Title

"Current model systems for the study of preeclampsia"

Journal name: Experimental Biology and Medicine

Authors

ML Martinez-Fierro, GP Hernández-Delgadillo, V Flores-Morales, E Cardenas-Vargas, M Mercado-Reyes, IP Rodriguez-Sanchez, I Delgado-Enciso, CE Galván-Tejada, JI Galván-Tejada, JM Celaya-Padilla, I Garza-Veloz[†].

[†]Corresponding author

Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S.

Universidad Autonoma de Zacatecas.

Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, C.P. 98160,

Zacatecas, Mexico

E-mail address: idaliagv@uaz.edu.mx

Table 3. Preeclampsia <i>in silico</i> research model system	ns
--	----

Models	Method	Species	Description	Advantages	Disadvantages	References
Gene prioritization	 Co-expression network construction. Modular and node analysis. Genetic algorithms applied in combination with the nearest neighbor and discriminant analysis classification methods. 	Human	The gene prioritization in PE was explored, combining co- expression network analysis and genetic algorithm optimization approaches.	 It can integrate and analyze a large amount of information derived from 'omic' experimental approaches. Co-expression network analysis combining both modular and gene- centered approaches are capable of identifying genes significantly related to PE. 	 Nodes located in small subnetworks may report relatively high closeness centrality values. The analysis of more samples than variables (genes) are recommended to avoid false discoveries (false relevant correlations). 	(1)
Protein-protein interaction network analysis	- Several indexes of centrality were explored for hub detection as well as enrichment statistical analysis of metabolic pathways and disease.	Human	A comprehensive genes/proteins data set was created by the analysis of both public proteomic data and text mining of public scientific literature.	- This methodology leads to the identification of unknown interactions of proteins/genes and a better integration of metabolic pathways and PE.	 Experimental validation for new candidates is needed. It is necessary to reduce the gene space applying other methodologies as well as to design new experimental experiences. The limitation of the human protein interaction information suggests that orthologous genes should also be needed in order to increase the protein-protein interaction network, covering the initial data set, and to increase the capabilities of the metabolic 	(2)

Genetics of PE	Cluster analysis was used to aggregate	Human	To identify candidate genes and genetic variants for PE, a	- The gene sets presented are useful for:	pathways and disease enrichment analysis. - The authors found a notable lack of consistency in the definition of PE in the	(3, 4)
	extracted genes from the published literature into gene sets associated with PE. Gene ontology was used to organize this large group of genes into ontology groups.		bioinformatic approach was used to extract and organize genes and variants from the published literature.	 Analyzing available data on PE. Analyzing the genetic architecture of PE. Clustering of genes associated with PE by phenotype and by source. 	literature. - Specific, well-defined phenotypes may be critical to understanding the genetic architecture of PE, and in the statistical power of data sets.	
Artificial Neural Networks	Artificial neural networks and multivariate logistic regression were applied to a set of clinical and laboratory data collected at different weeks of gestation. - The performance of each model was assessed using receiver operator characteristic (ROC) curves.	Human	 Model construction for: Classification of women with normal blood pressure, high blood pressure and PE in different gestational ages using maternal heart rate variability indexes. Predicting the development of PE in consecutive normotensive pregnant women at high risk of PE and intrauterine fetal growth retardation. 	 ANN models: Require less formal statistical training to develop. Can detect complex nonlinear relationships between independent and dependent variables. Have the ability to detect all possible interactions between predictor variables. Can be developed using multiple different training algorithms. Has the ability to learn how to do 	 ANN models: 1. Has limited ability to identify possible causal relationships. 2. Requires greater computational resources. 3. Are prone to overfitting. 4. Development is empirical, and many methodological issues remain to be resolved. 	(5, 6)

Multivariate logistic regression model	A multivariate logistic regression model was used to evaluate the potential of biological markers, standard laboratory parameters, and biochemical and clinical factors to predict the occurrence of PE.	Human	Investigate the usefulness of several biological markers, clinical and standard laboratory parameters for the individual prediction of PE, after 10th week of gestation.	tasks based on the data given for training or initial experience. 6. Can create its own organization of the information it receives during learning time. 7. ANN computations may be carried out in parallel. 8. Partial destruction of a network leads to the corresponding degradation of performance. - Logistic regression: 1. Is more robust. The independent variables don't have to be normally distributed, or have equal variance in each group. 2. Does not assume a linear relationship between the variables. 3. Can add explicit interaction and power terms. 4. Distributed error terms are not assumed.	 Logistic regression: Requires formal statistical training to develop. Requires much more data to achieve stable, meaningful results. For logistic regression, at least 50 data points per predictor are necessary to achieve stable results. If wrong independent variables are included, the model will have little to no predictive value. Cannot predict continuous outcomes. Requires each data point to be independent of all other data points. 	(7-14)
--	---	-------	--	--	--	--------

		6. Is vulnerable to	
		overconfidence.	

References

1. Tejera E, Bernardes J, Rebelo I. Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia. BMC medical genomics. 2013;6:51.

2. Tejera E, Bernardes J, Rebelo I. Preeclampsia: a bioinformatics approach through protein-protein interaction networks analysis. BMC systems biology. 2012;6:97.

3. Triche EW, Uzun A, DeWan AT, Kurihara I, Liu J, Occhiogrosso R, et al. Bioinformatic approach to the genetics of preeclampsia. Obstetrics and gynecology. 2014;123(6):1155-61.

4. Cox B. Bioinformatic approach to the genetics of preeclampsia. Obstetrics and gynecology. 2014;124(3):633.

5. Tejera E, Jose Areias M, Rodrigues A, Ramoa A, Manuel Nieto-Villar J, Rebelo I. Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2011;24(9):1147-51.

6. Mello G, Parretti E, Ognibene A, Mecacci F, Cioni R, Scarselli G, et al. Prediction of the development of pregnancy-induced hypertensive disorders in high-risk pregnant women by artificial neural networks. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2001;39(9):801-5.

7. Delic R, Stefanovic M, Krivec S, Weber V. Statistical regression model of standard and new laboratory markers and its usefulness in prediction of preeclampsia. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014;27(4):388-92.

8. Direkvand-Moghadam A, Khosravi A, Sayehmiri K. Predictive factors for preeclampsia in pregnant women: a unvariate and multivariate logistic regression analysis. Acta biochimica Polonica. 2012;59(4):673-7.

9. Delic R, Stefanovic M. Optimal laboratory panel for predicting preeclampsia. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2010;23(1):96-102.

10. Forest JC, Masse J, Bujold E, Rousseau F, Charland M, Theriault S, et al. OS090. Performance of candidate clinical and biochemical markers in screening early in pregnancy to detect women at high risk to develop preeclampsia. Pregnancy hypertension. 2012;2(3):227.

11. Masse J, Forest JC, Moutquin JM, Marcoux S, Brideau NA, Belanger M. A prospective study of several potential biologic markers for early prediction of the development of preeclampsia. American journal of obstetrics and gynecology. 1993;169(3):501-8.

Harrington K, Carpenter RG, Goldfrad C, Campbell S. Transvaginal Doppler ultrasound of the uteroplacental circulation in the early prediction of pre-eclampsia and intrauterine growth retardation. British journal of obstetrics and gynaecology. 1997;104(6):674-81.
 Romero-Gutierrez G, Malacara JM, Amador N, Fierro-Martinez C, Munoz-Guevara LM, Molina-Rodriguez R. Homeostatic model assessment and risk for hypertension during pregnancy: a longitudinal prospective study. American journal of perinatology. 2004;21(8):455-62.
 Martinez-Fierro ML, Garza-Veloz I, Castruita-Dela Rosa C, Ortiz-Castro Y, Aceves-Medina MC, Vazquez-Castro R, et al. Plasma cancer biomarker multiplex screening and the risk of subsequent preeclampsia. International journal of cardiology. 2015;179:58-60.