Biophysical Journal, Volume 114

Supplemental Information

Molecular Mechanisms of Tight Binding through Fuzzy Interactions

Qingliang Shen, Jie Shi, Danyun Zeng, Baoyu Zhao, Pingwei Li, Wonmuk Hwang, and Jae-Hyun Cho **Table S1**. X-ray diffraction and refinement statisticsfor nSH3-PRM^{NS1} complex.

	6ATV.PDB
Data collection	
Space group	P6122
Cell dimensions	
a, b, c (Å)	39.84, 39.84, 171.95
α, β, γ (°)	90.0, 90.0, 120.0
Resolution (Å)	1.75 (1.78 to 1.75)
R _{merge}	10.2% (23.3%)
//σ/	16.8 (3.5)
Completeness (%)	94.9 (67.0)
Redundancy	12.0 (3.3)
Refinement	
Resolution (Å)	1.75
No. Reflections	8437
Rwork/Rfree	0.184/0.205
No. atoms	721
Protein	493
Ligand	114
Water	114
<i>B</i> -factors	
Protein	18.8
Ligand	18.8
Water	32.8
r.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	0.781

* Values in parentheses are for the highest-resolution shells.

Residues	Difference in average pairwise distances (MD ^a - Crystal ^b) (Å)							
in	Acidic residues in nSH3 domain							
PRM ^{NS1}	D142	D147	E149	D150	D163	E166		
R211	0.0	_ c	_ c	_c	_c	_ c		
K219	_c	1.5	1.3	0.5	-0.2	0.7		
R220	_c	-1.4	-1.3	-2.6	-5.4	-5.4		
K221	_c	-1.3	1.8	-0.0	2.6	-0.5		

Table S2-1. The difference in average pairwise distances.

^aMD trajectories of PRM^{NS1A} ^bCrystal structure of PRM^{NS1A} (PDB ID: 5UL6) ^cThese distances were longer than 15 Å and not included in the analysis.

Residues	Difference in average pairwise distances (MD ^a - Crystal ^b) (Å)							
in	Acidic residues in nSH3 domain							
PRM ^{NS1}	D142	D147	E149	D150	D163	E166		
R211	-1.7	_c	_c	_c	_c	_c		
K219	-c	-6.1	-4.0	-4.9	1.9	-1.6		
R220	_c	-0.6	0.5	1.1	3.2	0.9		
K221	_c	-5.6	-3.6	-3.0	5.0	-0.3		

 Table S2-2.
 The difference in average pairwise distances.

^aMD trajectories of PRM^{NS1B} ^bCrystal structure of PRM^{NS1B} (PDB ID: 6ATV) ^cThese distances were longer than 15 Å and not included in the analysis.

Figure S1

Figure S1. (A) The complex contains short-range electrostatic interactions between K217 of PRM^{NS1} and three acidic residues (D147, E149, and D150) in the nSH3 domain (PDB ID: 6ATV). The distances in the figure were measured between N^{ζ} of K219 and O^{δ/ϵ} of the acidic residues.

Figure S2

Figure S2. Fluorescence-based measurement of binding affinity between the nSH3 domain and mutant PRM^{NS1}, in which three C-terminal positively charged residues (K219-R220-K221) are replaced by Gly. The K_d value is from two repeated measurements.

Figure S3.

Figure S3. σA weighted $F_o - F_c$ map (contoured at 2σ) of (A) PRM^{NS1B} and (B) PRM^{NS1A}.

Figure S4.

Figure S4. Conformational difference in the C-terminal region of the bound (A) PRM^{NS1B} and (B) PRM^{NS1A}. Significant changes in backbone (C) ϕ and (D) ψ angles of Q218 induced large changes in the conformations of positively charged residues in the C-terminal end of Q218.

Figure S5

Figure S5. An overlay of temperature-dependent chemical shift changes for the C-terminal positively charged residues (K217, K219, R220, and K221) in PRM^{NS1}.

Figure S6

Figure S6. ¹⁵N-edited NOESY HSQC of the C-terminal positively charged residues (K219, R220, and K221) in PRM^{NS1} bound to the nSH3 domain. The data was acquired using a sample of ¹⁵N-labeled PRM^{NS1} saturated by non-labeled nSH3 domain. The NOESY mixing time was 100 ms.

Figure S7

Figure S7. (A) $\{^{1}H\}^{-15}N$ heteronuclear NOE and (B) ^{15}N R₂ of the nSH3 domain saturated by PRM^{NS1}. Red bars represent the residues in the nSH3 domain that are in the binding interface with PRM^{NS1}. This represents that the elevated R₂ in PRM^{NS1} is not induced by its on-off process.