synthesis in pre-eclampsia. PloS one. 2014;9(9):e107644.

20. Mor G, Straszewski-Chavez SL, Abrahams VM. Macrophage-trophoblast interactions. Methods in molecular medicine. 2006;122:149-63.

21. Lee SM, Romero R, Lee YJ, Park IS, Park CW, Yoon BH. Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in preeclampsia. American journal of obstetrics and gynecology. 2012;207(4):337 e1-8.

22. Aly AS, Khandelwal M, Zhao J, Mehmet AH, Sammel MD, Parry S. Neutrophils are stimulated by syncytiotrophoblast microvillous membranes to generate superoxide radicals in women with preeclampsia. American journal of obstetrics and gynecology. 2004;190(1):252-8.

23. Walsh SW. Plasma from preeclamptic women stimulates transendothelial migration of neutrophils. Reprod Sci. 2009;16(3):320-5.

24. Hu Y, Dutz JP, MacCalman CD, Yong P, Tan R, von Dadelszen P. Decidual NK cells alter in vitro first trimester extravillous cytotrophoblast migration: a role for IFN-gamma. J Immunol. 2006;177(12):8522-30.

25. Alvarez AM, Mulla MJ, Chamley LW, Cadavid AP, Abrahams VM. Aspirin-triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast migration and endothelial cell interactions. Arthritis Rheumatol. 2015;67(2):488-97.

26. Xu B, Charlton F, Makris A, Hennessy A. Antihypertensive drugs methyldopa, labetalol, hydralazine, and clonidine improve trophoblast interaction with endothelial cellular networks in vitro. Journal of hypertension. 2014;32(5):1075-83; discussion 83.

27. Xu B, Nakhla S, Makris A, Hennessy A. TNF-alpha inhibits trophoblast integration into endothelial cellular networks. Placenta. 2011;32(3):241-6.

28. Jiang R, Yan S, Teng Y, Huang Y, Gu J, Li M. Effect of preeclampsia serum on human uterine spiral artery smooth muscle cell apoptosis in a coculture model with cytotrophoblasts. Gynecologic and obstetric investigation. 2012;73(3):201-10.

29. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2016;29(7):1046-54.