
Supplementary Table S 2 

Validation Held-out test 
Network Input size Parameters Accuracy Accuracy 
This work   64 x   64 x 3 13,550 0.954 ± 0.02 0.946 ± 0.01 
AlexNet 227 x 227 x 3 56.9 x 106 0.715 ± 0.02 0.672 ± 0.06 
GoogLeNet 224 x 224 x 3   5.0 x 106 0.839 ± 0.03 0.688 ± 0.04 
ResNet-50 224 x 224 x 3 23.6 x 106 0.905 ± 0.01 0.727 ± 0.04 
ResNet-50 
reduced params 

224 x 224 x 3   5.9 x 106 0.917 ± 0.02 0.716 ± 0.05 

Table S 2. Image-level performance evaluation for additional neural network 
architectures. 

We assessed the image-level performance accuracy for neural network architectures including 

AlexNet (5), GoogLeNet (6), ResNet50 (7), and ResNet50 reduced params where we reduced 

the number of kernels by half at each layer. These networks have a larger field of view and 

higher capacity (more parameters) and they tend to easily overfit the training/validation dataset , 

even when using regularization techniques and aggressive data augmentation. This overfitting 

with high-capacity models is likely due to the small size of the dataset. The results are 

presented as the Mean ± SD of three models. 
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