Title

"Current model systems for the study of preeclampsia"

Journal name: Experimental Biology and Medicine

Authors

ML Martinez-Fierro, GP Hernández-Delgadillo, V Flores-Morales, E Cardenas-Vargas, M Mercado-Reyes, IP Rodriguez-Sanchez, I Delgado-Enciso, CE Galván-Tejada, JI Galván-Tejada, JM Celaya-Padilla, I Garza-Veloz[†].

[†]Corresponding author

Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S.

Universidad Autonoma de Zacatecas.

Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, C.P. 98160,

Zacatecas, Mexico

E-mail address: idaliagv@uaz.edu.mx

Models	Method	Species	Description	Advantages	Disadvantages	References
Trophoblast cell	Placental bed	Human	Biopsies from the	Small tissue	- Specimens acquired	(1-4)
Invasion	histological sections		placental bed for	samples are needed	almost exclusively after	
	for identification of		histological evaluation	for the study (0.5 to	delivery.	
	structural changes in		of the uterine	1 cm).	- Marked variation in the	
	uterine blood		vasculature. Obtained		patterns of interstitial and	
	vessels, disturbed		from:		endovascular trophoblast	
	by invading		- Delivered Placentas		invasion and in the	
	trophoblastic cells		- Hysterectomy		associated modifications of	
	in complicated		Specimens		the spiral arteries from the	
	pregnancies.		- Caesarean Section		center to the margins of the	
			- Biopsies Under		placental bed.	
			Ultrasound Guidance.		It is a challenge to	
					extrapolate from the	
					findings in small tissue	
					fragments to the whole	
					placental bed.	
					Invasion may be irregular	
					and vasculopathies may	
					occur focally.	
	Analysis of the	Rat, mouse	Sprague-Dawley, CD-	The rat and mouse	The phenotype of invasive	(5)
	endocrine		1 mice, Tgɛ26 mice	model systems	rodent trophoblast cells is	
	phenotype of		and C57BL/6 mice,	exhibit features	distinct from phenotypes	
	invasive trophoblast		IFNγ and IFNγ	shared with	for intraplacental	
	cells, and aspects of		receptor null mutant,	primates and	trophoblast cell lineages.	
	the regulation of		were used as model to	expand the		
	trophoblast cell		investigate:	experimental		
	invasion during		- Trophoblast invasion	repertoire for		
	pregnancy of		in rats and mice.	studying		
	rodents with genetic		- The endocrine	trophoblast cell		
	deficiency of INFy.		phenotype of these	invasion.		
			invading trophoblast			
			cells, and the potential			
			modulatory roles of			
			NK cells and the NK			

Table 2. Preeclampsia in vivo research model systems

		cell product IFNγ in the regulation of trophoblast invasion			
Evaluate the depth of endovascular trophoblast invasion and associated remodeling of spiral arteries in a transgenic model of PE in rats.	Rat	 Sprague-Dawley rats harboring the human renin (hRen) or human angiotensinogen gene (hAogen). Fischer 344 R26- hAP rats that possess a transgene consisting of a Rosa 26 promoter driving the expression of a heat-stable human placental AP. 	This technique should facilitate the discovery of endogenous regulatory mechanisms controlling trophoblast cell invasion and should represent an effective method of testing the impact of various environmental stressors on an essential part of hemochorial placentation.	The techniques are most effective when performed in conjunction with qualitative techniques used for the <i>in situ</i> identification and localization of invasive trophoblast cells.	(6, 7)
The origin, migration routes and kinetics of invasive trophoblast cells were examined in two caviomorph species.	Guinea pig, degus	Histology and immunohistochemistry were performed on placentas from mid- gestational stages from pregnant guinea pigs and degus treated with 3 doses of BrdU (an <i>in</i> <i>vivo</i> marker for proliferation and for tracing of migration routes in the placenta) injected intraperitoneally.	The patterns of trophoblast invasion in caviomorphs are analogous to the situation in humans, suggesting that these rodents are appropriate animal models for the study of the dynamics of trophoblast invasion.	Not all intrauterine BrdU injections resulted in BrdU- staining of placental trophoblast, suggesting that not all intrauterine compartments are equally suitable injection sites for this tracer.	(8)
Reduction of placental perfusion through the	Kat	Preeclamptic and pregnant control Sprague-Dawley rats	the model allows the study of dysregulated	The doxycycline is teratogenic.	(9)

	inhibition of trophoblast-induced spiral artery remodeling in pregnant rats.		were treated with doxycycline from gestational day 12 until day 18.	trophoblast invasion and vascular remodeling <i>in vivo</i> to gain important insights into PE- related mechanisms.		
Uteroplacental ischemia	Produce placental abruption by reducing its perfusion.	Dog, rabbit, rhesus monkeys, baboons	Abruptio placentae by ligating permanently or temporarily the inferior vena cava, intercotyledonary vessels or uterine arteries in pregnancy, causing progressive hypertension and proteinuria, which ceased after delivery.	Suppression of uteroplacental blood flow leads to a hypertensive state that closely resembles PE in women.	 Fibrinoid degeneration and aneurysmal dilatation were produced in the decidual vessels. The vessels are often destroyed by the process. The hypertensive state persisted until the postpartum period. 	(10-13)
	Partially occluding the uteroplacental blood flow of pregnant animals resulted in hypertension.	Dog, rabbit, monkey	Ligating the terminal aorta to a specific degree of stricture, causing placental lesions, hypertension, proteinuria, fetal growth restriction and changes in liver and kidney.	Reductions in uteroplacental blood flow lead to a hypertensive state that closely resembles PE in women.	 The condition may lead to fetal death. Appropriate clip size and the ideal gestational time for reducing uterine perfusion pressure were undetermined. The degree of aortic constriction was imprecisely controlled. 	(14-16)
	Produce the Reduced Uterine Perfusion Pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia.	Rat	Develop a reduced uterine perfusion pressure (RUPP) model by reducing uterine perfusion pressure in gravid Sprague-Dawley rats by placing a silver clip around the aorta below the renal arteries and on both the right and	 Reductions in uteroplacental blood flow lead to a hypertensive state that closely resembles PE in women. Appropriate clip size and the ideal gestational time for reducing uterine 	The proteinuria response was variable in the pregnant rats with reduction of uterine perfusion pressure.	(17, 18)

			left uterine arcade at the ovarian end just before the first segmental artery.	perfusion pressure were determined. - The degree of aortic constriction was precisely controlled.		
	Effects of hypoxia- inducible factor- 1alpha (HIF-1α) expression on pregnant mice.	Mouse	 C57BL/6J mice with systemic administration of adenovirus expressing HIF-1α, CITED2-knockout C57BL/6:129 mice, Catechol-O- methyltransferase (COMT)-knockout C57BL/6J mice, Pregnant C57BL/6JArc mice TNF-α infused. 	These models showed PE-like syndrome.	 Immune response to adenoviral vector systems can cause severe complications for the animal model. Proteinuria was present both in cases and in control groups. 	(19-22)
Angiogenesis	Administration of soluble sFlt-1 and sEng.	Mouse, rat	Overexpression of angiogenic regulator factors such as sFlt-1 and sEng in pregnant mice and rats results in a PE-like phenotype.	Models mimic multiple aspects of PE (based on current ACOG criteria), including development of HELLP.	 Immune response to adenoviral and lentiviral vector systems not only impedes the delivery of genes to target cells but can cause severe complications for the animal model. The teratogenicity of statins is an obstacle to its use. 	(23-26)
	Prolonged blockade of nitric oxide synthesis.	Rat	L-nitro-arginine (a potent inhibitor of nitric oxide synthase) was infused continuously in pregnant rats.	Chronic inhibition of nitric oxide synthesis in pregnant rats leads to sustained hypertension, proteinuria, thrombocytopenia	L-nitro-arginine is a nonspecific vasoconstrictor that could inhibit the coronary vascular responses.	(27)

				and intrauterine growth retardation, providing a simple animal model for PE.		
	Angiogenesis inhibition during early placentation.	Rat	Administration of the angiogenesis inhibitor Suramin during early placentation of Sprague-Dawley rats.	The inhibition of uterine angiogenesis increases maternal blood pressure and compromises fetal and placental development.	Suramin is a nonspecific vasoconstrictor, with severe side effects.	(28)
Oxidative stress	Salted-water intake.	Rat	Increasing sodium intake (0.9% or 1.8% NaCl in drinking water) during the last week of gestation in the Sprague-Dawley pregnant rats.	Maternal insult during gestation induced an imbalance in the oxidative environment in the placenta favoring oxidation, and provides an animal model for studying the maternal manifestation of PE.	Early stages of gestations were not evaluated.	(29)
Immune response	Ultra-low-dose endotoxin infusion in pregnant rats.	Rat	Administration of an ultra-low-dose endotoxin infusion in conscious pregnant rats.	Histopathologic and clinical events mimic predominant features of human PE.	There is no evidence that human PE is caused by endotoxin.	(30)
	Administration of inflammatory cytokines.	Rat, mouse, baboons	 Sprague-Dawley rats treated with IL-6, Papio hamadryas treated with IL-10 and TNF-α, IL-10-knockout pregnant C57BL/6 	These models showed PE-like syndrome and placental changes in molecules responding to inflammation.	The vascular endothelium releases other vasodilator substances that could influence the inflammatory cytokine activity.	(19, 31-35)

		mice exposed to low			
		levels of oxygen or			
		Toll-like receptor 3,			
		- And pregnant			
		C57BL/6JArc mice			
		TNF- α infused.			
Placental Toll-Like	Mouse	Treated pregnant	Treatment of mice	Placental activation of	(36)
Receptor 3 and		C57BL/6J mice with	with poly I:C. R-	LR3/7/8 by dsRNA and	()
Toll-Like Receptor		the TLR3 agonist	837. or CLO97	ssRNA could arise from	
7/8 activation		polyinosinic-	caused pregnancy-	latent viruses viruses	
//o dell'valion.		polycytidylic acid	dependent	acquired during gestation	
		(poly I:C) the TL R7-	hypertension	as well as excessive cellular	
		specific agonist	andothelial	necrosis/apontosis resulting	
		imiquimod (R 837)	dysfunction	from aberrant implantation	
		and the TL $P7/8$	splanomogaly and	placentation placental	
		and the TER7/8	spicificitie gary and	hypoxia and/or trophoblast	
		agoinst CLO97	inflommation	investor	
		causing FE-like	IIIIaiiiiiatioii.	nivasion.	
A 1 11	14	syndrome.	Q 11 / C		(27)
Adoptive cell	Mouse	Adoptively	Cell transfer	Adoptive cell transfer	(37)
transfer in pregnant		transferring activated	provoked PE	further affected pregnancy	
mice.		BALB/c Th1-like	symptoms	outcome by increasing fetal	
		splenocytes into	(increased blood	rejection through an	
		allogeneically	pressure and	inflammatory profile of	
		pregnant BALB/c	glomerulonephritis	uterine immune cells.	
		female mice during	accompanied by		
		late gestation.	proteinuria).		
Effect of	Rat, Mouse	Infusion of activating	- Key features of	 No progression to 	(38, 39)
angiotensin receptor		antibodies against	PE, placental	eclampsia.	
agonistic		angiotensin II type 1	abnormalities and	- Not all women with PE	
autoantibodies in		receptor (AT(1)-AB)	small fetus size	have antibodies.	
pregnant rodents.		alone or combined	appeared in	- The effects could be	
		with angiotensin II	pregnant rodents	prevented by co-injection	
		into pregnant Sprague-	after injection with	with losartan, an AT (1)	
		Dawley and C57BL/6J	AT(1) agonistic	receptor antagonist, or by	
		pregnant mice induced	autoantibodies.	an antibody neutralizing	
		PE-like syndrome.		seven-amino-acid epitope	
		-		peptide.	
Low-dose cadmium	Rat	Intraperitoneal	Key features of PE	Pregnant women are more	(40)
		*			

			1	1 .	1 11 011	
	chloride (CdCl2)		administration of	appeared in	vulnerable to Cd because of	
	infusion in pregnant		cadmium chloride	pregnant rats after	the greatly increased	
	rats.		(CdCl2) in Wistar rats	the administration	absorption and retention of	
			on gestational days 9-	of low dose of	Cd caused by nutritional	
			14.	CdCl2.	deficiencies during	
					pregnancy.	
Other	Chronic	Mouse	Chronic infusion of	AVP constitutes a	AVP is known to be	(41)
	administration of		AVP in C57BL/6J	novel very early	affected and is an effector	
	arginine vasopressin		mice during pregnancy	human pregnancy	of multiple immune cells.	
	(AVP).		is sufficient to	biomarker and		
			phenocopy PE.	clinically relevant		
				mouse model of PE.		
	Spontaneous PE.	Mouse, rat,	Reports of	- Might share	- Cost and availability of	(42-46)
		caviomorph,	spontaneous	etiology with	these animals are limiting.	
		patas	preeclamptic	human PE.	- Disease has not been	
		monkey.	symptoms in BPH/5	- Disease severity is	characterized based on the	
		-	mice, Dahl salt-	similar to that seen	current diagnostic criteria	
			sensitive S and	in humans.	for humans (ACOG, 2013).	
			spontaneously	- Resembled PE in		
			hypertensive (SHR	humans more		
			SHP/NHed or SHP)	closely than the		
			STIK/INTISU OF STIK)	croscry than the		
			rats, guinea pigs and	experimentally		
			rats, guinea pigs and Erythrocebus patas.	experimentally induced disease in		

References

1. Robertson WB, Khong TY, Brosens I, De Wolf F, Sheppard BL, Bonnar J. The placental bed biopsy: review from three European centers. American journal of obstetrics and gynecology. 1986;155(2):401-12.

2. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. British journal of obstetrics and gynaecology. 1994;101(8):669-74.

3. Dixon HG, Robertson WB. A study of the vessels of the placental bed in normotensive and hypertensive women. The Journal of obstetrics and gynaecology of the British Empire. 1958;65(5):803-9.

4. Pijnenborg R, Ball E, Bulmer JN, Hanssens M, Robson SC, Vercruysse L. In vivo analysis of trophoblast cell invasion in the human. Methods in molecular medicine. 2006;122:11-44.

5. Ain R, Canham LN, Soares MJ. Gestation stage-dependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation. Developmental biology. 2003;260(1):176-90.

6. Arroyo JA, Konno T, Khalili DC, Soares MJ. A simple in vivo approach to investigate invasive trophoblast cells. The International journal of developmental biology. 2005;49(8):977-80.

7. Geusens N, Verlohren S, Luyten C, Taube M, Hering L, Vercruysse L, et al. Endovascular trophoblast invasion, spiral artery remodelling and uteroplacental haemodynamics in a transgenic rat model of pre-eclampsia. Placenta. 2008;29(7):614-23.

8. Mess A, Zaki N, Kadyrov M, Korr H, Kaufmann P. Caviomorph placentation as a model for trophoblast invasion. Placenta. 2007;28(11-12):1234-8.

9. Verlohren S, Geusens N, Morton J, Verhaegen I, Hering L, Herse F, et al. Inhibition of trophoblast-induced spiral artery remodeling reduces placental perfusion in rat pregnancy. Hypertension. 2010;56(2):304-10.

10. Cavanagh D, Rao PS, Tung KS, Gaston L. Eclamptogenic toxemia: the development of an experimental model in the subhuman primate. American journal of obstetrics and gynecology. 1974;120(2):183-96.

11. Haynes DM. Experimental abruptio placentae in the rabbit. American journal of obstetrics and gynecology. 1963;85:626-45.

12. Howard BK, Goodson JH. Experimental placental abruption. Obstetrics and gynecology. 1953;2(5):442-6.

13. Myers RE, Fujikura T. Placental changes after experimental abruptio placentae and fetal vessel ligation of rhesus monkey placenta. American journal of obstetrics and gynecology. 1968;100(6):946-51.

14. Abitbol MM, Driscoll SG, Ober WB. Placental lesions in experimental toxemia in the rabbit. American journal of obstetrics and gynecology. 1976;125(7):942-8.

15. Abitbol MM, Ober MB, Gallo GR, Driscoll SG, Pirani CL. Experimental toxemia of pregnancy in the monkey, with a preliminary report on renin and aldosterone. The American journal of pathology. 1977;86(3):573-90.

16. Abitbol MM, Pirani CL, Ober WB, Driscoll SG, Cohen MW. Production of experimental toxemia in the pregnant dog. Obstetrics and gynecology. 1976;48(5):537-48.

17. Granger JP, LaMarca BB, Cockrell K, Sedeek M, Balzi C, Chandler D, et al. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods in molecular medicine. 2006;122:383-92.

18. Douglas J. Eder, McDonald MT. A Role for Brain Angiotensin II in Experimental Pregnancy-Induced Hypertension in Laboratory Rats. Clinical and Experimental Hypertension Part B: Hypertension in Pregnancy. 1987;6(3):431-51.

19. Bobek G, Surmon L, Mirabito KM, Makris A, Hennessy A. Placental Regulation of Inflammation and Hypoxia after TNF-alpha Infusion in Mice. Am J Reprod Immunol. 2015;74(5):407-18.

20. Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453(7198):1117-21.

21. Tal R, Shaish A, Barshack I, Polak-Charcon S, Afek A, Volkov A, et al. Effects of hypoxia-inducible factor-1alpha overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. The American journal of pathology. 2010;177(6):2950-62.

22. Withington SL, Scott AN, Saunders DN, Lopes Floro K, Preis JI, Michalicek J, et al. Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Developmental biology. 2006;294(1):67-82.

23. Karumanchi SA, Stillman IE. In vivo rat model of preeclampsia. Methods in molecular medicine. 2006;122:393-9.

24. Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y, et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(4):1451-5.

25. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The Journal of clinical investigation. 2003;111(5):649-58.

26. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature medicine. 2006;12(6):642-9.

27. Molnar M, Suto T, Toth T, Hertelendy F. Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopenia, and intrauterine growth retardation. American journal of obstetrics and gynecology. 1994;170(5 Pt 1):1458-66.

28. Carlstrom M, Wentzel P, Skott O, Persson AE, Eriksson UJ. Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia. Journal of hypertension. 2009;27(4):829-37.

29. Beausejour A, Bibeau K, Lavoie JC, St-Louis J, Brochu M. Placental oxidative stress in a rat model of preeclampsia. Placenta. 2007;28(1):52-8.

30. Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. American journal of obstetrics and gynecology. 1994;171(1):158-64.

31. Chatterjee P, Chiasson VL, Kopriva SE, Young KJ, Chatterjee V, Jones KA, et al. Interleukin 10 deficiency exacerbates toll-like receptor 3induced preeclampsia-like symptoms in mice. Hypertension. 2011;58(3):489-96.

32. Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011;57(3):505-14.

33. Orange S, Rasko JE, Thompson JF, Vaughan J, Olive E, Pedler M, et al. Interleukin-10 regulates arterial pressure in early primate pregnancy. Cytokine. 2005;29(4):176-85.

34. Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. American journal of physiology Regulatory, integrative and comparative physiology. 2004;286(6):R1013-23.

35. Sunderland NS, Thomson SE, Heffernan SJ, Lim S, Thompson J, Ogle R, et al. Tumor necrosis factor alpha induces a model of preeclampsia in pregnant baboons (Papio hamadryas). Cytokine. 2011;56(2):192-9.

36. Chatterjee P, Weaver LE, Doersch KM, Kopriva SE, Chiasson VL, Allen SJ, et al. Placental Toll-like receptor 3 and Toll-like receptor 7/8 activation contributes to preeclampsia in humans and mice. PloS one. 2012;7(7):e41884.

37. Zenclussen AC. A novel mouse model for preeclampsia by transferring activated th1 cells into normal pregnant mice. Methods in molecular medicine. 2006;122:401-12.

38. Wenzel K, Rajakumar A, Haase H, Geusens N, Hubner N, Schulz H, et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension. 2011;58(1):77-84.

39. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nature medicine. 2008;14(8):855-62.

40. Zhang Q, Huang Y, Zhang K, Yan Y, Wang F, Wu J, et al. Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia. Environ Pollut. 2016;218:770-82.

41. Santillan MK, Santillan DA, Scroggins SM, Min JY, Sandgren JA, Pearson NA, et al. Vasopressin in preeclampsia: a novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension. 2014;64(4):852-9.

42. Ganaway JR, Allen AM. Obesity predisposes to pregnancy toxemia (ketosis) of guinea pigs. Laboratory animal science. 1971;21(1):40-4.

43. Gillis EE, Williams JM, Garrett MR, Mooney JN, Sasser JM. The Dahl salt-sensitive rat is a spontaneous model of superimposed preeclampsia. American journal of physiology Regulatory, integrative and comparative physiology. 2015;309(1):R62-70.

44. Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, et al. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension. 2002;39(2 Pt 2):337-42.

45. Dokras A, Hoffmann DS, Eastvold JS, Kienzle MF, Gruman LM, Kirby PA, et al. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biology of reproduction. 2006;75(6):899-907.

46. Palmer AE, London WT, Sly DL, Rice JM. Spontaneous preeclamptic toxemia of pregnancy in the patas monkey (Erythrocebus patas). Laboratory animal science. 1979;29(1):102-6.