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SUPPLEMENTARY NOTE

Simple Three-State Model of Cell Proliferation

To better understand the complex dynamics exhibited by BRAF-mutated melanoma cells in
response to BRAF1, including emergence of the idling phenotype, we devised a simple three-state
model comprised of a regressing state R, a stable (zero net growth) state S, and an expanding
state E. Cells in each state can experience two fates, division and death, with kinetic rate
constants that are characteristic of the states. Additionally, drug induces transitions between
“adjacent” states. The model can be expressed in kinetic terms as
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Here, Cellx (X € {R,S,E}) is the number of cells in state X, kqx and kux are division (growth) and
death rate constants for cells in state X, kyy is the transition rate constant between states X and Y

(R & § <& E), and @ represents cell death (the null state). A graphical representation of the
model is provided in Fig. 4A of the main text.

Given these reactions, and defining k,x = kyx — kqx as the net proliferation rate for cells in
state X, the coupled set of ordinary differential equations (ODEs) describing the state dynamics
is

dnN

d_tR - (kPR - krS)NR + ksrNs (59)
dnN

d_ts = (kps — ksy — kse)Ns + KysNg + kosNg (S510)
dnN

d_tE: (ka _kES)NE +kS€NS (Sll)

Equations (S9)-(S11) are presented in the main text as Egs. (1)-(3).



Model Simulation and Parameter Calibration

The model in Egs. (S1)-(S8) consists of 10 parameters: three net proliferation rates (kyz, ks, kyE),
four transition rate constants (kys, ks, kse, kes), and three initial cell counts (Ng(=0), Ns(=0),
Ng(1=0)). We fixed the net proliferation rate for state S to zero and chose values for states R and
E based on the range of responses seen for the SKMELS5 parental cell line (Fig. 2A and Fig.
S4D). Specifically, we chose k,g = —0.055 h™t, kps =0 h™', and kye = 0.015 h™'. We also
set the total number of initial cells 7j = 10,000. Altogether, this eliminates four free parameters,
leaving a total of six free parameters in need of calibration: the four transition rate constants and
the initial proportions of cells in states R and S (denoted R, and S, respectively; Ry= Ng(t=0)/Ty,
etc.).

Since the drug responses across cell lines are more or less similar within the first 24h of drug
addition, we assume that this is due to a delay in drug effect stabilization. We omitted this phase
from model fitting. Model simulation was performed by numerically integrating Egs. (S9)-(S11)
using the LSODA algorithm (1) as implemented within the ode function of the R package
deSolve (2). Model calibration was performed using the cost function (presented as Eq. (4) in the
main text)
Cost = yp., =00 (S12)

where n is the number of measured time points and M;, O;, and g; are the model prediction,
experimentally observed value, and standard experimental error at time point i, respectively. We
first identified the closest local minimum within the cost space using the Levenberg-Marquardt
algorithm as implemented within the modFit function of the R package FME (3). We then
performed Markov chain Monte Carlo (MCMC) sampling, using the modMCMC function of the
FME package, to sample the trough of the cost-space well and to confirm that it was, to our best
estimate, the global minimum. A Gaussian prior was defined for all parameters (4) with
variances obtained from modFit. A lower bound of 0 was imposed for all parameters. An upper
bound of 0.06/h (the observed proliferation rate for SKMELS5 cells in dimethyl sulfoxide
(DMSO) control) was imposed for the transition rate constants ks, ks, kse, and k.. The rationale
for this is based on the assumption that the transition rates have to be smaller than the maximum
proliferation rates to maintain identity of the cell states (5). For the initial cell proportions R, and
So, an upper bound of 1 was imposed. In addition, we required that Ry + Sy < 1. Constraints such
as this cannot be defined directly within the modMCMC function. Therefore, we modified our R
script to impose an artificially large cost (>10°) if an MCMC iteration returned values that
violated this constraint.

In all cases, we performed 1.5x10° MCMC iterations (2x10° MCMC iterations performed for
SKMEL28) starting from the parameter set obtained from modFit. Values of o; in Eq. (S12)
were automatically determined in each case by modMCMC based on the input data set. The
parameter covariance matrix was evaluated every 100 iterations (updatecov argument to
modMCMC) and used to update the MCMC jumps. The maximum number of tries for the
delayed rejection procedure was set to 2 (ntrydr argument to modMCMC). In some cases, three
independent MCMC chains were run with different initial parameter values (£25% around the
best fit from modFit) and converged to the same distributions as per the Gelman-Rubin test (6,
7). Parameter distributions for numerous cell lines are shown in Fig. S5; associated MCMC trace
plots are shown in Fig. S6. In general, multi-parameter systems biology models pose a critical
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challenge of parameter identifiability (8). As shown in Fig. S8, the MCMC samples of transition
rate constants for SKMELS cells are shown as pairs plot, which shows pairwise correlations
between parameters. We observed weak correlations between parameters, except for kg and kes.
However, we sampled parameters from parameter ensembles, and not from the individual
parameter distributions to obtain our model fits and to infer epigenetic landscapes, therefore,
accounting for all parameter correlations.

Three-State Discretization of Clonal Proliferation Rates

In order to compare model-generated initial cell proportions (Ry, Sy, and Ep = 1 — Ry — ), as
determined by MCMC calibration, to experimental distributions obtained using the clonal
Fraction Proliferation (cFP) assay (9) (see Fig. 4F and Fig. S4D), we had to define discrete
cutoffs for the experimental data. We chose =1 doubling every two weeks (m = £1/360
doublings/h) for this purpose, i.e., clones doubling at a rate greater than once every two weeks
are associated with the expanding state E, clones regressing at a rate greater than this are
associated with the regressing state R, and clones with proliferation rates intermediate between
these values are associated with the zero-net-growth state S. Our rationale for choosing these
values is that most experiments were run over a two-week period. If a cell population did not
double (or halve) over this period, then we generally considered it a slow proliferator. In Supp.
Fig. 4D, we illustrate this discretization for multiple cell lines. Note that varying the cutoff
values by +£10% had no qualitative effect on the conclusions of the analysis (data not shown).

Model Configurations

We additionally considered the possibility of: two-state models and three-state model with all
possible phenotypic state transitions (triangle-model) in addition to our current three-state model
(states organized in [linear fashion). For the two-state models, we considered all possible
combinations with: (A) Regressing (R) and Stable (S) states; (B) Stable (S) and Expanding (E)
states; (C) Regressing (R) and Expanding (E) states. We also considered the three state model
(triangle model) where the phenotypic state transitions between all states are possible. Graphical
representation of all possible combinations of the models we considered is shown in Fig. S9.
Phenotypic state transitions between Regressing (R) and Expanding (E) states is given by S13.

kre

Cellp _Cellyg (S13)
ker

Given the reactions S1-S6 for proliferation kinetics of each state, phenotypic state transitions S7-
8 & S13, defining k,x = kyx — kgx as the net proliferation rate for cells in state X, the coupled
set of ordinary differential equations (ODEs) describing the state dynamics in each model
configurations is:

Model A

dN

d_tR = (kpR - krs)NR + kg Ns (S14)

dN

d_ts - (kps - kST)NS + kT‘SNR (Sls)
Model B

dN

d_ts - (kps - kSE)NS + kesNE (816)



dN
d_tE = (ka - kes)NE + kseNS (817)
Model C
dN
d_tR = (kpR - kre)NR + KerNg (S18)
dN
d_tE - (kPE o ker)NE + KreNg (S19)
Model D
dN
— &= (kpr = krs = Kre)Ng + kg Ns + kor Np (520)
dN
=2 = (kps = key = kge)Ns + kpsNg + kegNg (S21)
dN
—E = (kpp — kes = ker)Ng + ks Ns + Ky N (S22)
Model E

Listed as S9-S11.

To account for all possible transitions with substantial number of cells in the starting population,
we calibrated the models against an experimental time course for a 1:1:1 clonal mixture of three
single cell-derived subclones (SCO01, SC07, and SC10) using the Levenberg-Marquardt algorithm
as implemented within the modFit function of the R package FME (3). We inferred the Akaike
information criteria (AICc) (10, 11) for all the models we considered. Three-state model
organized in linear fashion (Model E in Table S4) has the lowest AIC value and lowest residual
standard error, indicating that the model E is both improved in terms of model selection and in
terms of error minimization than the other possible models considered.



SUPPLEMENTARY TABLES
Table S1 | BRAF-mutated Melanoma Cell Lines

SKMELS MET V600E WT WT WT WT
A375 MET V600E (HOMOZ) WT WT WT WT
WM793 MET V600E WT Mu/HEM DEL  ~ WT WT
SKMEL19 MET V600E WT WT WT WT
SKMEL28 MET V600E (HOMOZ) MU MU WT WT
WM164 MET V600E MU WT WT WT
WMS88 MET V600E WT WT WT WT
A2058 MET V600E MU MU WT WT

Cell lines mutation information obtained from previously published cell databases and papers
(12-15).

Table S2 | Proliferation Rates for Single Cell-Derived SKMELS Subclones
Proliferation rates in 8uM BRAFi were measured between 24-100h post drug application.
Standard deviations are based on three replicates; lack of a standard deviation indicates a single
measurement obtained from an initial screen.

Subclone Prolif. rate Std.
(doublings/h) deviation
SCO1 -2.13E-02 1.07E-02
SCO02 4.20E-03 N/A
SCO03 1.05E-02 1.48E-03
SC04 -6.51E-03 1.24E-03
SCO05 9.00E-04 N/A
SC06 7.10E-03 N/A
SC07 1.53E-03 3.53E-03
SCO08 -2.81E-03 3.65E-03
SC10 1.16E-02 4.16E-04
SCI11 1.14E-02 N/A
SC12 1.20E-03 N/A
SC13 -2.40E-03 N/A
SC15 -1.90E-03 N/A
SC16 -2.50E-03 N/A




Table S3 | Model Variables and Parameters

Variable Definition
t Time (h)

Npg Number of cells in state R

Ng Number of cells in state S

Ng Number of cells in state £

T Total number of cells
Parameter Definition Units

kpr Net proliferation rate of cells in state R h™!

ks Net proliferation rate of cells in state S h™!

kye Net proliferation rate of cells in state E ht

kg Rate of transition of cells from state R to state .S h™!

kg, Rate of transition of cells from state S to state R ht

ke Rate of transition of cells from state S to state £ ht

kes Rate of transition of cells from state E to state S h™!

R, Initial proportion of cells in state R unitless

So Initial proportion of cells in state .S unitless

E, Initial proportion of cells in state £ unitless
Table S4 | Model Selection Statistics for All Model Configurations

Model A Model B Model C Model D Model E

No. of Parameters 4 4 4 8 6
AIC value 145.6585 -363.4001 | -129.4709 | -394.5141 | -399.7858
Residual Std. Error 1.869 0.1965 0.5533 0.1677 0.1656
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Figure S1: BRAFi-Induced Responses of BRAF-Mutated Melanoma Cell
Populations. (a) (left) Population growth curves (log2 normalized) for SKMELS parental
cells treated with varying concentrations of BRAFi; (right) DIP rate-based dose—response
curve (red line is the ECso). (b) The idling state is not trivially due to confluence: (/eft)
comparison of population growth curves (log2 normalized) for SKMELS cells treated
with BRAFi1 and DMSO control; (right) representative images at 210 h post BRAFi
treatment (nuclei are shown in blue, FUCClI-positive (cycling) cells in green). (c)
Percentage of FUCClI-positive cells for A375 and WM164 cells between 168-350h of
treatment with 8 uM BRAFi1 and 32 uM BRAFi respectively. (d) Nuclear morphological
changes leading to apoptosis observed in BRAFi-treated SKMELS cells. (e) Population
growth curves (log2 normalized) for SKMELS parental cells treated with 16 uM
vemurafenib, 4 uM dabrafenib, 0.125 uM trametinib, and a combination of 8 UM BRAFi
and 0.125 uM trametinib (mean responses are shown as solid lines, 95% confidence
intervals as shaded regions).
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Figure S2: Clonal Responses of Multiple BRAF-mutated Melanoma Cell Lines to
Various Concentrations of BRAFi (a) Population growth curves (log2 normalized)
obtained using the cFP assay for SKMELS single cell-derived colonies treated with 2 uM
BRAF1 (n=106) and 16uM BRAFi (n=95). (b) Population growth curves (log2
normalized) obtained using the cFP assay for single cell-derived colonies of SKMEL19
(n=60) and WMS88 (n=55) treated with 8 uM BRAF.



Serially
\ transfer to

A lE)TiI'ng (ONONO. ‘48 24,12, 6
ilution | well-plates
| g
Clonally Identify !
heterogeneous monoclonal \__'_,,/ Subclones
cell population wells Expand
monoclonal
sublines
B C
o _|SKMELS Subclones — NS
[ - (%)
" O 21
8 6o | 8uM BRAFi :%1 c
= g =
2 1] 'g SC04
82 - Q
o o SCo08
5 - 8
o ]
<
T S s
T 11—+t [ T T T 1 0 5_‘;_. 100 h15° 200
0 20 40 60 _Time (hrs)
-0.03 -0.02 -0.01 000 001 002 since drug addition
Time (hrs) since .
( .S’.)S . DIP rates (doublings/h)
drug equilibration
D
Quantification
] — o
] o -
= ‘g ®
[m) O o |
B <
cC o 7
9 o~ =
z £al="
% S O
N

SCO1 SCo7 SC10
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population growth curves (log2 normalized); (right) bar-plot of BRAFi-treated sub clone
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cell fractions in BRAF1 relative to DMSO control.
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Figure S4: Model Predictions and State Discretization for Multiple BRAF-mutated
Melanoma Cell Lines and Subclones (a) Distributions of transition rate constants (ks,
ksr, kse, kes) obtained by MCMC calibration of our three-state model to experimental data
for a 1:1:1 clonal mixture of subclones SC01, SC07, and SC10 (boxes extend from the
first to third quartile, solid horizontal line is the median, whiskers extend to 1.5x the
interquartile range, outliers are shown as empty circles). (b) Experimental population
growth curves (black solid line with 95% confidence envelope) for SKMELS parental
and single cell-derived subclones SC01, SC07, and SC10 overlaid with model predictions
(red) if all transition rate constants are set to zero. (c) Model-predicted proportions of
cells in the regressing (R), stationary (S), and expanding (£) subpopulations in the idling
state for SKMELS parental and single cell-derived subclones SCO01, SC07, SC10. (d)
Discretizing cFP distributions into three states: (/eft) Cutoffs (+/- m) of one doubling
every two weeks (+/-1/360 doublings/h) defines the regressing state R, the zero-net-
growth state S, and the expanding state E; (right) cFP distributions for multiple BRAFi-
treated melanoma cell lines with quantified cell state proportions.
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Figure S5: Parameter Distributions Obtained by MCMC Calibration Against
Experimental Data for Multiple BRAF-mutated Melanoma Cell Lines. (a) Transition
rate constants (log scale); depicted in blue are the prior distributions while depicted in red
are posterior distributions. (b) Proportions of initial cells counts.
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Figure S6: MCMC Trace Plots for Multiple BRAF-mutated Melanoma Cell Lines.
The last 50% (accounting for burn-in) of the 1.5x105 total MCMC iterations are shown.
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Figure S7: BRAFi-Induced Population Dynamics and Signaling Changes for the
A2058 Cell Line. (a) Population growth curves (log2 normalized) for varying
concentrations of BRAF1. (b) Western blots comparing levels of phosphorylated MEK in
A2058 cells and three other cell lines after 96h exposure to BRAFi (lanes correspond to
drug concentrations in for the population growth curves).
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Figure S8: Correlations Between Transition Rate Constants Obtained by MCMC
Calibration. (a) Pairs plot of the Markov Chain Monte Carlo samples for the transition
rate constants of SKMELS cells. The pairwise relationship is in the bottom plot, the
correlation coefficient is in the top plot, and distribution of each parameter is on the
diagonal.
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Figure S9: Graphical Representation of All Possible Model Configurations
Considered. Two-state models with: (a) Regressing (R) and Stationary (S) states; (B)
Stationary (S) and Expanding (E) states; (C) Regressing (R) and Expanding (E) states;
(D) Three-state model with all possible state transition among states, also called
“triangle” model; (E) Three-state model organized in linear fashion. (F) Population
dynamics of the proposed three-states. In all the states, cells can divide, die or transition
into another available states.



