Supplementary Information

Mesenchymal Stromal Cells-Derived β2-Microglobulin Promotes Epithelial–Mesenchymal Transition of Esophageal Squamous Cell Carcinoma Cells

Junjie Wang ^{1,#} Weilin Yang ^{2,3,4,#}, Tao Wang ^{1,#}, Xiaoyong Chen ¹, Jiancheng Wang ¹, Xiaoran Zhang ¹, Chuang Cai ¹, Beilong Zhong ⁵, Jiabin Wu ², Zhenguang Chen ^{2,3,4,*}, Weijun Huang^{1,*} and Andy Peng Xiang ^{1,6,7,*}

Supplementary Figure S1: Construction of MSCs cell line with B2M knock down Immunofluorescence study revealed the GFP fluorescence expression in MSC^{NTC} and MSC^{shB2M} cells which indirectly reflected the interference efficient of lentivirus system. Results were confirmed by qPCR and western blots analysis after passaging cells. Scales bars, 100µm.

Supplementary Figure S2: Protein level of secreted B2M tested by ELISA kit

Secreted B2M level in supernatant of TE-1/Eca109/MSC cells were tested with a commercial ELISA kit (SEA260Hu, Cloud-Clone Corp). We found that protein level of secreted B2M of MSC was almost five to ten times higher than that of ESCC cell lines (TE-1: 3.75 ± 0.34 ng/ml, Eca109: 7.92 ± 1.04 ng/ml, MSC: 30.41 ± 2.93 ng/ml, data were averaged as mean \pm S.D. per 10^7 cells, n = 3)

Supplementary Figure S3: Representative negative surface markers of MSC^{NTC} and MSC^{shB2M}

The results of the flow cytometry analysis revealed that MSC^{NTC} and the MSC^{shB2M} cells did not express surface markers CD34 and CD45, which was similar to wild-type MSCs.

CD34 (550761, BD Pharmingen), CD45 (560975, BD Pharmingen)

Supplementary Figure S4: Representative image of tumor spheroid

Representative image of spheroid formed by TE-1 cells in a modified serum-free medium. Spheroids which have more than 50µm in diameter are included in the statistics. Scales bars, 200µm.

Supplementary Figure S5: Original western blot scanning document of Figure 1

Marked sections with red lines were presented in the manuscript.

Supplementary Figure S6: Original western blot scanning document of Figure 2

Marked sections with red lines were presented in the manuscript.

14-06-07 N-calleron 120kd Rablet 1:500 80610920 Mouse 1:600 Neomatoria Fibroneth shild Eco. 1.9 \$ W. S. K. N-calhenni TE-11 TB-1 con Fig2d N-cadherin 2014 - ab- 07 B- atin 4216d Protest 60008-1 1:2000 Mouse 用子 TE-1/Earof En Tiを手捨ていからの、あき Ealog TE-1 BOW ALL CON BOW ALL OWNED Fig2d & Fig2e β-actin BD 610920 Rabbit 1:100 for 60min con NTC BOM Gren 6# Fig2e N-cadherin 130/2->

Supplementary Figure S7: JAK2 inhibitor sabotaged the EMT induction of MSC^{NTC}-CM

Western blots analysis in Eca109 cells indicated that IL6/JAK2/STAT3 pathway involved in the EMT process triggered by MSC^{NTC}-CM which could be inhibited by AG490 (T3434, Sigma-Aldrich). Blocking B2M in MSCs partially inhibited the expression of snail but barely affected phosphorylated STAT3.

Original western blot scanning document were attached.

Z·1]-03-17 Ecolog (2015-01-With) Vinnether J466 (27- A665)39 Rollst Adapt Brown NEL Con vimentin × · · / 2015-04-01 p-STAT3 Ecolog \$STAT3 (Tyo Tot) (ST#9131 Rowart 79/86Kd 1:500 RI. the taic O.N AGAR? BROM WITH COM p-STAT3 Mago Ban NTC Con snail AGA90 BEAN NTE Con **β**-actin

Forward	Oligo Sequence
/Reverse	
Forward	TGCCGTGTGAACCATGTGACTTTCTTCCTGTCAAAA
Oligo	GTCACATGGTTCACACGGTTTTTTC
Reverse	TCGAGAAAAAACCGTGTGAACCATGTGACTTTTGAC
Oligo	AGGAAGAAAGTCACATGGTTCACACGGCA
Forward	TGAGGTTTGAAGATGCCGCATTTCTTCCTGTCAAAAT
Oligo	GCGGCATCTTCAAACCTTTTTTTC
Reverse	TCGAGAAAAAAGGTTTGAAGATGCCGCATTTTGAC
Oligo	AGGAAGAAATGCGGCATCTTCAAACCTCA
	Forward /Reverse Forward Oligo Reverse Oligo Reverse Oligo

Supplementary Table S1. Sequences of oligos used for cloning shRNAs

Target Gene	Forward primer	Reverse primer	
GAPDH	5'-GAAGGTGAAGGTCGGA	5'-GAAGATGGTGATGGGAT	
	GTC-3'	TTC-3'	
T as the site	5'-CCCACCACGTACAAGGG	5'-CTGGGGTATTGGGGGCA	
E-cadherin	TC-3'	TC -3'	
N-cadherin	5'-GCGCTGGCACCGTTTTT	5'-CCTGAGCACGAAGAGT	
	AC-3'	GTAGA-3'	
Vimentin	5'-ACGTCAGCAATATGAAA	5'-ACCTGTCTCCGGTACTC	
	GTGTG-3'	A-3'	
B2M	5'-TGTGCTCGCGCTACTCT-	5'-GTCAACTTCAATGTCGG	
	3'	ATG-3'	

Supplementary Table S2. List of the qRT-PCR primers used in this study

Supplementary	Table	S3 .	The	detail	information	of 30	cases	esophageal	cancer
patients after rese	ection.								

Patient	Gender	Age	Differentiation	Tumor		PFS
No.	F/M		grade	Stage	B2M IHC result	(month)
824806	F	60	Moderate	IIIB	(-)	8
828887	F	49	Moderate	IIA	(-)	14
848967	F	63	Moderate	IIIA	(-)	9
837978	F	60	Moderate	IIB	(-)	8
857081	F	53	Moderate	IIA	(-)	9
812597	F	69	Moderate	IIIA	(-)	4
824444	F	46	Moderate	IIIB	(-)	6
861532	F	51	Moderate	IIA	(-)	7
827923	F	58	High	IV	(-)	4
834531	F	57	Moderate	IIA	(-)	12
828914	F	63	High	IIIA	(-)	4
831680	F	55	Moderate	IIIA	(-)	5
838666	F	48	Moderate	IIA	(-)	10
837682	F	59	High	IIA	(-)	12
829769	F	72	Moderate	IIA	(-)	12
833668	F	59	Moderate	IIA	(-)	6

819458	F	62	High	IIA	(-)	10
828752	F	41	Moderate	IIA	(-)	10
816156	М	75	High	IIA	(+)	8
852226	F	59	Moderate	IIA	(+)	4
858149	F	60	Moderate	IIA	(+)	6
811757	F	69	Moderate	IIA	(+)	6
818960	М	57	High	IIA	(+)	2
817356	F	64	High	IIA	(+)	12
816106	М	79	Moderate	IV	(+)	6
846722	М	73	Moderate	IIA	(+)	4
827438	М	66	Moderate	IIIA	(+)	6
818887	М	62	Moderate	IIA	(+)	10
845577	F	64	Moderate	IIB	(+)	3
860896	М	54	Moderate	IIIA	(+)	2