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ABSTRACT The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the visualization of the
G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two fluorescent probes, so that cells in the G1 phase
fluoresce red and cells in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell cycle dynamics
of individual cells, and can be used to explore how the cell cycle relates to the location of individual cells, local cell density,
and different cellular microenvironments. In particular, FUCCI is used in experimental studies examining cell migration, such
as malignant invasion and wound healing. Here we present, to our knowledge, new mathematical models that can describe
cell migration and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell cycle phases,
G1 and S/G2/M, which FUCCI directly labels. The extendedmodel includes a third phase, early S, which FUCCI indirectly labels.
We present experimental data from scratch assays using FUCCI-transduced melanoma cells, and show that the predictions of
spatial and temporal patterns of cell density in the experiments can be described by the fundamental model. We obtain numerical
solutions of both the fundamental and extended models, which can take the form of traveling waves. These solutions are
mathematically interesting because they are a combination of moving wavefronts and moving pulses. We derive and confirm
a simple analytical expression for the minimum wave speed, as well as exploring how the wave speed depends on the spatial
decay rate of the initial condition.
INTRODUCTION
The cell cycle consists of a sequence of four distinct phases,
namely: gap 1 (G1), synthesis (S), gap 2 (G2), and the
mitotic (M) phase (1). The phases G1, S, and G2 are collec-
tively referred to as ‘‘interphase’’, and involve cell growth
and preparation for division. After interphase, the cell enters
the mitotic phase and divides into two daughter cells.
Although morphological changes associated with cell
division can be observed visually during the transition
from M to G1, such distinct morphological changes are
not possible during transitions between other cell cycle
phases (2). Therefore, different techniques are required to
study these other cell cycle transitions.

Since 2008, fluorescent ubiquitination-based cell cycle in-
dicator (FUCCI) technology (2) has enabled the visualization
of the cell cycle progression from G1 to S/G2/M in individ-
ual cells. The FUCCI system consists of two fluorescent
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probes in the cell nucleus, or cytoplasm, which emit red
fluorescence when the cell is in the G1 phase, or green
fluorescence when the cell is in the S/G2/M phase. Before
the development of FUCCI it was difficult, if not impossible,
to examine the cell cycle dynamics of individual cells
beyond the M to G1 transition (2). In contrast, FUCCI
allows direct visualization, in real time, of transitions in
the cell cycle. This technology is particularly useful for
research in cancer biology (3–6), cell biology (7,8). and
stem cell biology (9,10).

3D spheroids and 2D scratch assays are commonly used
experimental models to study the invasive and proliferative
behavior of cancer cells. In combination with FUCCI, these
experimental models can be used to examine the cell cycle
dynamics of individual cells as a function of position within
the spheroid or scratch assay (3,5,6). A major advantage of
this method is that two fundamental phenomena associated
with malignant invasion, namely cell proliferation and cell
migration, can be characterized simultaneously. Previous
methods to examine the roles of cell migration and cell
proliferation involve pretreating cells with antimitotic
drugs, such as mitomycin-C (11). A major limitation of
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these previous methods is that the application of the
antimitotic drug is thought to suppress proliferation without
interrupting migration. However, this assumption is ques-
tionable, and rarely examined (12). The development of
FUCCI technology obviates the need for such crude
methods to isolate the roles of cell migration and cell prolif-
eration. Instead, FUCCI allows us to directly examine the
spatial and temporal patterns of cell proliferation within a
migrating population. To the best of our knowledge, there
are no mathematical models in the literature that have
been developed to describe cell migration with FUCCI
technology. The focus of this work is on cell migration,
by which we mean a moving front of a population of cells.
These moving fronts are composed of a large number of
individual cells that do not maintain cell-to-cell contacts.
The formation of the moving front of cells is driven by a
combination of cell motility and cell proliferation.

Cell migration involves diffusion, arising from random
cell motility, and proliferation of cells (12). Mathematical
models describing these processes in a population of cells
tend to involve reaction-diffusion equations (13), which
are often based on the Fisher-Kolmogorov-Petrovskii-
Piskunov (FKPP) equation (14,15),

vs

vt
¼ D

v2s

vx2
þ lsð1� sÞ; (1)

where s(x,t) > 0 is the cell density, D > 0 is the diffusion
coefficient, and l > 0 is the proliferation rate. Here, the
dimensional cell density is scaled by the dimensional car-
rying capacity density, so that the maximum nondimen-
sional cell density is s(x,t) ¼ 1. Carrying capacity limited
proliferation of cells is described in Eq. 1 with a logistic
source term. Equation 1 has been successfully adapted to
model many biological processes, such as in vitro cell
migration (16–18). A limitation of Eq. 1 is that it considers
a single population of cells. For a more realistic situation,
where the total population is composed of a number of
distinct, interacting subpopulations, it is relevant to consider
a model that involves a system of coupled equations that are
often related to Eq. 1 (19).

The existence of traveling wave solutions for the FKPP
equation is well known (15,20). Constant shape, monotoni-
cally decreasing, wavefront traveling wave solutions propa-
gate with a minimum speed, cmin¼2

ffiffiffiffiffiffi
lD

p
(15,20). Traveling

wave solutions are of interest, because experimental obser-
vations tend to exhibit moving fronts that can be thought of
as a traveling wave (16). The speed of a moving cell front
is often the simplest quantitative measurement that can be
obtained from an experiment (16,21). Therefore, under-
standing the relationship between the parameters in the
mathematical model and the speed of the traveling wave so-
lution is a useful way to help parameterize the mathematical
model to match experimental observations. Traveling wave
solutions have also been observed in other mathematical
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models of cell migration (16,19,21,22), as well as other
reaction-diffusion models related to biological processes
(23–26). Most traveling wave solutions take the form
of moving wavefronts, which have a monotone profile.
Another type of traveling wave solution is a pulse, which
is characterized by a nonmonotone profile (23,27).

Here we present, to our knowledge, a new mathematical
model of cell migration, which incorporates cell cycle
dynamics based on the information provided by FUCCI
technology in relation to the cell cycle phase. We consider
the cells in a particular phase of the cell cycle to make up
a distinct subpopulation, so our model consists of a system
of coupled partial differential equations. To motivate our
generalization of Eq. 1, we pay careful attention to the
underlying biological features. This leads us to develop
two different mathematical descriptions of cell migration
with FUCCI technology.
Fundamental FUCCI model

In the most fundamental format, FUCCI highlights a sub-
population of cells in the G1 phase as being red, and another
subpopulation of cells in the S/G2/M phase as being green.
Motivated by the ability to distinguish between these two
phases of the cell cycle, we develop a mathematical model
with two subpopulations: vr(x,t) and vg(x,t). Here, the
vr(x,t) subpopulation corresponds to the red cells and the
vg(x,t) subpopulation corresponds to the green cells. We
refer to this model as the fundamental model.
Extended FUCCI model

In some experimental descriptions, cell biologists identify
an additional subpopulation that corresponds to the situation
where both of the red and green probes are active simulta-
neously, giving rise to a third subpopulation that appears
to be yellow. This overlap of the red and green fluorescence
occurs during the early S, or eS, phase. Using experimental
images, we find that the yellow subpopulation is more
difficult to reliably identify than either the red or green sub-
populations, as only a very small proportion of the cell pop-
ulation appear to be distinctly yellow. This is, in some sense,
expected, because the yellow subpopulation results from the
transient overlap of the G1 phase (red) and the S/G2/M
phase (green). Despite this difficulty, we also develop
another mathematical model which is capable of represent-
ing the three subpopulations: ur(x,t) is the red subpopula-
tion, uy(x,t) is the yellow subpopulation, and ug(x,t) is the
green subpopulation. We refer to this model as the extended
model.

The fundamental and extended models are both related
to the FKPP model with the dependent variable s(x,t). To
summarize the similarities and differences between the
fundamental and extended models, the FKPP model, and
the relationship between these mathematical models and
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the underlying biology, we report the dependent variables
and their biological interpretation in Table 1.

In this work, we present information relating to both the
fundamental and the extended models, but we focus on
developing, to our knowledge, a new mathematical analysis
of the fundamental FUCCI model. Furthermore, we quanti-
tatively apply the fundamental model, to our knowledge, to
new experimental data. There are two types of parameters in
our model, namely transition rates between phases of the
cell cycle, and diffusion coefficients describing the rate of
cell migration. The transition rates between phases of the
cell cycle are estimated using experimental data from Haass
et al. (3), who report data relating to the time spent in each
phase of the cell cycle. Using new experimental data in the
form of images of scratch assays of FUCCI-transduced
melanoma cells, we extract quantitative information about
cell density as a function of position and time, and compare
these quantitative data with the predictions of our funda-
mental model. Because this is, to our knowledge, the first
time that a mathematical model has been used to predict a
cell migration experiment with FUCCI-transduced cells,
we focus on 2D cell migration experiments as this is the
most common experimental platform because of conve-
nience, simplicity, and low cost (28). 2D cell migration
assays are valuable because they are often used as
high-throughput screening tools in conjunction with more
sophisticated preclinical models (28). In addition to
showing how these mathematical models can be used to
predict the 2D experiments, numerical solutions of the
mathematical model show the formation of traveling wave
solutions that are a combination of coupled wavefronts
and pulses. We also derive an analytical expression for the
minimum wave speed of the traveling waves, and we
explore how these results are different from those of the
standard FKPP equation, given in Eq. 1.

This article is organized as follows. In the Materials and
Methods, we detail the experimental protocol used to
perform the scratch assays using FUCCI-transduced mela-
noma cells. We also outline the numerical analysis of our
mathematical models. In the Results and Discussion, we
present and discuss our mathematical models, and compare
numerical solutions of the fundamental model with new data
from scratch assays of melanoma cells. We then analyze our
TABLE 1 Summary and Comparison of the Fundamental and Exte

Model

Equation

Reference

Dependent

Variables

FKPP Eq. 1 s(x,t)

Fundamental FUCCI Eqs. 2 and 3 vr(x,t) cell den

vg(x,t) cell density

s(x,t) total cell d

Extended FUCCI Eqs. 4, 5, and 6 ur(x,t) cell den

uy(x,t) cell densi

ug(x,t) cell density

s(x,t) total cell densi
models numerically for traveling wave solutions, and for the
fundamental model we derive an analytical expression for
the minimum wave speed.
MATERIALS AND METHODS

Experiments

Cell culture. The human melanoma cell lines C8161 (kindly provided by

Mary Hendrix, Chicago, IL), 1205Lu and WM983C (both kindly provided

by Meenhard Herlyn, Philadelphia, PA) were genotypically characterized

(29–32), grown as described (33) (using 4% fetal bovine serum instead of

2%), and authenticated by STR fingerprinting (QIMR Berghofer Medical

Research Institute, Herston, Australia).

Fluorescent ubiquination-based cell cycle indicator. To generate stable

melanoma cell lines expressing the FUCCI constructs, mKO2-hCdt1

(30–120) and mAG-hGem (1–110) (2) were subcloned into a replication-

defective, self-inactivating lentiviral expression vector system as previously

described (33). The lentivirus was produced by cotransfection of human

embryonic kidney 293T cells. High-titer viral solutions for mKO2-hCdt1

(30:120) and mAG-hGem (1:110) were prepared and used for cotransduc-

tion into the melanoma cell lines, and subclones were generated by single

cell sorting (3,5,34).

Wound healing migration assay. Experiments were performed using the

three melanoma cell lines C8161, 1205Lu, and WM983C. For each cell

line, three independent experiments were performed. FUCCI-transduced

melanoma cells from each cell line were seeded in a six-well plate to

subconfluence. The seeding density was adjusted according to the doubling

time for the cell line. The monolayer was scraped with a p200 pipette tip,

and images were taken at regular time intervals.
Mathematical model

Numerical solutions of Eqs. 2, 3, 4, 5, and 6 are obtained on a domain, 0%
x % L, with grid spacing Dx, and with uniform time steps of duration Dt.

The details are in the Supporting Material.

In this study, the initial condition takes one of three forms, depending on

the purpose of the modeling exercise:

Modeling a scratch assay. The first set of modeling results involves using

the fundamental mathematical model to mimic a set of experimental data

from a scratch assay. For this purpose, we take images from the experiment,

manually count numbers of cells in each phase of the cell cycle, and use

these numbers to specify vr(x,0) and vg(x,0). To simulate the experiment,

we solve the governing equation numerically on a finite domain, 0 % x

% L, where L is chosen to match the physical dimension of the experi-

mental image.

Exploring the minimum wave speed of traveling wave solutions. The sec-

ond set of modeling results involves studying long-time numerical solutions

of the mathematical model to examine the possibility of traveling wave so-

lutions. To ensure that we focus on the most biologically relevant traveling-
nded Models and the FKPP Model

Biological Interpretation

total cell density is a function of position x and time t

sity for cells in G1 (red) phase is a function of position x and time t

for cells in S/G2/M (green) phase is a function of position x and time t

ensity, s(x,t) ¼ vr(x,t) þ vg(x,t), is a function of position x and time t

sity for cells in G1 (red) phase is a function of position x and time t

ty for cells in eS (yellow) phase is a function of position x and time t

for cells in S/G2/M (green) phase is a function of position x and time t

ty, s(x,t) ¼ ur(x,t) þ uy(x,t) þ ug(x,t), is a function of position x and time t
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wave solutions, we apply initial conditions with compact support. Further

details are provided in the Results and Discussion.

Dispersion relation. Having demonstrated the existence of traveling

wave solutions, we then analyze how the long-time traveling wave speed

depends on the decay rate of the initial condition for the fundamental

model. Further details are provided in the Results and Discussion.
RESULTS AND DISCUSSION

Experimental data

Our experimental data come from 2D scratch assays
performed with FUCCI-transduced melanoma cells. In
particular, we use the C8161, 1205Lu and WM983C mela-
noma cell lines (3). Here we provide analysis for the C8161
and 1205Lu cell lines, which have very different cell cycle
dynamics. We use these two cell lines to demonstrate that
our model can predict the cell density for cell lines with a
wide range of transition rates. The analysis for the
WM983C cell line is in Fig. S1. The WM983C cell line
has cell cycle dynamics intermediate between the C8161
and 1205Lu cell lines.

In these experiments, melanoma cells migrate into a gap
created by scratching the cell monolayer, and cell prolifer-
ation acts to increase the density of the monolayer. Still
images of the scratch assays are obtained at four time
points after the scratch is made: 0, 6, 12, and 18 h for
the C8161 cell line, see Fig. 1, A–D; 0, 16, 32, and 48 h
for the 1205Lu cell line, see Fig. 2, A–D; and 0, 16, 32,
and 48 h for the WM983C cell line, see Fig. S1, A–D.
From these images, the nuclei of individual cells can be
observed as red (G1 phase), yellow (eS phase) or green
(S/G2/M phase). Over the time period of the experiments,
the cells migrate into the gap, and cell proliferation is
evident from the increasing density of cells behind the
moving front. A notable feature of each of the images is
that very few cells appear to be distinctly yellow. Almost
all of the yellow cells appear to be either partly green
and yellow, or partly red and yellow. This ambiguity moti-
vates us to work with the fundamental mathematical
model, which treats the yellow eS phase as part of the
red G1 and green S/G2/M phases.

Although the images in Figs. 1, A–D, 2, A–D, and
S1, A–D, provide some quantitative data about these partic-
ular scratch assays for these particular cell lines, the pur-
pose of using a mathematical model is to provide
significant generalizations beyond what is possible when
working purely with experiments. For example, if we use
this kind of data to parameterize a mathematical model,
then we ought to be able to use the parameterized mathe-
matical model to make predictions about varying different
aspects of the experiment, such as changing the width of
the scratch, the timescale of the experiment, or the initial
density of the monolayer. To parameterize our mathemat-
ical model we require cell density data from the experi-
ment. Although cells are free to move in two dimensions,
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the geometry of the experiment is such that the cell density
is spatially uniform in the vertical, y, direction. We there-
fore quantify the cell density as a function of horizontal po-
sition, x, at various times, t (35). Overall, this geometrical
simplification allows us to describe the cell density data as
a function of one spatial coordinate only, and we can there-
fore use a 1D mathematical model to describe this kind of
data (35).

To obtain cell density data from the images in Figs. 1,
A–D, 2, A–D, and S1, A–D, we divide each image into a
series of vertical columns, each of width 50 mm. We manu-
ally count the number of cells of each color in each col-
umn. As previously discussed, there is some degree of
ambiguity in classifying a cell as yellow, as almost all of
the yellow cells appear to be a mixture of either red and
yellow, or a mixture of green and yellow. This ambiguity
is probably due to the fact that yellow arises from the tran-
sient overlap of red and green fluorescence. Consequently,
we take the most straightforward approach and classify all
of the cells as being either red or green. In this way we can
work with just two subpopulations. Given the cell counts,
we divide each cell count in each column by the area of
that column to give the dimensional, column-averaged,
cell density. These estimates of dimensional cell density
are then converted into estimates of nondimensional cell
density by dividing through by the carrying capacity den-
sity, K. These data are provided in the Supporting Material.
To estimate K (36), we assume that the cells are uniformly
sized disks, and that the maximum monolayer density cor-
responds to hexagonal packing of cells. Hexagonal close
packing corresponds to one cell at each vertex of the hexa-
gon, and one cell at the center of the hexagon, meaning that
the hexagon contains the equivalent of three cells. The area
of the hexagon is 3

ffiffiffi
3

p
R2=2, where R is the circumradius. If

the radius of the cells is a then, because R ¼ 2a, the car-
rying capacity is given by K ¼1=ð2

ffiffiffi
3

p
a2Þ. The cell diam-

eter of C8161 melanoma cells is �17 mm (37). So, with
a ¼ 8.5 mm, we have K ¼ 0.004 cells mm�2, to one signif-
icant figure. We use the same value of K for the 1205Lu
and WM983C melanoma cells, as cells from the three
cell lines are similar in size.

Fig. 1, I–L shows the resulting experimental cell density
profiles for C8161 cells at 0, 6, 12 and 18 h, respectively.
Fig. 2, G–J shows the resulting experimental cell density
profiles for 1205Lu cells at 0, 16, 32 and 48 h, respectively.
Similar profiles for the WM983C cells are in Fig. S1, G–J.
These figures provide quantitative information about how
the population of cells migrates into the gap, while simulta-
neously proliferating to increase the density of the spreading
monolayer, as we observed qualitatively in Figs. 1, A–D,
2, A–D, and S1, A–D. These cell density profiles, however,
quantify the cell density of each subpopulation, and allow
the changes in cell density over time to be determined quan-
titatively, which is not possible through visual interpretation
of the images.



FIGURE 1 Comparison of experimental data and the fundamental model for a scratch assay of FUCCI-transduced C8161 melanoma cells. (A–D) Still

images of a scratch assay with FUCCI-transduced C8161 melanoma cells at time 0 h, 6 h, 12 h and 18 h, respectively. Scale bar, 150 mm. (E) Schematic

of the fundamental model with two subpopulations indicating the transitions between the cell cycle phases indicated by FUCCI. (F) Schematic of the

extended model with three subpopulations indicating the transitions between the cell cycle phases indicated by FUCCI. (G) Estimated transition rates

from one cell cycle phase to the next for the fundamental model with two subpopulations, based on data from the C8161 cell line from Figure 1C in (3).

(H) Estimated transition rates from one cell cycle phase to the next for the extended model with three subpopulations, based on data from the C8161

cell line from Figure 1C in (3). (I–L) Experimental non-dimensional cell density data at 0 h, 6 h, 12 h and 18 h, respectively (based on images in

(A)–(D)). The cell density is treated as a function of x and t only, owing to the fact that the initial density does not depend on the vertical coordinate, y.

(M–P) Numerical solutions of the fundamental model (Eqs. 2 and 3), at 0 h, 6 h, 12 h and 18 h. The numerical solutions are obtained with Dx ¼ 0.1 mm,

Dt ¼ 0.1 h, L ¼ 1542 mm, diffusion coefficients Dr ¼ Dg ¼ 400 mm2 h�1, transition rates kr ¼ 0.084 h�1 and kg ¼ 0.079 h�1, and initial conditions are the

same as for the experimental data. To see this figure in color, go online.

Mathematical Models for Cell Migration
Movies of scratch assays associated with the three cell
lines considered in this work are provided in the Supporting
Material.
Model development

We now describe the FUCCI scratch assays using the
fundamental model. As previously explained, cells in the
experiment move in two dimensions. However, the geom-
etry of the experiment means that the cell density is
spatially uniform in the vertical, y, direction. Therefore,
we can model the experiment with a 1D model, where
the independent variables are time, t, and the horizontal
coordinate, x (35).

As summarized in the Introduction, in the FUCCI system,
red and green fluorescent proteins are fused to different reg-
ulators of the cell cycle so that a cell in G1 phase fluoresces
red, and a cell in S/G2/M phase fluoresces green. During the
Biophysical Journal 114, 1241–1253, March 13, 2018 1245



FIGURE 2 Comparison of experimental data and the fundamental model for a scratch assay of FUCCI-transduced 1205Lu melanoma cells. Comparison of

experimental data and the fundamental model for a scratch assay of FUCCI-transduced 1205Lu melanoma cells. (A–D) Still images of a scratch assay with

FUCCI-transduced 1205Lu melanoma cells at time 0 h, 16 h, 32 h and 48 h, respectively. Scale bar, 200 mm. (E) Estimated transition rates from one cell cycle

phase to the next for the fundamental model with two subpopulations, based on data from the 1205Lu cell line from Figure 1C in (3). (F) Estimated transition

rates from one cell cycle phase to the next for the extended model with three subpopulations, based on data from the 1205Lu cell line from Figure 1C in (3).

(G–J) Experimental non-dimensional cell density data at 0 h, 16 h, 32 h and 48 h, respectively (based on images in (A)–(D)). The cell density is treated as a

function of x and t only, owing to the fact that the initial density does not depend on the vertical coordinate, y. (K–N) Numerical solutions of the fundamental

model (Eqs. 2 and 3), at 0 h, 16 h, 32 h and 48 h. The numerical solutions are obtained with Dx ¼ 0.1 mm, Dt ¼ 0.1 h, L ¼ 1254 mm, diffusion coefficients

Dr ¼Dg ¼ 400 mm2 h�1, transition rates kr ¼ 0.035 h�1 and kg ¼ 0.058 h�1, and initial conditions the same as for the experimental data. To see this figure in

color, go online.

Vittadello et al.
cell cycle transition from G1 phase to S phase, referred to as
eS phase, the red FUCCI signal decreases and the green
FUCCI signal increases, producing varying shades of
yellow fluorescence, ranging from darker yellow to lighter
yellow. The indication of the eS (yellow) phase is therefore
secondary, as it arises from the overlap of red and green
fluorescence. In the experimental images, it is difficult to
identify the cells in eS phase as very few cells appear
distinctly yellow, rather appearing shades of either red or
green. For these reasons, our fundamental mathematical
model is

vvr
vt

¼ Dr

v2vr
vx2

� krvr þ 2kgvgð1� sÞ; (2)
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vv v2v
g

vt
¼ Dg

g

vx2
� kgvgð1� sÞ þ krvr; (3)

where vr(x,t) and vg(x,t) are the nondimensional cell densities
of the coupled subpopulations corresponding to the G1 (red)
and S/G2/M (green) phases of the cell cycle, respectively.
The total density is s(x,t) ¼ vr(x,t) þ vg(x,t). The rate at
which cells in the G1 phase transition to the S/G2/M phase
is kr, and the rate at which cells in the S/G2/M phase transi-
tion to the G1 phase is kg. The diffusion coefficients are Dr

for cells in phase G1, and Dg for cells in phase S/G2/M.
Although we are free to choose any realistic values for the
diffusion coefficients, it is pertinent to set Dr ¼ Dg, because
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we are considering subpopulations of cells of the same type
which differ only with respect to their cell cycle phase.
Indeed, cells from various melanoma cell lines, including
C8161, 1205Lu, and WM983C, appear to migrate indepen-
dently of the cell cycle phases. For example, see the data
in Figs. 6 and S3 in (3). We will employ this biologically
motivated simplifying assumption at various points in our
analysis. Note that in 2, the factor of two in the positive
source term corresponds to a cell in phase S/G2/M undergo-
ing division to produce two daughter cells in the phase G1,
thereby doubling the local density.

Despite the challenges associated with the observation of
the yellow eS phase, we also consider a mathematical model
for three coupled subpopulations corresponding to G1, eS,
and S/G2/M. We refer to this model as our extended model:

vur
vt

¼ Dr

v2ur
vx2

� krur þ 2kgugð1� sÞ; (4)

vuy v2uy

vt

¼ Dy
vx2

� kyuy þ krur; (5)

vu v2u
g

vt
¼ Dg

g

vx2
� kgugð1� sÞ þ kyuy: (6)

Here, ur(x,t), uy(x,t), and ug(x,t) are the nondimensional
cell densities of the coupled subpopulations corresponding
to the G1 (red), eS (yellow), and S/G2/M (green) phases
of the cell cycle, respectively, with total cell density
s(x,t) ¼ ur(x,t) þ uy(x,t) þ ug(x,t). The G1 to eS transition
rate is kr, the eS to S/G2/M transition rate is ky, and the
S/G2/M to G1 transition rate is kg. The diffusion coefficients
are Dr for cells in phase G1, Dy for cells in phase eS, and Dg

for cells in phase S/G2/M. Once again, we have no restric-
tion on the choice of the values for the diffusion coefficients.
The subpopulations consist of cells of the same type, they
are only in different phases of the cell cycle. So, as dis-
cussed above for the fundamental model, the most obvious
choice is to set Dr ¼ Dy ¼ Dg. As in Eq. 2, the factor of 2 in
Eq. 4 corresponds to a cell in phase S/G2/M undergoing
division to produce two daughter cells in the phase G1.
Model application

We illustrate our mathematical model in Figs. 1, 2, and S1,
where we compare experimental data for scratch assays of
FUCCI-transduced melanoma cells with the fundamental
model Eqs. 2 and 3. Fig. 1 corresponds to the C8161 mela-
noma cell line, Fig. 2 to the 1205Lu melanoma cell line, and
Fig. S1 to the WM983C melanoma cell line.

Fig. 1 E describes, schematically, the fundamental model
with two subpopulations, indicating the transitions between
the cell cycle phases indicated by FUCCI. We denote the
transitions between the cell cycle phases as
T r : G1���!kr S=G2=M and T g : S=G2=M���!kg G1; (7)

where kr is the G1 to S/G2/M transition rate, and kg is the
S/G2/M to G1 transition rate. Fig. 1 F is a similar sche-
matic for the extended model with three subpopulations,
where we denote the transitions between the cell cycle
phases as

Tr : G1!
kr

eS; Ty : eS!
ky

S=G2=M; and

Tg : S=G2=M!
kg

G1;
(8)

where kr, ky, and kg are the G1 to eS, eS to S/G2/M, and
S/G2/M to G1 transition rates, respectively.

The estimated transition rates from one cell cycle phase to
the next phase are based on FUCCI data for the C8161,
1205Lu, and WM983C melanoma cell lines from Fig. 1 C
in (3). These data report the duration of time spent in each
cell cycle phase for at least 20 individual cells. To estimate
the transition rate from one cell cycle phase to the next, we
first calculate the arithmetic mean of the data in (3), giving
the mean times: tr for the G1 phase, ty for the eS phase, and
tg for the S/G2/M phase. We then estimate the transition
rates for the extended model as kr ¼ (ln 2)/tr for the G1 to
eS transition, ky ¼ (ln 2)/ty for the eS to S/G2/M transition,
and kg¼ (ln 2)/tg for the S/G2/M to G1 transition. The factor
of ln 2 arises because this data corresponds to cells in a low
density environment, and so the cells are likely to be prolif-
erating exponentially. To obtain estimates of the transition
rates for the fundamental model, we assume that half of
the time spent in the eS phase contributes to the time spent
in the G1 phase, and the other half of the time spent in the
eS phase contributes to the time spent in the S/G2/M phase.
This means that we have kr ¼ (ln 2)/(tr þ ty/2) for the G1 to
S/G2/M transition, and kg¼ (ln 2)/(tgþ ty/2) for the S/G2/M
to G1 transition. The estimated transition rates for the
fundamental and extended models are shown in Fig. 1, G
and H, respectively, for the C8161 cell line, in Fig. 2, E
and F, respectively, for the 1205Lu cell line, and in
Fig. S1, E and F, respectively, for the WM983C cell line.
We can express the transition rates for the fundamental
model in terms of those for the extended model as
kr ¼ 2krky/(kr þ 2ky) and kg ¼ 2kgky/(kg þ 2ky).

Previous studies examining the migration of various
melanoma cell lines suggest that the diffusion coefficients
lie within the range 100–500 mm2 h�1 (38,39). Therefore,
we will take an intermediate value and assume that the diffu-
sivity of our melanoma cell lines is �400 mm2 h�1.

For comparison with the experimental data for C8161
cells in Fig. 1, I–L, we show the numerical solutions of
the fundamental model, Eqs. 2 and 3, in Fig. 1, M–P. Over-
all, the numerical solutions of Eqs. 2 and 3 in Fig. 1, M–P
compare well with the corresponding experimental data in
Biophysical Journal 114, 1241–1253, March 13, 2018 1247



Vittadello et al.
Fig. 1, I–L. As time increases, the solution of the mathemat-
ical model shows the cell density profile spreading into the
gap, and the cell density of each subpopulation increases
throughout the domain due to proliferation. The relative
size of each subpopulation also compares well between
the numerical solutions and experimental data. Similarly,
for comparison with the experimental data for 1205Lu cells
in Fig. 2, G–J, we show the numerical solutions of the
fundamental model, Eqs. 2 and 3, in Fig. 2, K–N. Once
again, the numerical solutions of Eqs. 2 and 3 in Fig. 2,
K–N compare well with the corresponding experimental
data in Fig. 2, G–J. A similar comparison for the
WM983C cell line is in Fig. S1.

We note that other studies use partial differential equa-
tions to model scratch assays (16,19,35). None of these
previous models, however, include the cell cycle phases
of cells. Our results show potential for our model to suc-
cessfully describe cell migration and proliferation along
with cell cycle dynamics. With our model we can easily
simulate experiments which would otherwise be expensive
and time consuming. In particular, we can simulate exper-
iments over longer periods of time, with different scratch
widths, and with different parameters to accommodate
different cell lines. Our model also provides quantitative
data such as cell densities at any time and position within
the domain.
Analysis

Numerical solutions

A key feature that can be observed in scratch assays initial-
ized with a sufficiently wide scratch is the formation of a
moving front of cells (16). This is important, because
similar observations are relevant to malignant invasion and
wound healing (16). The need to understand the key factors
that drive moving fronts of cells, motivates an analysis of
our models for scenarios in which a single front propagates
along a wide domain.

We now simulate solutions of our models on a much
wider domain using a different initial condition to examine
the existence of traveling wave solutions. There are many
1248 Biophysical Journal 114, 1241–1253, March 13, 2018
choices of initial condition; however, for the fundamental
model, we set

vrðx; 0Þ ¼ vgðx; 0Þ ¼
�
0:5; 0%x < x;
0; x%x%L;

(9)

and for the extended model we set

urðx; 0Þ ¼
�
0:4; 0%x < x;
0; x%x%L;

uyðx; 0Þ ¼ ugðx; 0Þ

¼
�
0:3; 0%x < x;
0; x%x%L;

(10)

where the choice of the constant x is not critical. Because we
use a numerical approach to explore traveling wave solu-
tions, we set L to be sufficiently large so that the moving
front does not interact with the boundary at x ¼ L.

For this purpose, we obtain numerical solutions of the
fundamental model, Eqs. 2 and 3, with typical solutions
presented in Fig. 3 A. These results suggest that the solu-
tions develop into an interesting traveling wave profile,
where the density of cells in the G1 phase forms a moving
pulse, whereas the density of cells in the S/G2/M phase
forms a moving wavefront. Furthermore, the total cell den-
sity profile also moves as a wavefront profile. Analogous
solutions of the extended model, Eqs. 4, 5, and 6, are
shown in Fig. 3 B, which have similar features except
that there is an additional pulse arising from cells in the
eS phase. We find that the existence of these traveling
waves is robust, and does not depend on the values of
the diffusion coefficients. Fig. S2 shows solutions of the
fundamental model for Dg s Dr.

The appearance of traveling wave solutions that take the
form of a wavefront is not unexpected, as the partial differ-
ential equations in our model are related to the FKPP equa-
tion, Eq. 1, which is well-known to exhibit traveling-wave
solutions with a wavefront form (15,20). It is particularly
interesting, however, that our model also exhibits traveling
wave solutions with the form of a pulse, which are not
observed for the FKPP equation. The pulses arise because
only the cells near to the leading edge, where s(x,t) < 1,
FIGURE 3 Numerical solutions demonstrating

traveling wave behavior for the fundamental and

extended models. (A) Numerical solutions of the

fundamental model (Eqs. 2 and 3), obtained with

Dx ¼ 1 mm, Dt ¼ 1 h, L ¼ 8000 mm, Dr ¼ Dg ¼
400 mm2 h�1, Kr ¼ Kg ¼ 0.08 h�1, and the initial

condition given by Eq. 9 with z¼ 10. (B) Numerical

solutions of the extended model (Eqs. 4 and 6), ob-

tained with Dx ¼ 1 mm, Dt ¼ 1 h, L ¼ 8000 mm,

Dr ¼ Dy ¼ Dg ¼ 400 mm2 h�1, kr ¼ ky ¼ kg ¼
0.13 h�1, and the initial condition given by Eq. 10

with z ¼ 10. To see this figure in color, go online.
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have the opportunity to cycle from S/G2/M to G1, which
involves cell division and can be inhibited by crowding
effects. Behind the wavefront where s(x,t) approaches unity,
cells do not have enough space to divide, and so these cells
remain in the S/G2/M phase.

Traveling wave analysis of the fundamental model

We now analyze the fundamental model, Eqs. 2 and 3,
with the aim of understanding how the parameters in the
model relate to the speed of the traveling wave solutions.
To simplify our analysis, we nondimensionalize the problem
by defining the new variables t* ¼ kgt and x� ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
kg=Dr

p
,

and the parameters,

D ¼ Dg

Dr

and k ¼ kr

kg
; (11)

to give the corresponding nondimensional model,

vvr
vt

¼ v2vr
vx2

� kvr þ 2vgð1� sÞ; (12)

vv v2v
g

vt
¼ D g

vx2
� vgð1� sÞ þ kvr; (13)

in which the asterisks have been omitted for notational
simplicity.

To examine the traveling wave solutions, we define the
traveling wave coordinate, z ¼ x – ct, where c > 0 is the
wave speed associated with a traveling wave that propagates
in the positive x direction. We seek solutions of Eqs. 12 and
13 of the form vr(x,t) ¼ U(z) and vg(x,t) ¼ V(z). Such solu-
tions, if they exist, correspond to traveling wave solutions.
Substituting U(z) and V(z) into Eqs. 12 and 13 gives the sys-
tem of ordinary differential equations,

U00 þ cU0 � kU þ 2Vð1� U � VÞ ¼ 0; (14)

00 c 0 k 1

V þDV þDU �DVð1� U � VÞ ¼ 0: (15)

We want to find traveling-wave solutions that satisfy the
conditions

U> 0; lim
z/�N

UðzÞ ¼ 0 and lim
z/N

UðzÞ ¼ 0; (16)

V > 0; lim VðzÞ ¼ 1 and lim VðzÞ ¼ 0: (17)

z/�N z/N

LettingW¼ U0 and X¼ V0, we can write Eqs. 14 and 15 as a
system of first-order equations:

U0 ¼ W; (18)

V 0 ¼ X; (19)
W 0 ¼ �cW þ kU � 2Vð1� U � VÞ; (20)
0 c k 1

X ¼ �DX �DU þDVð1� U � VÞ: (21)

The equilibrium points of Eqs. 18, 19, 20, and 21 are (0, 0, 0,
0) and (0, 1, 0, 0). Of all the solutions to Eqs. 18, 19, 20, and
21 in the 4D phase space, ðU;V;W;XÞ, we seek a hetero-
clinic orbit from (0, 1, 0, 0) to (0, 0, 0, 0), which has the
physically relevant property that U > 0 and V > 0.

The Jacobian of Eqs. 18, 19, 20, and 21 evaluated at (0, 0,
0, 0) is 2

664
0 0 1 0

0 0 0 1

k �2 �c 0

�k=D 1=D 0 �c=D

3
775: (22)

The eigenvalues of Eq. 22 are the solutions of the corre-
sponding characteristic equation

Dl4þcðD þ 1Þl3þ
�
c2 � 1�Dk

�
l2� cð1þ kÞl� k ¼ 0:

(23)

To establish a condition for physically relevant traveling-
wave solutions, where U > 0 and V > 0, we examine
whether the solutions of Eq. 23 are either complex or real.
The analytical solutions of this quartic equation (40) are
quite complicated whenDs 1. Because we are considering
subpopulations of the same cell type which differ only with
respect to cell cycle phase, the biologically relevant case is
when the two diffusion coefficients are equal, leading to
D ¼ 1. In this case, by defining

a5 ðk; cÞ ¼ 2kþ c2 þ 25 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 6kþ 1

p
; (24)

we can express the solutions of the quartic simply as

l5
1 ¼ �1

2
c5

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�ðk; cÞ

p
and

l5
2 ¼ �1

2
c5

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþðk; cÞ

p
:

(25)

The eigenvalues lþ2 and l�1 are always real, and lþ1 and
l�1 are real when a�(k,c) R 0. If a�(k,c) < 0, however,
then lþ1 and l

�
1 are complex eigenvalues which yield solu-

tions with oscillatory behavior, which necessarily involves
negative cell densities. Because we are interested in trav-
eling wave solutions for which U and V remain positive,
we shall therefore require that a�(k,c)R 0. It is then reason-
able to suspect that, for a given k R 0, the value of c such
that a�(k,c) R 0 is the minimum wave speed for the trav-
eling waves, which we denote as
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cminðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k� 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 6kþ 1

pq
: (26)

The minimum wave speed is bounded above, and in fact
cmin(k) / 2� as k / N.

Equation 26 shows that the minimum speed of the trav-
eling wave solution depends on k, which is the ratio of the
time the cells spend in phase S/G2/M to the time the cells
spend in phase G1. In other words, the minimum wave speed
depends on the cell cycle dynamics of the particular cells
under consideration. We observe here that a�(k,c) R 0 is
a necessary condition for the existence of traveling waves.
We have not demonstrated, however, that this condition is
sufficient for the existence of traveling waves. This would
require a formal proof of existence for the traveling waves,
which is beyond the scope of this work.

Observe that if k > 0 and cR cmin then l
þ
1, l

�
1, and l

�
2

are real and negative, and lþ2 is real and positive. Therefore,
the equilibrium point (0, 0, 0, 0) is hyperbolic and has a 3D
stable manifold and a 1D unstable manifold. The presence
of a stable manifold at the point (0, 0, 0, 0) is necessary
for the existence of a heteroclinic orbit and the real eigen-
values allow for this orbit to correspond to physically
relevant traveling wave solutions with U > 0, V > 0. This
analysis does not constitute a formal proof of existence
for the traveling waves, however it does show that our obser-
vations are consistent with their existence.

The Jacobian of the system Eqs. 18, 19, 20, and 21 eval-
uated at (0, 1, 0, 0) is

2
664

0 0 1 0

0 0 0 1

kþ 2 2 �c 0

�ðkþ 1Þ=D �1=D 0 �c=D

3
775: (27)
FIGURE 4 Minimum wave speed and the dispersion relation. (A) Compariso

s(x, t) ¼ vr(x, t) þ vg(x, t). Numerical solutions of Eqs. 12 and 13 are obtaine

Eq. 9 with z ¼ 10. For k ¼ 0, there is no traveling wave, so we set c ¼ 0. T

with increasing values of k from 0.25 to 3, with increments of 0.25. From the

vg(x, t) by using linear interpolation to find the position corresponding to s(x, t

cmin (k) as k / 0 and k / N. (C) Comparison of c from Eq. 35 with the w

Solutions are given for k ¼ 1 (blue) and k ¼ 2 (red). The continuous curves

solutions obtained with Dx ¼ 0.1, Dt ¼ 0.001, D ¼ 1, and initial conditions of

lines show cmin from Eq. 26. To see this figure in color, go online.

1250 Biophysical Journal 114, 1241–1253, March 13, 2018
The eigenvalues of Eq. 27 are the solutions of the corre-
sponding characteristic equation

Dl4þ cðD þ1Þl3þ
�
c2þ1�Dk�2D

�
l2�cð1þkÞlþk ¼ 0:

(28)
Once again, the analytical solutions of this quartic equation
(40) are quite complicated whenDs 1. For the biologically

relevant case D ¼ 1, however, the solutions are

l5
3 ¼ 1

2

�
� c5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

p �
and

l5
4 ¼ 1

2

�
� c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4k

p �
:

(29)
If k> 0, then l�3 and l
�
4 are real and negative, and l

þ
3 and

þ
l 4 are real and positive. Therefore, the equilibrium point
(0, 1, 0, 0) is hyperbolic and has a 2D stable manifold and
a 2D unstable manifold. The existence of an unstable mani-
fold at the point is necessary for the presence of a traveling
wave solution.

Fig. 4 A compares cmin(k) in Eq. 26 with thewave speed es-
timates obtained fromthe numerical solutions of thepartial dif-
ferential equations (21). The numerical solutions are obtained
using initial conditions with compact support, so we would
expect the resulting traveling waves to have the minimum
wave speed (15). We observe that the numerically estimated
wave speed is consistent with Eq. 26 over the range of k we
consider. Therefore, we have numerical evidence to strongly
support the claim that the minimum speed is given by Eq. 26.

In Fig. 4 B we show the asymptotic expansions of Eq. 26
as k / 0 and k / N:

cminðkÞ ¼ 2k
1
2 � 2k

3
2 þ 5k

5
2 þ O

�
k
7
2

�
as k/0; (30)
n of cmin (k) from Eq. 26 with the numerically-estimated wave speed for

d with Dx ¼ 0.1, Dt ¼ 0.001 and D ¼ 1. Further, the initial condition is

he numerical solutions are considered beginning with k ¼ 0.06, and then

se numerical solutions we estimate the wave speed for s(x, t) ¼ vr(x, t) þ
) ¼ 0.5 on the wave for various times (21). (B) Asymptotic expansions for

ave speed estimated using numerical solutions and with cmin from Eq. 26.

show c from Eq. 35. The dots represent the wave speed from numerical

the form Eq. 36 with a ¼ 0.1, 0.2, 0.5, 1, 1.5 and 2. The dotted horizontal
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cminðkÞ ¼ 2� 2þ 5 þ O
1

as k/N: (31)

k k2

	
k3




Thus, cmin(k) behaves like 2k
1/2when k is small and like 2 – 2/k

when k is large. We discuss the connection with the FKPP
equation in the Conclusions.
Dispersion relation

Here we investigate the relationship between the initial con-
ditions for Eqs. 12 and 13 with D ¼ 1, and the speed of the
resulting travelingwave solution. Our approach is to examine
the leading edge of the traveling wave, assuming that the
initial conditions at infinity have an exponential form (15).

At the leading edge of the evolving waves,
s(x,t) ¼ vr(x,t) þ vg(x,t) � 1, so we can linearize Eqs. 12
and 13 to give

v~vr
vt

¼ v2~vr
vx2

� k~vr þ 2~vg; (32)

v~vg ¼ v2~vg � ~v þ k~v : (33)

vt vx2

g r

Assuming initial conditions of the form ~vrðx; 0Þ � Ae�ax

and ~vgðx; 0Þ � Be�bx as x / N for arbitrary positive
constants a, b, A, and B, we seek traveling wave solutions
satisfying Eqs. 32 and 33 of the form

~vrðx; tÞ ¼ Ae�aðx�ctÞ and ~vgðx; tÞ ¼ Be�bðx�ctÞ; (34)

corresponding to the leading edges of the pulse and
wavefront solutions, respectively. Substituting Eq. 34 into
Eqs. 32, 33, and 34 and solving for c gives

c ¼ a� 1

a
þ 1

2a

�
1� kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 6kþ 1

p �
: (35)

The dispersion relation, Eq. 35, depends only on a and k,
so we can obtain the traveling wave solutions with the
form Eq. 34 from initial conditions of the form

vrðx; 0Þ ¼ 0 and vgðx; 0Þ ¼
�

1; 0%x < x;
e�aðx�xÞ; x%x%L;

(36)

for constants x and a > 0. Note that for large a, this initial
condition for vg is approximately a Heaviside function.
For a given k, we observe that the minimum wave speed
according to the dispersion relation, Eq. 35, is equal to the
minimum wave speed cmin, given by Eq. 26.

In Fig. 4 C we compare c from Eq. 35 with estimates of
the wave speed from numerical solutions of the governing
partial differential equations, and with cmin from Eq. 26.
The value of c given by the dispersion relation tends to in-
finity as both a / 0 and a / N, and has a unique min-
imum value for a given k. The dispersion relation for the
FKPP equation has similar properties (15). For a given k,
the numerical estimates of the wave speed agree with
Eq. 35 for increasing values of a > 0, until the minimum
wave speed is obtained. As we further increase a, the nu-
merical estimates of the wave speed remain constant, at
the minimum value of the wave speed. Once again, the
dispersion relation for the FKPP equation has similar prop-
erties (15).
CONCLUSIONS

Here we present, to our knowledge, the first mathematical
model of cell migration that can be used to quantitatively
describe experiments using FUCCI technology, which
highlights the spatial and temporal distribution of individ-
ual cells in different parts of the cell cycle. The funda-
mental model consists of two coupled partial differential
equations, each of which governs the subpopulations of
cells corresponding to the two phases of the cell cycle
that are directly labeled by FUCCI. Our study suggests
that the model can describe cell migration and cell prolif-
eration in a way that highlights the spatial and temporal
distribution of two subpopulations. In particular, we show
that the model can describe the dynamics of scratch assays
performed with cells highlighted by FUCCI. This is a
useful outcome, as scratch assays are routinely employed
to study cell migration, for example in the context of
malignant invasion (35) and wound healing (16). Although
a typical scratch assay may require several days to grow
cells, and to perform and record the experiment, our model
can simulate such an experiment on a single desktop
computer in a few seconds. In addition, we can easily
vary the parameters in our model to simulate experiments
over any period of time, any scratch width, any geometry,
and any cell line, provided that we have some information
about the amount of time that is spent in each phase of the
cell cycle. Therefore, this kind of computational modeling
tool can provide valuable information to assist in the design
and interpretation of these kinds of experiments conducted
with FUCCI.

In this work, we use numerical results to demonstrate the
existence of traveling wave solutions. Furthermore, our
analysis shows that the minimum wave speed depends on
the ratio of the time spent in each of the G1 and S/G2/M
phases. Another outcome of this study is that we derive an
analytical expression for the minimum wave speed as a
function of this ratio which, in dimensional variables, can
be written as

cmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr

�
� kr � kg þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þ 6krkg þ k2g

q �r
: (37)

This relationship is based on the biologically reasonable
assumption that Dr ¼ Dg, where Dr is the diffusion
Biophysical Journal 114, 1241–1253, March 13, 2018 1251
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coefficient for cells in phase G1 and Dg is the diffusion co-

efficient for cells in phase S/G2/M. Further, kr is the transi-

tion rate from G1 to S/G2/M and kg is the transition rate

from S/G2/M to G1. It then follows from Eqs. 30 and 31

that cmin � 2
ffiffiffiffiffiffiffiffiffiffi
krDr

p
ð1� kr=kgÞ as kr/kg / 0, and

cmin � 2
ffiffiffiffiffiffiffiffiffiffi
kgDg

p
ð1� kg=krÞ as kg/kr / 0. Therefore,

when kr/kg � 1, so that cells spend much more time in

phase G1 compared with phase S/G2/M, the minimum

wave speed obtained from our fundamental FUCCI model,

Eqs. 2 and 3, approaches the minimum wave speed obtained

from the FKPP equation, Eq. 1. A similar observation holds

for the case kg/kr � 1, corresponding to the situation

where the cells spend much more time in phase S/G2/M

compared with phase G1.
Traveling wave solutions are of great practical interest

as cell migration tends to exhibit traveling wave character-
istics (16). The analytical expression we derive for the
minimum wave speed is of practical interest, as a moving
front of cells can be thought of as acting like a traveling
wave solution, so our expression can provide a prediction
for the speed of the moving front in experimental studies.
The traveling wave solutions of the fundamental model are
mathematically interesting because they are a combination
of moving wavefronts and moving pulses. Monotonically
decreasing wavefront solutions are well known for the
FKPP equation, and because our models are related to
the FKPP equation, it is not surprising that wavefront
solutions are also observed in our study. It is interesting,
however, that traveling wave solutions of our models
involve pulses, which are not features of the traveling
wave solutions of the FKPP equation.

There are many possibilities for future work arising from
this study. An area of particular interest would involve
using our models to quantitatively study how the migration
of melanoma cells and the cell cycle for melanoma cells
are affected by the application of particular melanoma
drugs. Indeed, there is still much to learn regarding the ef-
fects of introduced drugs on melanoma cell activity (3).
These kinds of drugs often act to arrest the cell cycle,
thereby preventing melanoma proliferation. Another
feature that could be examined is the role of contact inhi-
bition and cell cycle arrest, because it is accepted that cells
in relatively high-density environments can undergo cell
cycle arrest. Indeed, our model does not account for this
phenomenon, because we are interested in low to moderate
cell densities. Another way that this study could be
extended is to consider additional phases of the cell cycle.
This is of interest because a very recent extension of
FUCCI technology, referred to as FUCCI4 (41), highlights
all four cell cycle phases G1, S, G2, and M. If extended to
four coupled partial differential equations, our modeling
framework could be used to quantitatively describe cell
migration where individual cells are highlighted using
FUCCI4.
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Supporting Materials and Methods, two figures, one table, and three

movies are available at http://www.biophysj.org/biophysj/supplemental/
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1 Numerical solutions of the mathematical model

The numerical solutions of Eqs (2)–(3) and Eqs (4)–(6) are obtained using an implicit finite

difference approximation. In particular, we use a central difference approximation for the

spatial derivative term, and a backward Euler approximation for the temporal derivative [1].

The spatial domain, 0 ≤ x ≤ L, is uniformly discretised with grid spacing ∆x. No-flux

boundary conditions are implemented at both x = 0 and x = L. The temporal domain is

uniformly discretised with time steps of duration ∆t. The resulting non-linear system of

equations is solved using the Thomas algorithm [1], applying Picard iteration at each time

step until the maximum absolute change in the given dependent variable across the spatial

grid is less than a specified tolerance, ε.

2



2 Comparison of experimental data and the fundamen-

tal model for a scratch assay of FUCCI-transduced

WM983C melanoma cells.

In Fig S1 we present experimental data for the WM983C melanoma cell line, together with

corresponding numerical solutions of the fundamental model. The numerical solutions com-

pare well with the experimental data.

3



Figure S1: Comparison of experimental data and the fundamental model for a scratch
assay of FUCCI-transduced WM983C melanoma cells. (A)–(D) Still images of a scratch
assay with FUCCI-transduced WM983C melanoma cells at time 0 h, 16 h, 32 h and 48 h, respec-
tively. Scale bar is 200µm. (E) Estimated transition rates from one cell cycle phase to the next
for the fundamental model with two subpopulations, based on data from the WM983C cell line
from Fig 1C in [2]. (F) Estimated transition rates from one cell cycle phase to the next for the
extended model with three subpopulations, based on data from the WM983C cell line from Fig
1C in [2]. (G)–(J) Experimental non-dimensional cell density data at 0 h, 16 h, 32 h and 48 h,
respectively (based on images (A)–(D)). The cell density is treated as a function of x and t only,
owing to the fact that the initial density does not depend on the vertical coordinate, y. (K)–(N)
Numerical solutions of the fundamental model, Eqs (2)–(3), at 0 h, 16 h, 32 h and 48 h. The
numerical solutions are obtained with ∆x = 0.1µm, ∆t = 0.1 h, L = 1254µm, diffusion coefficients
Dr = Dg = 400µm2 h−1, transition rates κr = 0.080 h−1 and κg = 0.062 h−1, and initial conditions
the same as for the experimental data.
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3 Numerical solutions demonstrating travelling wave

behaviour for the fundamental model when D 6= 1.

In Fig S2 we present numerical solutions of the fundamental model, Eqs (2)–(3), with D 6= 1.

In Fig S2A, D = 0.5, and in Fig S2B, D = 2. These solutions are qualitatively the same as

for D = 1, see Fig 3, demonstrating that the existence of these travelling waves is robust,

and does not depend on the value of Dg/Dr.

Figure S2: Numerical solutions of the fundamental model, Eqs (2)–(3), demonstrating
travelling wave behaviour with D 6= 1. (A) Solutions obtained with ∆x = 0.1µm, ∆t = 0.1 h,
L = 8000µm, Dr = 400µm2 h−1,Dg = 200µm2 h−1, κr = κg = 0.08 h−1, and the initial condition
given by Eq (9) with ξ = 10. (B) Solutions obtained with ∆x = 0.1µm, ∆t = 0.1 h, L = 8000µm,
Dr = 200µm2 h−1,Dg = 400µm2 h−1, κr = κg = 0.08 h−1, and the initial condition given by Eq (9)
with ξ = 10.
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