Towards an Arthritis Flare-Responsive Drug Delivery System

Nitin Joshi^{1,2,3†}, Jing Yan^{3,4†}, Seth Levy^{3,4†}, Sachin Bhagchandani¹, Kai V. Slaughter¹, Nicholas E. Sherman¹, Julian Amirault¹, Yu Feng Wang¹, Logan Riegel¹, Xueyin He¹, Tan Shi Rui¹, Michael Valic¹, Praveen K. Vemula^{1,2,3,#}, Oscar R. Miranda^{1,2,3}, Oren Levy^{1,2,3}, Ellen M. Gravallese⁵, Antonios O. Aliprantis^{3,4##}, Joerg Ermann^{3,4*}, Jeffrey M. Karp^{1,2,3*}

¹Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. ²Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139, USA. ³Harvard Medical School, Boston, MA 02115, USA. ⁴Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA. ⁵Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA 01605. [#]Present affiliation: Institute for Stem Cell Biology and Regenerative Medicine (inStem), UAS-GKVK post, Bellary Road, Bangalore 560065, India. ^{##}Present affiliation: Merck Research Laboratories, 33 Ave Louis Pasteur Boston, MA 02115, USA. [†]These authors contributed equally to this work. ^{*}Correspondence and requests for materials should be addressed to J.M.K. (email: jmkarp@bwh.harvard.edu) and J.E. (email: jermann@bwh.harvard.edu).

Supplementary Figure 1: TG-18 hydrogel shows dose-response relationship between TA concentration and its encapsulation stability. *In vitro* release kinetics of TA in PBS (pH 7.4) at 37°C comparing hydrogel formulations generated with same amount of TG-18 (10 % w/v), but loaded with different concentrations of TA. **P*<0.05 and ***P*<0.01 on day 30. *P* values were determined by one-way Anova with Tukey's post hoc analysis. Data are means \pm SD for technical repeats (n = 3, experiment performed at least twice).

Supplementary Figure 2: High resolution scanning electron microscopy (HR-SEM) images of TA-loaded TG-18 hydrogels formulated with different TA concentrations. (a) 10 mg/ml; (b) 20 mg/ml; (c) 30 mg/ml and (d) 40 mg/ml.

Supplementary Figure 3: A single pulse of enzyme results in less cumulative release of TA compared to **multiple pulses.** *In vitro* release kinetics of TA from TG-18 hydrogel in PBS without or with a single or multiple pulses of enzymes, including (a) esterase (200 U/ml), (b) MMP-2 ($1.5 \mu g/ml$) and (c) MMP-9 ($1 \mu g/ml$). Fresh enzyme or enzyme + inhibitor were added at the indicated time points (arrows). For single pulse based releases, enzyme was added only on day 0. For (a), **P*<0.05 on day 50 and for (b) and (c), **P*<0.05 on day 30. *P* values were determined by Students' *t* test. Data are means ± SD for technical repeats (n = 3, experiment performed at least twice).

Supplementary Figure 4: TA-loaded TG-18 hydrogel shows dose-response relationship between enzyme concentration and TA release. *In vitro* release kinetics of TA from TG-18 hydrogels in PBS without or with different concentrations of esterase (T. *lanuginosus* lipase) (**P*<0.05). Enzyme was added at the indicated time

point (arrow). *P* values were determined by one-way Anova with Tukey's post hoc analysis. Data are means \pm SD for technical repeats (n = 3, experiment performed at least twice).

Supplementary Figure 5: Representative fluorescence microscopy images from the live/dead assay of control primary human chondrocytes or synoviocytes treated with 70% methanol solution for 30 minutes. Live/dead assay was performed using calcein-AM/ethidium homodimer-1 dye combination. Live cells stain green with the calcein-AM, whereas dead cells stain red with ethidium homodimer-1 (Scale bar: 400 µm).

Supplementary Figure 6: TG-18 hydrogel does not compromise the therapeutic efficacy of TA *in vitro.* (a) TNF-α secretion and (b) IL-10 secretion from LPS stimulated human macrophages incubated in a transwell plate in medium (Medium) or in medium with 100 µl blank hydrogel (Gel), 100 µl TA-loaded hydrogel (Gel + Drug), DMSO (equivalent to 100 µl Gel) or free TA (Drug, equivalent to 100 µl Gel + Drug) added to the upper chamber of the transwell. Following 24 h incubation, supernatant was assayed for TNF- α and IL-10 levels by ELISA, and normalized to the levels obtained for cells incubated with medium only. *P* values were determined by one-way Anova with Tukey's post hoc analysis. Data are means ± SD for technical repeats (n = 3, performed at least twice).

Supplementary Figure 7: Two doses of 75 μ I K/BxN serum resulted in more severe arthritis than two doses of 37.5 μ I serum. (a,b) Total clinical score curves and their AUCs (*****P*<0.0001). (c,d) Change in total paw thickness curves and their AUCs (****P*<0.001 and *****P*<0.0001). (e,f) RHP clinical score curves and their AUCs (****P*<0.0001). *P* values were determined by one-way Anova with Tukey's post hoc analysis. Data are means ± SEM (n = 6 mice/group, experiment performed twice).

Supplementary Figure 8: Local delivery of TA loaded TG-18 hydrogel demonstrates therapeutic efficacy in severe arthritis: effect of dosing regimen. (a) Experimental outline: Arthritis was induced by i.p. injections of 75 µl KBx/N serum on day 0 and day 2. Immediately after the second dose of K/BxN serum, animals were randomized into four groups. (Blank gel \rightarrow Blank gel) group received blank hydrogel (4 µl) on day 2 and 6, (TA gel \rightarrow Blank gel) group received TA-loaded TG-18 hydrogel (20 mg TA/ml, 4 µl) on day 2 and blank hydrogel on day 6, (TA gel \rightarrow TA gel) group received two doses of TA-loaded TG-18 hydrogel - one on day 2 and another on day 6 and (Blank gel \rightarrow TA gel) group received blank hydrogel on day 2 and TA-loaded TG-18 hydrogel on day 6. Treatments were injected into the right hind paw. Every other day, arthritis severity was scored clinically and paw swelling was measured with calipers. (b,c) Total clinical score curves and their AUCs for (Blank gel \rightarrow Blank gel), (TA gel \rightarrow Blank gel) and (TA gel \rightarrow TA gel) (*****P*<0.0001). (d,e) Change in total paw thickness curves and their AUCs for (Blank gel \rightarrow Blank gel), (TA gel \rightarrow Blank gel) and (TA gel \rightarrow TA gel) (****P*<0.001). (**f**,**g**) Total clinical score curves and their AUCs for (Blank gel \rightarrow Blank gel), (TA gel \rightarrow Blank gel) and (Blank gel \rightarrow TA gel) (**P*<0.05). (**h**,**i**) Change in total paw thickness curves and their AUCs for (Blank gel \rightarrow Blank gel), (TA gel \rightarrow Blank gel) and (Blank gel \rightarrow TA gel) (**P*<0.05). (**h**,**i**) Change in total paw thickness curves and their AUCs for (Blank gel \rightarrow Blank gel), (TA gel \rightarrow Blank gel) and (Blank gel \rightarrow TA gel) (**P*<0.05). For (c,e), *P* values were determined by one-way Anova with Tukey's post hoc analysis and for (g,i), *P* values were determined by Student's *t* test. Data are means ± SEM (n = 6 mice per group).