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1 Experimental setup

The experimental setup is described in Fig. 1, in which individual cells were embedded
in a tissue-mimicking sample and their response to shock waves was visualised through
an ultra-high speed imaging system.

1.1 Cell and tissue phantom preparation

Three human kidney epithelial cell lines were used in the experiments in order to com-
pare the mechanical properties between invasive cancer cells and their non-cancerous
counterparts. Normal cells were represented by human renal epithelial (HRE) cells
(CC-2556, Lonza) which are primary cells isolated from human renal cortex and
glomerular. Cancer cells were from clear cell carcinoma, CAKI-2 (ATCC HTB-47).
Immortalised cells, which were transformed by HPV-16 virus, were used as the third
cell line: HK-2 (ATCC CRL-2190). The three cell lines were routinely maintained
in their corresponding culture medium in a cell culture incubator: BulletKit human
renal cell system (Lonza) was used for HRE cells, McCoy’s 5a Medium Modified
(ATCC) and DMEM (Life Technology) both supplemented with 10% FBS and 1%
antibiotic/antimycotic solution were used for CAKI-2 and HK-2 cells.

The day before experiments, cells from each cell line were trypsinized and resus-
pended in culture medium to a density of ∼0.1×106 cells/mL before being injected
into a tissue-mimicking phantom. Each tissue-mimicking phantom consisted of 672 mg
purified agarose powder (UltraPure Agarose, Invitrogen), 100 mL phosphate buffered
saline (Gibco, ThermoFisher Scientific) and 112 mL of culture medium with resus-
pended cells (∼1.2 million cells). The mixture was stirred gently at 37 ◦C and poured
into a plexiglass mould, see Fig. 2, to set over 24 hours. The resulting phantoms had
an elastic modulus of ∼10 kPa, similar to what would be expected for soft tissue [1, 2].
The cell density was chosen so that individual cells could be observed when subject
to shock waves.



Fig. 1: Overview of the experimental setup containing a SIMX 16 ultra-high speed
camera, a 20× microscopic objective, a laser source, a shock wave transducer, a needle
hydrophone and a cell-agarose tissue phantom.

Fig. 2: Mould containing cell-agarose gel for carrying out shock wave exposure. The
four transparent windows allow for imaging, lighting and applying shock waves simul-
taneously.



(a) (b)

Fig. 3: Examples of HK-2 cells (at 40× magnification) embedded in a 3D agarose
tissue phantom: (a) a healthy cell with a well defined intact boundary; (b) a dead cell
showing a diffuse boundary.

The viability of cells in the phantom was assessed by using a trypan blue solution
(which selectively stains dead cells) 24 hours after they were embedded in the tissue
phantom. Fig. 3(a) shows a healthy cell after 24 hours in agarose gel with a well
defined boundary. In comparison Fig. 3(b) shows a cell that was non-viable, based on
the blue stain, and also demonstrated a diffuse cell boundary. Fewer than 1% of cells
were non-viable after 24 hours in agarose gel. The distinctive diffuse boundary was
used to identify and exclude dead cells in the gel when high speed imaging was done.

1.2 Shock wave source

A clinical shock wave device (Minilith SL1-0G, Storz Medical AG) was used to gen-
erate shock waves. The Minilith employs an electromagnetic source and a parabolic
reflector to effect focussing [3]. The focus occurs 50 mm from the face of the source
and the focal zone is ellipsoidal in shape approximately 25 mm long in the axial
direction by 2.4 mm in diameter.

Shock waves were measured inside the tissue phantoms using a fibre-optic probe
hydrophone (FOPH) [4] based on a previously published design [5]. The FOPH mea-
sures light reflected from the tip of an optical fibre placed in the pressure field. As
the pressure wave passes the fibre it causes a change in the refractive index of the



medium and hence changes the reflected light [5]. The FOPH employed here can
measure acoustic pressures up to 100 MPa [4, 5].

The voltage output V from a photodetector is proportional to the light reflected
at the fibre tip:

V (n) = gR(n) + S (1)

where R(n) is the reflectivity, g is the gain and S is the offset of the photodiode system
(which were determined from measurements from known fluids). The reflectivity R(n)
is defined as:

R(n) =

(
nf − n
nf + n

)2

(2)

where nf is the index of refraction at the fibre (which is assumed to be constant in
all conditions) and n is the index of refraction of the medium. The refractive index
is related to the density through the Gladstone-Dale relation [6]:

n(t)− 1

ρ(t)
= constant (3)

With the known ambient conditions (n0, ρ0), the medium density can be inferred as:

ρ(t) = ρ0
n(t)− 1

n0 − 1
(4)

The density can be related to the pressure through the Tait equation of state,

p(ρ) = (Q+ P0)

(
ρ

ρ0

)γ
−Q (5)

where Q = 295.5 MPa, γ = 7.44 for the conditions T = 20 ◦C, P0 = 100 kPa and ρ0

= 1000 kg/m3 [5]. Therefore, using Equations (1)-(5), the pressure can be calculated
from the voltage measured from the photodiode.

1.3 High speed camera and lighting source

An ultra-high speed camera (SIMX 16, Specialised Imaging) was used to image cells
inside the gel. The camera has 16 CCD elements which can be triggered independently
with a maximum frame rate of 200 million fps (i.e., 5 ns exposure time per frame). The
camera was connected to a 20× microscopic objective (UMPLFLN20XW, Olympus)
through a turning prism mirror (CM1-P01, Thorlabs) to magnify the region of interest
and thus allow for close observation of a single cell (image resolution: 0.2 µm/pixel;
field of view: 1.325 mm in diameter). All the connections between the microscopic
objective and the camera were sealed to minimise interference from the ambient light.



The agar gel was backlit with a high speed visualisation laser (SI-LUX640, CAV-
ITAR) which was fitted with a collimating lens. The visualisation laser was mounted
onto a 3D microstage to align with the camera objective. The frame exposure time
used in the experiment was 300 ns in order to observe the cell deformation as shorter
times resulted in too little light to generate images of sufficient fidelity.

The camera and light source were triggered from the electromagnetic signal gen-
erated when the shock wave source was excited. For a target cells, high speed images
were taken both in its reference state (i.e., before triggering shock waves) and dur-
ing shock wave loading with the same imaging settings in order to measure the cell
deformation in each image frame.

1.4 System alignment

The camera and shock wave source were aligned by placing a piezoelectric needle
hydrophone (Müller Instruments) inside the gel coupled to the Minilith. The tissue
sample was positioned such that a sharp image of the needle hydrophone was ob-
served with the optimal light on the background. The Minilith was then manually
adjusted until the pressure waveform matched a reference waveform for the focal spot.
This aligned the optics and shock wave source. The gel was then translated laterally
(without disturbing the position of the shock wave source or optics) until the needle
was out of the region of interest and a cell could be observed. The optical system was
finely adjusted (but still within the 2 mm focal spot of the shock source) to bring the
cell sharply into focus.

2 Post-imaging analyses

Post-imaging analyses involved four image processing steps: image filtering, regis-
tration, automatic segmentation and feature extraction in order to determine cell
boundaries. Area and perimeter measures were extracted from the cell boundary for
quantitative analysis. The details of the steps are given below and the analysis was
implemented in C++ and MATLAB.

2.1 Image denoising

Ultra-high speed images are generally noisy due to the low light levels, thus image
filtering is desirable to allow for automatic cell contour segmentations. A non-local
means (NL-means) filter [7] was applied to reduce noise while preserving the fine
features of the original images. This algorithm takes advantage of the high degree
of redundancy of images, i.e., images are constituted of patterns which are usually
repetitive across itself [7]. Hence a noise reduced image can be reconstructed in which



the value of any pixel is estimated by all the pixels in its neighbourhood. This filtering
technique is more advanced than other local smoothing methods or frequency domain
filters as in the latter methods the relevant fine structures, details and texture of the
original images are also smoothed out [7].

Given a noisy image v defined in a discrete gridded format I, the estimated value
for pixel i is computed as a weighted average of all the pixels in the image [7]:

NL(v)(i) =
∑
j∈I

w(i, j)v(j) (6)

where the weights w(i, j) depend on the similarity between the subsets around pixels
i and j defined by the discrete grid:

w(i, j) =
1

Z(i)
e−
‖v(Ni)−v(Nj)‖

2

h2 (7)

where the subset Ni is called the neighbourhood or similarity window of i (user-

defined based on outcome quality and computational costs), Zi =
∑

j e
−
‖v(Ni)−v(Nj)‖

2

h2

is the normalising factor and h is the parameter which controls the decay of the weight
function.

The high speed images were firstly cropped to the region of the cell in order to
improve the filter efficiency. The parameters used for the filter were optimised based on
the balance between computational efficiency and filtering quality. The neighbourhood
N was chosen to be 4×4 pixels, and the decay parameter h = 100. Fig. 4 shows an
example of cell images before and after filtering. The NL-means algorithm filters
out the background noise such as speckles and grids while retaining the relevant cell
features.

2.2 Cell contour segmentation

The cell contour segmentation algorithm consists of an initial manual segmentation
on the reference image (i.e., one of the 16 image frames taken before shock wave
exposure), image registration process to propagate the initial segmentation contour
to all the other high speed images, and the active contour segmentation algorithm to
optimise the propagated segmentation results.

Image registration: Image registration was used to assist the process of seg-
mentation of the cell contour on the high speed images. A high speed image sequence
of a cell can be described as a set of images In : Ω ⊂ R2 → R, n ∈ {1, ..., N}. For
each of these images, there is a binary mask Cn which describes the cell contour.

Since this is a temporal sequence showing the motion of the same cell over time,
it can be considered that each acquisition is equal to the first frame under a nonlinear



(a) (b)

Fig. 4: (a) Cropped raw image on the region of interest; (b) NL-means filtered image.

deformation field φn, an error term εn (related to noise and other artefacts), and a
spatially varying multiplicative term Kn for illumination changes:

In = (I1Kn + εn) ◦ φn (8)

where ◦ is the operator that applies such deformation field. Consequently, given a
contour for the first acquisition C1, each subsequent contour is given by: Cn = C1◦φn.
Image registration is used to estimate each of these deformation fields and hence
propagate the initial contour to all frames. Its basic concept is to identify the optimal
deformation field φ̂n based on an error metric E:

φ̂n = arg min
φn

[E(I1 ◦ φn, In)] (9)

In this work, image registration was used to estimate the deformation fields and
the estimation of the cell contours on image n was taken to be: Ĉn = C1 ◦ φ̂n.

The error measure E attempts to quantitatively evaluate the misalignment of
both images, the most basic metric is the sum of square differences. However, the
large changes of contrast in the images over the time sequence severely hinders its
use as a measure of similarity for this problem. A similar challenge is found on liver
ultrasound sequences, where occlusions lead to high contrast variability. For such case,
the Scale Invariant Feature Transform (SIFT) has been used as similarity metric to
great success [8]. It extracts features based on the gradient orientation profile of
quadrants around each pixel of the images. These features are robust to illumination
changes and are able to capture the main structural characteristics of the images.



The local mean square error of the feature vectors at each voxel can then be used as
a robust measure of similarity.

The motion on the cells is expected to be smooth and without folding, hence,
φn should be restricted to such deformation fields. Here we applied a logDemons
framework which ensures that the obtained transformation fields are diffeomorphic,
and thus satisfying the restrictions on the smooth deformation fields (no folding) [9].
It was combined with SIFT as a similarity metric in a multi-resolution application.
It used three resolution levels, with 20 iterations at each level. The transformation
field was smoothed at each iteration with σdiff = 2 pixels. The SIFT Flow library was
used for dense SIFT with its default parameters [10].

Active contour segmentation: Cell contours in each high speed image se-
quences were refined automatically using an active contour segmentation [11]. Any
segmentation that was unsuccessful or visually unsatisfactory was then segmented
manually with three repeats. An initial guess of the cell contour obtained from the
initial manual segmentation and the image registration algorithm served as the input
to the active contour segmentation algorithm. The active contour segmentation is an
energy-minimising spline influenced by the image features and constrained by exter-
nal forces which are user-defined in order to achieve the best contour segmentation
results.

2.3 Feature extraction and analysis

The projected cell area, perimeter and centre of mass were determined from the cell
contour segmentations, see Fig. 5. The cell area was estimated by counting the number
of pixels within the cell contour and the cell perimeter was evaluated by summing up
the distance between adjacent pixels on the contour.

Normalised area and perimeter changes at each imaging time point were defined
by dividing the area or perimeter difference by their initial values at the reference
state (i.e., before shock wave exposure), A0 and P0:

∆A

A0

=
A(t)− A0

A0

(10)

∆P

P0

=
P (t)− P0

P0

where A(t) and P (t) are the measurements of area and perimeter respectively during
shock wave exposure at time t. The shearing related perimeter change which excludes
the effect of area change, ∆Ps(t) = P (t) − PA(t), was analysed by comparing the
deformed perimeter, P (t), during shock waves to PA, the expected perimeter change



Fig. 5: An example of segmented cell showing the contour (red line) and centre of
mass (blue dot).

due to the influence of area change for a circle:

PA(t) = P0

√
A(t)

A0

(11)

Fig. 6 shows the relative shear perimeter change for the three cell types at all
shock wave energy levels, revealing a value of less than 0.5%. This indicates that
the perimeter change due to shearing was not detectable compared to the volumetric
influence.

The image processing procedures described above are summarised in Fig. 7.

2.4 Segmentation variability

In order to quantify the variability in the segmentation process, a test was conducted
on eight different cells per cell line subjected to shock waves with the three energy
levels respectively. Each cell was manually segmented three times. The image pro-
cessing algorithms were then performed on each manual cell segmentation in order
to compare the measured area in each segmentation. The segmentation variability
was defined as the variation of the measured area in the three segmentations. The
test was repeated for each cell sample per cell line. Fig. 8 shows the segmentation
variability of the three cell lines measured at shock wave energy level 8 where the
greatest variance was found. In all cell samples the maximum area variability for the
segmentation prior to the arrival of the shock waves was less than 0.2%. During shock
loading, the majority of the cell samples exhibited less than 1% variability. In a few
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Fig. 6: The shear-related perimeter change for the three cell types: (a)-(c) HRE cells,
(d)-(f) HK-2 cells, (g)-(i) CAKI-2 cells, at shock wave energy level 4 (a)(d)(g), 6
(b)(e)(h) and 8 (c)(f)(i).

cases a variability of 2-5% occurred during stretching, due to reduced image quality
and thicker cell contours during the tensile phase of shock wave exposure.

2.5 Imaging variability

During the imaging process, the movement of the cells and the interaction between
acoustics and optics may result in artefacts or interference in cell images leading to cell



Fig. 7: Summary of the main procedures of cell image postprocessing.
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Fig. 8: The minimum and maximum segmented areas relative to the mean value of 8
cell samples taken at shock wave energy level 8 in (a) HRE cells; (b) HK-2 cells and
(c) CAKI-2 cells.
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Fig. 9: An example of segmented microbeads at shock wave energy level 8. (a) before
shock wave exposure; (b) during shock wave loading; (c) contour comparison.

contour change which is not due to the cell deformation in response to shock waves.
Therefore, 10 µm polystyrene microspheres (Polybead, black, Polyscience Inc.) were
used in the same experimental setting and post-imaging analysis was carried out in
the same manner as for the cells. Due to the large bulk modulus of the microbeads
(∼4 GPa [12]), shock waves should not lead to a detectable area change of the beads.
Therefore, they can be used to assess the influence of acousto-optic effects, bead and
gel movement, and image quality on the cell images.

Representative images and the segmentation of a microbead are presented in Fig.
9, it can be seen that the bead is translated but there is no significant change in its
contour during shock wave exposure.

The area changes of the microbead contour measured at the three shock wave
energy levels are presented in Fig. 10. The results showed that the area change of
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Fig. 10: Area change of the microbead contour at different shock wave energy levels
(a) level 4; (b) level 6; and (c) level 8.

the 10 µm microbeads varied between -3% and 3% at the three shock wave energy
levels. The mean error of area change found in the three shock wave energy levels
(levels 4-8) were 0.1%, 0.4% and -1.1%, respectively. The area change of microbeads
does not show a correlation with the shock wave profile whilst that of cells showed
clear negative and positive phases of area change consistent with the compressive
and tensile portions of the shock wave. This indicates that the imaging variability of
microbeads may not be caused by shock wave interactions but the small movement
of the objects inside the gel and segmentation variability.

3 Experimental results of cell deformation

Fig. 11 shows the maximum area increase changing with the shock wave energy levels:
at energy level 4, the area increase in all three cell lines was found to be between 3.3%
and 4.1%; at shock wave energy level 6, the area increase was between 6.3% and 8.5%;
and at energy level 8, the maximum area increase was 17% in the HK-2 cells, 13%
in HRE and 9% in CAKI-2. The difference was statistically significant for HK-2 and
CAKI-2 cells with a p-value of less than 5% in the Mann-Whitney U test.

As a circle changes in radius from an initial radius r0 to a different radius rt, the
area and perimeter are given by:

∆A

A0

=
2π (r2

t − r2
0)

2πr2
0

' 4πr0∆r

2πr2
0

=
2∆r

r0

∆P

P0

=
2π (rt − r0)

2πr0

=
∆r

r0

(12)

The ratio of the area change to perimeter change would therefore be a factor of two.
Under the same area change, assuming the circle is gradually deforming to an ellipse,
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Fig. 11: The maximum area increase for the three cell types at three shock wave energy
levels: (blue) HRE cells; (green) HK-2 cells and (red) CAKI-2 cells.

the area change over perimeter change is presented in Fig. 12, where b and a are the
major and minor axes of an ellipse. For an ellipse with more than 10% axes length
difference, the relative area change over relative perimeter change is less than 1.5.

Fig. 13 shows the ratio of the projected area change to perimeter change for all
three cell types at the three different energy level settings. The ratio remained between
1.5 and 2 shows an axes difference less than 10% for an ellipse and suggests that the
cells did not undergo substantial shear deformation during the shock wave exposure.

4 Cell viability test

A lactate dehydrogenase (LDH) assay was used to quantify cell viability inside the
agarose gel. LDH is a cytosolic enzyme present in many different cell types. Cell
membranes damaged by shock waves thus release LDH into the surrounding cell
medium, which in turn can be quantified through enzymatic reaction and colorimetric
detections. The level of LDH detected is directly proportional to cell damage, which
indicates cell cytotoxicity [13]. In order to have sufficient cell density for the assay,
the original sample mould (Fig. 1) was modified to concentrate cell populations to
the shock wave focal zone in three cylindrical compartments (16 mm in diameter
and 10 mm in height), see Fig. 14. Each compartment was filled with ∼500,000 cells
homogenously embedded in the agarose gel with the same consistency as the rest of
the tissue-mimicking phantom (0.6% agarose).
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Fig. 14: Schematic of cell viability test samples.

The cell samples were treated with 500 shock waves at shock wave energy levels
4 and 8. At the same time, maximum LDH release control and sham control were in-
cluded. A maximum LDH release control that represents the maximum cell cytotoxity
was determined by lysing the cell sample before the gel set, while the sham control
representing the maximum cell viability was determined by keeping the cell sample
in the 37 ◦C incubator without shock wave treatments. The protocol is modified from
reference [14].

After the shock wave treatments, the cell samples were carefully disected from the
tissue phantom and placed in a 12-well plate filled with 2 mL cell medium. A complete
medium control with only cell growth medium, no cells, was used to determine the
background LDH activity due to the cell medium. The well plate was placed in the
37 ◦C incubator for 18 hours to allow the LDH to diffuse into the cell medium.
Subsequently, 50 µL samples of the medium were collected from each well into a 96-
well plate for LDH analysis using a LDH cytotoxicity assay kit (Pierce, ThermoFisher
Scientific). The assay was performed by transferring 50 µL of reaction mixture to
each sample well and mixing by gentle tapping. After incubating the plate at room
temperature protected from light for 30 min, 50 µL stop solution was added to each
sample well. The absorbance at 490 nm and 680 nm was measured using the FLUOstar
Omega micro-plate reader to determine the LDH activity. The cell cytotoxicity was
calculated as:

%cytotoxicity =
Dsample −Dsham

Dmaxrelease −Dsham

× 100 (13)

where D represents the absorbance measured at 490 nm subtracted from that at 680
nm.

5 Numerical modelling

5.1 Model geometry

Fig. 15 shows the 3D Finite Element model, which consists of a cell model of 20 µm in
diameter embedded in a tissue model describing the surrounding extracellular matrix.



The shock wave profiles measured in the experiment were applied at the top surface

Fig. 15: Cross-sectional view from the mid-plane of the FE model (bottom truncated
for presentation): a cell embedded in the surrounding tissue model.

of the model as an incident plane wave. The lateral boundaries were prohibited from
moving laterally, and the bottom was fixed. The cell was positioned 50 µm from the
top surface to minimise losses in the propagation of the incident wave, and the overall
model length was taken to be 5 mm to ensure that wave reflections from the bottom
boundary occurred only after the shock wave tail fully crossed the cell.



5.2 Constitutive framework

The conservation of linear momentum of a continuum system is described by:

∇P + ρ0b = ρ0ẍ, ∀X ∈ B0 (14)

where P is the first Piola-Kirchhoff stress tensor which effectively relates force in the
deformed configuration to area in the reference (undeformed) configuration B0, ρ0 is
the density in B0, b is the body force vector per unit mass, and X and x are the
point coordinates vector in the reference and deformed configuration respectively.

The determination of the stress measure is also related to the deformation of the
material of interest through its constitutive material law. The second Piola-Kirchhoff
stress S = F−1P and the Kirchhoff stress τ = PFT are also used in the description of
the material laws. Here, F = ∂x

∂X
is the deformation gradient tensor and J = det (F)

is the Jacobian which represents the volumetric change with respect to the reference
configuration. The cell deformation in the model was decomposed into a deviatoric
response and a volumetric response, which are described below.

Nonlinear viscoelasticity: The deviatoric material response was described by a
nonlinear viscoelasticity framework [15], where the deviatoric second Piola-Kirchhoff
stress S̄ of the viscoelastic system (see Fig. 16) depends on the deviatoric initial elastic
response S̄◦ and the evolution of the stress-like viscous internal variables Qi:

S̄(t) = S̄
◦
(t)− J−

2
3 DEV[

N∑
i=1

Qi(t)] (15)

where N is the number of viscoelastic branches in Fig. 16; N = 1 for the first order
generalised Maxwell viscoelastic model.

Fig. 16: Schematic of the viscoelasticity material framework in small deformation [15]



The deviatoric initial elastic stress is the derivative of the volume-preserving elastic
stored energy function W̄ ◦ with respect to the deviatoric right Cauchy-Green tensor
C̄ = F̄

T
F̄ [15]:

S̄
◦
(t) = J−

2
3 DEV{2∂C̄W̄ ◦[C̄(t)]} (16)

where the operator “DEV” provides the correct notion of “deviatoric” stress tensor
in terms of the right Cauchy-Green tensor C, satisfying: C:DEV[•] = 0.

The evolution of the internal variables is extended from the linear (small defor-
mation) viscoelasticity case:

Q̇i(t) +
1

τi
Qi(t) =

γi
τi

DEV{2∂C̄W̄ ◦[C̄(t)]}

lim
t→∞

Qi = 0

(17)

where τi = ηi/µi is the relaxation time of each viscoelastic component and γi is the
ratio of the shear modulus of each viscous component to the instantaneous shear
modulus (i.e., γi = µi/µ0).

After a few manipulations, the deviatoric Kirchhoff stress τ̄ is given by:

τ̄ (t) =γ∞dev{2∂C̄W ◦[C̄(t)]}

+
N∑
i=1

γidev{F̄(t)

∫ t

−∞
exp[−(t− s)/τi]

d

ds

F̄(s)−1dev{2∂C̄W̄ ◦[C̄(s)]F̄(s)−T}dsF̄(t)T} (18)

where “dev” is the deviator operator defined by: dev[•] = (•)− 1
3
[(•) : I]I.

Equation of state: The volumetric Kirchhoff stress is given by τ ◦vol = JpI,
where the pressure p captures the difference in bulk modulus under compression and
tension. During compression the bulk modulus is taken to be KC but during tension
when the pressure exceeds the transition pressure threshold, p̃, the bulk modulus
reduces to KT (see Fig. 17):

p = H(p̃− p)
(
KT

ρ− ρ0

ρ0

+∆p

)
+ H(p− p̃)

(
KC

ρ− ρ0

ρ0

)
−KC

ρ̃− ρ0

ρ0

(19)

where H is the Heaviside function, ∆p = (KC − KT )(ρ̃ − ρ0)/ρ0, p̃ and ρ̃ are the
transition pressure and density, respectively. The compressive bulk modulus KC was
determined to be 2 GPa due to small cell deformation under compression and high



Fig. 17: Schematic of the bilinear EoS accounting for different bulk moduli for the
compressive (KC) and tensile phases (KT ) of shock waves. ρ̃ and p̃ are the density
and pressure at the transition, and p0 and ρ0 refer to their reference states.

water content of the cell, whilst the other parameters (KT and p̃) were calibrated
against experimental observations.

Artificial viscosity: In a discretised scheme, such as in the finite element
method, artificial viscosity is necessary to spread the shock front over several ele-
ments so that the simulation of shock fronts (with length scale a prori less than the
mesh size) can be captured without introducing spurious oscillations. The spurious
oscillations can be eliminated by subtracting a certain amount of pressure pav from
the original pressure loadings [16], where pav is expressed as:

pav = ρleε̇v(b1cd + leb2
2ε̇v) (20)

where b1 and b2 are the linear and quadratic damping coefficients, respectively, le is the
characteristic element size, ε̇v is the volumetric strain rate and cd is the longitudinal
wave (p-wave) speed.

5.3 Numerical model calibration and validation

The material properties (KT and p̃) in the constitutive framework of each cell model
were calibrated against the experimental data by finding the least mean square error
between the simulation and experimental results in terms of the area change for all the
three shock wave loading conditions. This process was cross-validated by determining
the optimal values for only two of the energy level settings at a time and testing for the



“left out” (untrained) energy setting by analysing the difference between its simulation
and experimental results using the previously calibrated values. Table 1 lists the
cross-validation results for each cell line, including different training combinations,
resultant calibration values and error between simulation and experimental results
in the untrained data set. The calibration process of the numerical model presents
an error around 12% for all cell types, which is acceptable considering the small
compressive deformation and the experimental variation, see Fig. 3 in the main article.
It can also be seen that the transition pressure values obtained for healthy (HRE and
HK) cells are consistently larger in magnitude compared to that of cancer (CAKI)
cells. This indicates a physical difference in transition pressure between two groups
which is highlighted by performing a Welch's t-test with a p value less than 0.1.

Table 1: Cross-validation of the numerical model for the three cell lines.
Cell type Trained settings Optimal properties Untrained error mean error

KT p̃ setting
HRE Lvl 4 & Lvl 6 20MPa -4.6MPa Lvl 8 6.8%

Lvl 4 & Lvl 8 25MPa -4.4MPa Lvl 6 17.9%
Lvl 6 & Lvl 8 20MPa -5.2MPa Lvl 4 12.4% 12.4%

HK Lvl 4 & Lvl 6 20MPa -4.6MPa Lvl 8 7.7%
Lvl 4 & Lvl 8 20MPa -4.6MPa Lvl 6 9.5%
Lvl 6 & Lvl 8 19MPa -4.4MPa Lvl 4 19.8% 12.3%

CAKI Lvl 4 & Lvl 6 22MPa -4.4MPa Lvl 8 13.7%
Lvl 4 & Lvl 8 35MPa -4MPa Lvl 6 8.1%
Lvl 6 & Lvl 8 35MPa -3.8MPa Lvl 4 14.1% 12.0%

5.4 Quantification of stress and strain evolution of cells

Fig. 18 shows the comparison of the simulated pressure waveforms obtained at the
centre of each cell model at the three shock wave energy levels. The maximum pressure
differences among the three cell lines were 7%, 3% and 5% corresponding to shock
wave energy level 4, 6 and 8, respectively. This shows that the shock wave propagation
is not strongly influenced by the difference in mechanical properties between the cell
types. The maximum von Mises stress, which quantifies the amount of shearing in
the model, was found to be of the order of 100 Pa measured at the cell equator using
the deviatoric mechanical properties from the literature.

The membrane strain in each cell line at different shock wave energy levels is
depicted in Fig. 19. The membrane strain is defined by the ratio of the difference in
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Fig. 18: Comparison of the simulated pressure measured in the centre of the cell
models: (a) level 4; (b) level 6; (c) level 8; CAKI-2 cells (red); HK-2 (green) and HRE
(blue).
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Fig. 19: The overall simulated cell membrane strain: (a) level 4; (b) level 6; (c) level
8; CAKI-2 cells (red); HK-2 (green) and HRE (blue).

the cell membrane surface area to the initial value at the reference state, S0:

∆S

S0

=
S(t)− S0

S0

(21)

where S(t) is the surface area of the cell membrane during shock wave exposure at
time t. The results show greater variation than the pressure waveforms. The maximum
membrane area expansion under tension reached up to 10% in HRE, 12% in HK-2
and 8.5% in CAKI-2 cells at shock wave energy level 8.
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