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1. Particle volumetric images
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Figure 1: A simulated 3D volume of size 512x512x192 voxels consisting of 50,000 randomly dis-
tributed spherical beads.
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Figure 2: A synthetic image of a single simulated spherical particle.

2. Nyquist resolution calculation

For a given particle seeding density in the image, ρo, the mean particle distance in the images is,

r2D =

√
1

πρo,2D
,
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r3D = 3

√
3

4πρo,3D
,

for 2D and 3D images respectively[1]. Here, ρo,2D is the particle seeding density in the 2D image
defined as the number of particles per unit image size and ρ0,3D is the particle seeding density in
the 3D image defined as the number of particles per unit 3D image volume.

According to the Nyquist-Shannon sampling theorem, the spatial resolution of the recovered
displacement field is determined by half the sampling frequency. Therefore for a given mean particle
distance, r, a first order estimate for the Nyquist spatial resolution of the recovered displacement
field is 2r.

3. Mean displacement error versus signal-to-noise ratio

In Supplementary Figure 3, we plot the mean displacement error for our T-PT technique against
synthetically generated images across a range of Poisson-distributed noise to account for variable
experimental settings. The mean displacement error is defined as the mean of the difference between
the imposed versus the measured particle displacement vector magnitude. The plot demonstrates
that T-PT has low tracking error even for images with relatively high noise levels.
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Figure 3: The mean displacement error of T-PT calculated from tracking particles using synthetic
images with a range of SNr values.

4. T-PT performance for non-affine motion in shear deformation

In the results section, we show the ability of T-PT to recover non-affine shear deformations. Here,
we showcase tracking performance for the same shear deformation but for a range of different
non-affinity. To define non-affinity in the images, we introduce a non-affinity parameter, ND,
defined as the ratio of maximum non-affine displacement magnitude to the mean particle separation
distance. As in the main text example, the non-affine shear deformation is generated by applying
a homogeneous simple shear deformation of 10% nominal shearing strain along the x− y direction
of a volumetric image of size 512x512x192 voxels. Superimposed on the affine displacement field
is a non-affine displacement field of a truncated zero-mean normal distribution to two standard
deviations in a range of standard deviations along the x, y and z directions. The displacement field
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was prescribed to the 50,000 particles randomly embedded in the synthetically generated images.
T-PT is used to track this non-affine shear deformation from these synthetically generated images.
In Supplementary Figure 4, we plot the recovery and mismatch ratio for T-PT for a range of
non-affinity in the particle motion field, which shows that T-PT can accurately recover very large
non-affine shear deformations.
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Figure 4: Tracking performance of T-PT for an applied simple shear deformation with a varying
levels of non-affine deformations. Plot of recovery and mismatch ratio for a range of the non-affinity
parameter (ND).

5. Random particle motion

The tracking performance of T-PT for random particle motion was evaluated by simulating random
particle motion in 3D images. We synthetically generated a 3D volume of 512x512x192 voxels seeded
with 50,000 identically-sized spherical particles with an SNr of 25. The particles were prescribed
with a random displacement vectors of a truncated zero-mean normal distribution to two standard
deviations in a range of standard deviations along the x, y and z directions. We evaluated the
performance of T-PT and other current SPT techniques as a function of increasing displacement
parameter d for the prescribed displacement field (Supplementary Figure 5). For d < 0.25, T-PT
and TrackMate exhibit very high recovery ratios ηr ∼ 1. As d was increased further, the ηr of
TrackMate remains close to unity out to d ∼ 0.4, while T-PT decreases to ηr ∼ 0.8. In comparison,
Legant et al.’s method maintains a stable ηr ∼ 0.97 until d ∼ 0.3, but with increasing d, recovery
ratio decreases to ηr ∼ 0.5. FVRM starts with a lower ηr ∼ 0.9, which decreases with increasing d
(Supplementary Figure 5).

For d < 0.25, T-PT, TrackMate and Legant et al.’s method all have very low mismatch ratios
ηm ∼ 0. For increasing d, T-PT’s mismatch ratio increases to ηm ∼ 0.02, in comparison the ηm
of TrackMate and Legant et al.’s method increases at a lower rate. FVRM has the highest ηm,
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Figure 5: Performance charactertization of various SPT algorithms in tracking random particle mo-
tion. Plots show recovery ratio, mismatch ratio and execution time versus increasing displacement
parameter. Here, ‘T-PT’ indicates the topology-based particle tracking method introduced here;
‘Legant et al.’ indicates the feature-vector based particle tracking method by Legant et al.[2, 3];
‘FVRM’ indicates the feature-vector based relaxation method[4]; ‘LAP’ indicates Jaqaman et al.’s
LAP-based algorithm [5] implemented in TrackMate [6].

which increases with increasing d. We also compare the execution time of all the SPT algorithms
for increasing d. The execution time of T-PT, TrackMate, and FVRM increase with increasing d,
while FVRM has the slowest execution time and it remains at a nearly constant value for increasing
d. T-PT tracked particles in 122.7 seconds for d ∼ 0.4, which is 27x faster than TrackMate, the
second fastest method. For all d, T-PT is faster by at least an order of magnitude than the second
fastest method.

These results show that TrackMate, followed by T-PT, enables the most accurate tracking
of particles undergoing random motion. However, the fast execution time of T-PT can make it
preferable even for certain purely random motion applications, especially those involving small
random particle motion at very high particle numbers.

6. Time-lapse particle motion with particles randomly disappearing and appearing

We evaluate the performance of T-PT to track particle motion in a time-lapse image series in which
particles randomly disappear and appear between image frames. By employing synthetic images
we mimicked experimental particle tracking conditions in which particles can disappear, due to
moving out of the image frame, detection failure or particle merging, or in which particles can
appear due to moving into the image frame, failure of particle detection in the previous image
frame or particle splitting. In the simulations, identical spherical particles were seeded in a space
large enough such that the final image of 512x512x192 voxels region used as input for the algorithm
was fully seeded with approximately 50,000 particles throughout the application of the motion
field. We generated a time-lapse image series for six time points. The particles were prescribed
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Figure 6: Performance characterization of T-PT in tracking particles across time-lapse image series
were particles randomly disappear and appear between image frames. The plots of recovery and
mismatch ratio from the initial image frame (t = 0) to a current image frame (t = t0) against
progressive image frames for a varying fraction of particles randomly added and removed between
image frames are shown.

the displacement field from Figure 2a, with a displacement parameter d of 1 between each time
frame. Between each time point, about 1250 particles (2.5%) move out of the image frame and a
similar number of new particles enter the image frame due to the underlying particle motion field.
Additionally, we randomly seeded and removed a varying fraction of particles in each frame to
simulate particles appearing and disappearing in experimental multi-time point particle tracking.
The number of particles seeded and removed in each image frame was picked from a Gaussian
distribution having a mean equal to the number of particles intended to be seeded and removed
with a standard deviation of 20% of the mean value.

To track particles across the time-lapse data, T-PT matches particles between two consecutive
image frames. The particle trajectories across multiple frames are later merely computed from
joining the frame-to-frame particle tracking results. In Supplementary Figure 6, we plot the recovery
and mismatch ratios of the particles tracked between the initial image frame (t = 0) to the current
image frame (t = to). The recovery ratio of the algorithm decreases with increasing image frame.
This is expected because T-PT computes particle trajectories from consecutive frame-to-frame
particle matches without employing any gap closing schemes. As a result, the recovery ratio is
compounded over image frames. Moreover, the recovery ratio of the algorithm decreases with an
increase in the fraction of seeded/removed particles. The algorithm maintains a very high ηr ∼ 0.98
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until the 5th image frame for 10% of particles seeded/removed. The recovery ratio at the 5th image
frame drops to ηr ∼ 0.91 for 20% of seeded/removed particles for each image frame. The mismatch
ratio for all the cases is very low, ηm < 1.4 × 10−4. Overall, these results demonstrate that T-PT
can accurately track particles across time-lapse data even when a significant fraction of particles
disappear and appear between image frames. These results could be further improved using gap-
closing schemes.

7. T-PT algorithm Workflow

In this section we describe the workflow of the T-PT algorithm (Supplementary Figure 7). In
particular, we explain each step in the algorithm and the effect of various parameters on the
algorithm performance.

Input Image Pair

Change
subset

size

Particle Detection and Localization

Generate Particle Descriptor

Particle Linking

Particle Link Verification

Iterative Deformation Warping

Convergence

Particle search in predicted region

Particle Link Verification

Output:
Particle centers and tracking results

Figure 7: Flowchart showing the major execution steps of the T-PT algorithm.

1. Input image pair:

T-PT loads a consecutive image pair for every time point in the time-lapse image series. Each
time point image is stored within a cell container ‘vol’ inside a binary .mat file (the standard
file extension to store MATLAB formatted data).
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2. Particle detection and localization:

First, T-PT normalizes the input images such that a voxel has a maximum intensity value
of 1. To detect particles in the images, T-PT converts the input images into binary images
using image thresholding operations. Image thresholding operations are used to segment the
central particle region as bright voxels and background as dark voxels. The default image
thresholding value is 0.5. However, the user should set the image thresholding value such
that adjacent particles are separated by at least one dark voxel.

From the binary images, the algorithm computes simply-connected regions of bright voxels.
To eliminate simply-connected regions corresponding to noise or multiply connected particles,
the user needs to define the minimum and maximum voxel size for the simply-connected region
of the particle based on its size within the image. The default value for the minimum and
the maximum number of voxels is 4 and infinity, respectively. The algorithm computes the
centroid of each filtered simply-connected region to estimate a voxel-level particle center.

The radial symmetry method [7, 8] computes each particle center with sub-voxel accuracy
from the original image subset surrounding each estimated particle center. The user needs to
set the image subset size such that each particle just fits inside the image subset. The default
image subset size is 7x7x7 voxels.

3. Generating the particle descriptor:

As described in the Results section, T-PT computes the particle descriptor for each particle
in the reference and deformed image. By default, the algorithm uses 16 nearest neighboring
particles, n, and two concentric shells, k, to create the particle descriptor. The reported
default values of n and k have been found empirically to work well for a variety of motion
fields and particle seeding densities in 3D images. While changing values of n and k do not
significantly affect the algorithm’s performance, the users can optimize these parameters for
the motion fields within their own images.

For small n, the particle descriptor bins get sparsely filled and thus reduce the uniqueness of
particle descriptor. For large n, each particle descriptor bin gets filled with many particles.
Since the particles are randomly distributed, each bin in the particle descriptor gets a similar
number of particles, and thus reduces the uniqueness of the particle descriptor.

Tests on simulated motion fields showed that k = 1 only allowed for eight bins in the particle
descriptor. The length of this particle descriptor is too short in most cases to create a
unique particle descriptor signature for a large number of particles. For large k, the particle
descriptor bin size reduces to a small volume, which does not allow particles enough room to
move without significantly altering the particle descriptor.

4. Particle linking:

The reference and deformed volumes are divided into cubic volume subsets for particle linking.
The particles from the reference image subset are linked to the corresponding deformed image
subset. To allow particles near the edge of the reference image subset to undergo large
displacement while still being in the same corresponding deformed image subset, the deformed
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image subset size is always set to be twice the size of the reference image subset. However, the
reference and deformed image have the same centers. The initial subset size should be larger
than the maximum particle motion in the images. The default value of the initial subset size
is 256 voxels. In the iterative particle matching process, the size of the image subset remains
the same or decreases by a factor of two, until the convergence criteria are met.

The particles are linked between the reference image subsets and the corresponding deformed
image subsets such that a chosen particle pair has the smallest L2 particle descriptor distance.
Assuming, r and s to be a particle descriptor for a particle in the reference and deformed
images respectively, the L2 particle descriptor distance between r and s is defined as,

L2 =

√√√√ 8k∑
i=1

(ri − si)2. (1)

Here, r and s are expressed as a vector having 8k (number of bins) components. Then, the
algorithm eliminates any particle links which are not bijective to enforce a one-to-one particle
linking condition.

5. Particle link verification:

T-PT uses the similarity of neighborhood test and the universal median filter test as outlier
removal schemes to remove spurious particle links. For the similarity of neighborhood test,
the default values of p = 2 and q = 5 are empirically found to work well for a variety of
motion fields and particle seeding densities in our 3D images. A small p/q ratio relaxes
the outlier removal criterion for the similarity of neighborhood test, which is suited for high
spatial frequency motion as the local relative particle positions change vastly. A high p/q
ratio is appropriate for low spatial frequency motion as the the local relative particle position
does not change significantly.

In the universal median test [9], 27 neighbors are used to compute the residual from the
displacement for each particle link. The residual is normalized by the median residual of
these 27 neighboring particles. Any particle link exceeding the normalized residual value
above a user-defined threshold value is removed. By default, the residual threshold value is 4.
Increasing the threshold value relaxes the outlier removal criteria and is suited for very high
spatial frequency motion fields while a low threshold value is appropriate for a low spatial
frequency motion field.

Overall, relaxing the outlier removal criteria increases the number of particle matches found by
the algorithm, but it can also lead to a higher number of spurious particle matches. Whereas
setting stricter outlier removal criteria will decrease the number of particle matches found by
the algorithm, but it also reduces the number of false particle matches. The user can optimize
the extent of the outlier removal process to level appropriate to their application and motion
field.

6. Iterative deformation warping:
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Iterative deformation warping is used to warp particle positions in reference and deformed
image volumes based on cumulative particle matches. IDM helps in the recovery of large
particle displacements, and improves the similarity of the particle descriptor in the reference
and deformed volumes, which further enhances the accuracy of the particle linking process.
Assume xki and yki to be the particle positions in the reference and deformed images in the
kth iteration of deformation warping. From matched particle pairs, the displacement field
at matched particle positions in the reference image is calculated as umi = ymi − xmi . The
displacement field is linearly interpolated to all particle positions xi and yi as uki for the kth

iteration of deformation warping. The particle positions in the reference and deformed frame
are updated in the kth + 1 iteration step as,

xk+1
i = xki +

uki
2

yk+1
i = yki − uki

2
.

(2)

7. Convergence criteria:

In each iteration step of the iterative particle matching and IDM process, T-PT computes the
total fraction of particles matched between the image pair. After each iteration, the fraction
of particle matches increases. The algorithm meets the convergence criteria when the fraction
of matched particles after each iteration reaches a steady value. Specifically, the convergence
criteria is reached if the current subset size is 16 voxels and if any of the following conditions
are met:

• The algorithm has run through a maximum of 5 iterations for a subset size of 16 voxels.

• The fraction of matched particles has improved from the previous iteration by an amount
smaller than 0.25%.

• The ratio of the fraction of matched particles between the current and previous iterations
is less than 0.1.

If the convergence criteria are not met, the algorithm undergoes another iteration of particle
matching and IDM. In the next iteration of particle matching, the subset size reduces by a
factor of 2 if any of the following conditions are achieved. Otherwise, the subset size for the
next iteration remains the same.

• The algorithm has run through a maximum of 5 iterations for the same current subset
size.

• The fraction of matched particles has improved from the previous iteration by an amount
smaller than 4%.

• The ratio of the fraction of matched particles between the current iteration and the
previous iteration is less than 0.6.
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The minimum subset size is limited to 16 voxels. If the algorithm tries to set the subset size
below 16 voxels, it is reset back to 16 voxels, unless the user specifies a smaller subset size.

8. Particle search in predicted regions:

As a final step to improve the recovery ratio of the algorithm, displacements from the matched
particles are interpolated to predict the position of unmatched particles in the deformed
volume with a default search radius of one-third of the nearest neighbor particle separation
distance to the unmatched particle in the reference image. If the algorithm finds a single
particle in the predicted region in the deformed image, it saves the particle pair as a temporary
particle link.

9. Particle link verification:

The temporary particle links formed in the previous step are subjected to the earlier described
outlier removal scheme comprised of the similarity of neighborhood test and the universal
median test [9]. The links verified by the outlier removal schemes are stored in the list of
successful particle matches between the image pair.

10. Output:

The particle centers from the reference and deformed images and the particle matches are
saved as the output of the algorithm.
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