Science Advances

advances.sciencemag.org/cgi/content/full/4/4/eaao7265/DC1

NAAAS

Supplementary Materials for

Geoelectrochemical CO production: Implications for the autotrophic origin of life

Norio Kitadai, Ryuhei Nakamura, Masahiro Yamamoto, Ken Takai, Yamei Li, Akira Yamaguchi, Alexis Gilbert, Yuichiro Ueno, Naohiro Yoshida, Yoshi Oono

> Published 4 April 2018, *Sci. Adv.* **4**, eaao7265 (2018) DOI: 10.1126/sciadv.aao7265

This PDF file includes:

- fig. S1. A schematic of the electrochemical cell.
- fig. S2. Abiotic organic synthesis driven by the electrochemically generated reductive gas on CdS at –1.0 V (versus SHE) in 100 mM NaCl saturated with 1 atm of $CO₂$.
- fig. S3. X-ray diffraction patterns of metal sulfides.
- fig. S4. ¹H NMR spectra of the CO₂-saturated 0.1 M NaCl after applying -1.2 V (versus SHE) for 24 hours in the presence of metal sulfides.
- table S1. Summary of total current densities and FEs for $CO₂$ reduction on metal sulfides.
- table S2. Peak list of x-ray diffraction patterns of metal sulfides.

fig. S1. A schematic of the electrochemical cell. The cell is made of a Pyrex glass tube sandwiched between a polyoxymethylene (POM) cap and basement that were tightened together with stainless screws and knurled nuts. The cell has two compartments: a large working electrode side (~100 mL) and a small counter electrode side (~15 mL) that are separated by a proton exchange membrane (Nafion 117; DuPont). On the working electrode side, a gold-coated brass cylinder is placed at the center of the POM basement, and is coated with carbon paper (5.7 cm^2) with a silicon and POM packings. An Ag/AgCl electrode (in saturated KCl) is used as the reference, and is fixed at a distance of less than 0.5 cm from the working electrode to reduce solution resistance. On the counter side, a platinum coil is inserted into the glass tube, and is used as the counter electrode

fig. S2. Abiotic organic synthesis driven by the electrochemically generated reductive gas on CdS at –1.0 V (versus SHE) in 100 mM NaCl saturated with 1 atm of CO2. The product chromatograms are shown together with those of the standards and initial samples. **(A)** Extracted ion chromatograms at the m/z between 196.047 and 196.111 (top) and mass spectrum at 4.55 min for the heated sample (bottom). **(B)** Chromatograms for glycine (top) and organic acids (bottom). **(C)** Chromatograms for glycine and glycylglycine.

fig. S3. X-ray diffraction patterns of metal sulfides. All runs were conducted with 2θ ranging from 10° to 90° using 0.02° 2θ step with a scan rate of 1° min⁻¹. Reference patterns were taken from the PDF (Power Diffraction File) published by the International Centre for Diffraction Data. See table S2 for the peak positions and assignments.

fig. S4. ¹H NMR spectra of the CO2-saturated 0.1 M NaCl after applying –1.2 V (versus SHE) for 24 hours in the presence of metal sulfides.

table S1. Summary of total current densities and FEs for CO² reduction on metal sulfides.

Continued.