Supplementary Information 1: Sup Tables 1-2 and Sup Fig 1-10

A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function

Trubiroha, A.^{1,a}, Gillotay, P.¹, Giusti, N.¹, Gacquer, D.¹, Libert, F.¹, Lefort, A.¹, Haerlingen, ,B.¹, De Deken, X.¹, Opitz, R.^{1,2} and Costagliola, S.¹

¹ Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium

² Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany

A. Trubiroha, P. Gillotay and N. Giusti contributed equally to this work

^a present address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany

Corresponding authors:

Sabine Costagliola (scostag@ulb.ac.be)

Robert Opitz (robert.opitz@charite.de)

This file contains 2 Tables, 10 Figures and Supplementary NGS data

Supplementary Table 1. gRNA target sequences and primers used for genotyping Supplementary Table 2. Primers used for PCR-based approach of RNA probe preparation

Supplementary Figure 1. Quantification of fluorescence signal intensity in live transgenic Tg(tg:nlsEGFP) zebrafish larvae at 6 dpf.

Supplementary Figure 2. Phenotypic spectrum of *pax2a* and *nkx2.4b* crispants

Supplementary Figure 3. Thyroid anlage specification is not perturbed in *pax2a* crispants

Supplementary Figure 4. Phenotypic spectrum of *duox* and *duoxa* crispants

Supplementary Figure 5. Phenotypic spectrum of *tshr* crispants

Supplementary Figure 6. Illumina HiSeq analyses of nkx2.4b, duoxa and tshr crispants

Supplementary Figure 7: Full length gel for the cropped gel shown in Figure 7.

Supplementary Figure 8. Characterization of *adamtsl2* crispants

Supplementary Figure 9. Full length gels for the cropped gels shown in Suppl. Figure 8

Supplementary Figure 10. Brightfield micrographs of crispants and germline mutant fish

Supplementary NGS data. Allele frequencies of individual F0 crispants as determined from HiSeq sequencing data by CrispRVariants Software

Supplementary Tables 1 – 2

target	gRNA target sequence (5'-3')	strand	forward primer (5'-3')	reverse primer (5'-3')	product size
adamtsl2 exon 1	GGCTGGAAGTGATCACATAC	+	GCTTCAGACAGTGTCTCTCCTG	GCTTCAGACAGTGTCTCTCCTG	206 bp
adamtsl2 exon 13	AGAGGTCAGATGCTCAGATG	+	CAGCTAAATGTGGTCGCAAG	GGTCCCCACTCGGATGCT	151 bp
duox exon 23	GTCATCTACGCCATCTCCGC	+	ACCGGAGTCAATTTTCCCTTG	ACTTACAGATGCATCTTTCC	210 bp
<i>duoxa</i> exon 2	GTATTCCCGGTAGAATGAAG	+	GCTTTAGTTCTCGCCTGTGG	TCACCGATCTGCCACGTATT	178 bp
nkx2.4b exon 1	GTTCGAGCCGTACCAAGCCG	-	GAGCCATAACGCGTACCACA	GTATCTCGGCTCCGGGTTC	169 bp
nkx2.4b exon 2	AGCACGCGCCGTTTCCTGCG	-	AAAGTCTCCAGGTTTATGGG	CGCTCCAGCTCGTATACCT	152 bp
<i>pax2a</i> exon 2	GGCGGTGTGAACCAGCTAGG	+	TGTGTCTGTGTTGTTGTATCCC	TGGCTGACCCGTAGTTGTCT	167 bp
tshr exon 4	GCTGACATTCATCCACCCAG	+	GGAACACACGAAAGCTGACAT	AACAGTGATTTTGCTCACAGATAC	85 bp
tshr exon 10	GATCATAGGTGTCTCTGAAG	-	GAACCTGGCATCGACTTGAG	GTTTCACCGAAACCCATGTT	128 bp

Supplementary Table 1: gRNA target sequences and primers used for genotyping

Supplementary Table 2: Primers used for PCR-based approach of RNA probe preparation

target	GenBank Accession	forward primer (5'-3')	reverse primer (5'-3')	probe size
adamtsl2	XM_021476679	AAGAAAACAACAACCGGTAAAGAC	CTGTAAAACACTCACAACCTCCAC	857 bp
nkx2.4b	NM_131589	TTTCTCAGTGAGCGATATTTTGAG	CGTATACAATTCACGTCAAAGAGG	1058 bp
slc5a5	NM_001089391	TTTGTATGGCTTCAAGTTCCTGTA	TGTTTTCTCTGTGAAATGGTGATT	906 bp
tg	NM_001329865	TAATTGTAGTGACGGCCAGTTTTA	TTTTCTCCTTGTAGCTGAAGAGGT	796 bp
tshb	NM_181494	TCCAGACAGACATCCTCATACACT	TGAACCCTATTAAAACCACACCTT	857 bp

Note: A sequence containing the T3 polymerase promoter was added to the 5' end of each reverse primer sequence in order to obtain a PCR product that could be used to generate an antisense probe during *in vitro* transcription. Therefore, the final design of the reverse primers used in this study was as follows: 5' GGATCCAATTAACCCTCACTAAAGGGAA(N)24 3' with N representing the 24 nucleotides of the gene-specific reverse primer. The bases of the T3 polymerase promoter become double-stranded promoter sequence during the PCR reaction.

Supplementary Figures 1 – 10

Supplementary Figure 1: Quantification of fluorescence signal intensity in live transgenic *Tg(tg:nlsEGFP)* zebrafish larvae at 6 dpf. Transgenic zebrafish were treated from 52 hpf onwards with 30 mg/L phenylthiourea (PTU) or 5.0 μ g/L thyroxine (T4). Fluorescent reporter signal intensities were analysed in untreated controls (Ct) and treated fish by epifluorescence microscopy. Results are shown as means±S.E.M. (*N*=7-9). Asterisks denote significant differences between treatment means (** *P* < 0.01, Student *t*-test).

Supplementary Figure 2: Phenotypic spectrum of *pax2a* and *nkx2.4b* crispants. (A) Epifluorescence live imaging of Tg(tg:nlsEGFP) zebrafish larvae injected with Cas9 protein

and sgRNAs targeting *pax2a* or *nkx2.4b* (exon 1 and exon 2), respectively. Ventral views of the thyroid region (anterior to the right) are shown for non-injected control fish and four different crispants displaying hypoplasia of variable severity. Images were aquired at 55 hpf, 80 hpf, and 6 dpf. (B) Whole-mount immunofluorescence staining of Tg(tg:nlsEGFP) zebrafish for EGFP and colloidal T4 at 6 dpf. Ventral views of the thyroid region (anterior to the right) are shown for non-injected control fish and four different crispants displaying hypoplasia of variable severity.

Supplementary Figure 3: Thyroid anlage specification is not perturbed in *pax2a* crispants. (A,B) Whole-mount *in situ* hybridization for the early thyroid marker *nkx2.4b* in non-injected control embryos and *pax2a* crispants. Thyroidal *nkx2.4b* expression (arrow) was not different between experimental groups at 28 hpf. Panel A shows dorsal views of stained specimen (anterior is to the top). Panel B shows lateral views (anterior is to the right). (C) Loss of thyroid marker expression in later stage *pax2a* crispants. Whole-mount *in situ*

hybridization for the thyroid differentiation marker tg in non-injected control embryos and pax2a crispants at 55 hpf. In contrast to the strong tg staining in the compact and slightly ovoid thyroid primordium of control embryos, half of the pax2a crispants showed either a complete absence of detectable tg staining (data not shown) or presented thyroid primordia of greatly reduced size. Ventral views are shown (anterior is to the top). (D) pax2a crispants display strongly reduced immunoreactivity to a pax2a antibody. Whole-mount immunofluorescence staining of pax2a (magenta) was performed on non-injected control embryos and pax2a crispants at 24 hpf using a pax2a antibody directed against an epitope located C-terminal to the sgRNA target site. Approximately half of the pax2a crispants (53.7%; N=79/147) displayed a strongly reduced pax2a immunofluorescence signal. Lateral views are shown (anterior is to the right). Arrowheads: mid-hindbrain boundary; arrows: thyroid anlage; asterisks: otic vesicle. Scale bars: 100 µm.

hyperplasia/decreased T4

Supplementary Figure 4: Phenotypic spectrum of *duox* and *duoxa* crispants. (A) Epifluorescence live imaging of Tg(tg:nlsEGFP) zebrafish larvae injected with Cas9 protein and sgRNAs targeting *duox* or *duoxa*, respectively. Ventral views of the thyroid region (anterior to the right) are shown for non-injected control fish and four crispants. Images were aquired at 55 hpf, 80 hpf, and 6 dpf. No deviation from control thyroid morphology was

evident in *duox* and *duoxa* crispants at 55 and 80 hpf. By 6 dpf, hyperplastic thyroid enlargement (goiter) was detectable in many *duox* and *duoxa* crispants. (B) Whole-mount immunofluorescence staining of Tg(tg:nlsEGFP) zebrafish for EGFP and colloidal T4 at 6 dpf. Ventral views of the thyroid region (anterior to the right) are shown for non-injected control fish and different crispants displaying hypothyroidism (decreased T4 staining) that was often but not always associated with a hyperplastic thyroid enlargement. Scale bars: 50 µm.

hypoplasia/decreased T4

Supplementary Figure 5: Phenotypic spectrum of *tshr* crispants. (A) Epifluorescence live imaging of Tg(tg:nlsEGFP) zebrafish larvae injected with Cas9 protein and sgRNAs targeting exon 4 or exon 10 of *tshr*, respectively. Ventral views of the thyroid region (anterior to the right) are shown for non-injected control fish and four crispants. Images were aquired at 55 hpf, 80 hpf, and 6 dpf. No deviation from control thyroid morphology was evident in *tshr* crispants at 55 and 80 hpf. By 6 dpf, thyroids of *tshr* crispants had an atrophic/hypoplastic appearance and displayed a greatly reduced GFP reporter signal. (B) Whole-mount immunofluorescence staining of Tg(tg:nlsEGFP) zebrafish for EGFP and colloidal T4 at 6 dpf. Ventral views of the thyroid region (anterior to the right) are shown for non-injected

control fish and different *tshr* crispants displaying hypothyroidism (decreased T4 staining), variable thyroid hypoplasia and reduced GFP expression. Scale bars: 50 µm.

Supplementary Figure 6: Illumina HiSeq analyses of nkx2.4b, duoxa and tshr crispants. Distribution of allelic variants as determined by Illumina HiSeq analysis of individual crispants revealed high mutagenesis efficiency in larvae presenting thyroid dysgenesis (target: exon 1 of nkx2.4b, exon 2 of nkx2.4b), thyroid hypoplasia and decreased T4 content (target: exon 10 of tshr) and hypothyroidism/hyperplastic thyroid enlargement (target: duoxa). The percentage of WT alleles (no variant call), in-frame indels, or frameshift indels is shown for N = 4-6 larvae per phenotypic category (median values with interquartile range).

Supplementary Figure 7: Full length gel for the cropped gel image shown in Figure 7B. Polyacrylamide gel for PCR amplicons of wild-type fish (single PCR product of 178 bp), heterozygous carriers of the *duoxa* Δ 11 allele (main PCR products of 178 and 167 bp) and homozygous carriers of the *duoxa* Δ 11 allele (PCR product of 167 bp). DNA molecular size markers are shown in lane 1 and 13, wild-type sample in lane 2, heterozygous *duoxa* mutants in lane 3, 4, 5 and 10, homozygous *duoxa* mutants in lanes 6-9 and negative controls (H₂O) in lane 11 and 12. Additional slow-migrating heteroduplex bands can be seen in PCR samples of heterozygous *duoxa* mutant fish (lanes 3,4,5,10).

Supplementary Figure 8: Characterization of *adamtsl2* **crispants.** (A) *adamtsl2* mRNA is expressed at high levels in the zebrafish thyroid primordium (arrow) as demonstrated by whole-mount *in situ* hybridization. Lateral and frontal views of 55 hpf embryos stained with an *adamtsl2*-specific riboprobe are shown. (B) Zebrafish *adamtsl2* genomic locus on chromosome 5 with sequences for exon 1 and exon 13. Underlined sequences are target sites

for sgRNA-ex1 and sgRNA-ex13, respectively. PAM sequences are highlighted in yellow and the boxed sequence in exon 1 is the BclI restriction enzyme recognition site. (C) Thyroid phenotyping of *adamtsl2* crispants did not reveal alteration in thyroid morphogenesis or thyroid function. Results shown are from an injection experiment with sgRNA-ex13 and similar results were obtained with sgRNA-ex1. Epifluorescence live imaging of Tg(tg:nlsEGFP) zebrafish at 55 hpf, 80 hpf, and 6 dpf. Ventral views of the head region and 3-fold magnified views of the thyroid region (GFP channel only) are shown for non-injected controls and adamtsl2 crispants. Whole-mount immunofluorescence (IF) staining of 6 dpf Tg(tg:nlsEGFP) zebrafish for EGFP (thyroid cells) and thyroxine (colloidal T4). Ventral views of the head region (anterior is to the top) and 3-fold magnified views of the thyroid region (GFP, T4) are shown. Scale bars: 100 µm. (D) Polyacrylamide gel electrophoresis (PAGE) of PCR amplicons generated with primers spanning the target site of sgRNA-ex1. Upper panel shows a gel for PCR amplicons of WT larvae (single PCR product of 206 bp) and adamtsl2 crispants (multiple slow-migrating heteroduplex bands). Lower panel shows a gel for PCR amplicons digested with BclI. Note complete digestion of PCR amplicons from WT larvae resulting in two restriction fragments of 111bp and 95 bp, respectively. Images of fulllength gels are shown in Supplementary Figure 9A,B. (E) PAGE analysis of PCR amplicons generated with primers spanning the target site of sgRNA-ex13. Gel showing PCR amplicons of non-injected WT larvae (single PCR product of 151 bp) and adamtsl2 crispants (multiple slow-migrating heteroduplex bands in most samples). Full-length gel is shown in Supplementary Figure 9C.

А

Supplementary Figure 9: Full length gels for the cropped gels shown in Supplementary Figure 8. (A) Full length gel for the cropped gel shown in the upper panel of Supplementary Figure 8D. (B) Full length gel for the cropped gel shown in the lower panel of Supplementary Figure 8D. (C) Full length gel for the cropped gel shown in Supplementary Figure 8E.

Supplementary Figure 10: Brightfield micrographs of crispants and germline mutant fish (A) Brightfield microscopy of control larvae and crispants displaying a thyroid phenotype after injection of gRNAs targetting *pax2a*, *duox* and *tshr*. Lateral views (anterior to the left) of 6 dpf old fish are shown. Arrows highlight defective brain development in *pax2a* crispants. (B) Brightfield microscopy of *WT* larvae and homozygous carriers of the *duoxa* $\Delta 11$ allele. Lateral views (anterior to the left) of 5 dpf old larvae (pigment-less *casper* fish) are shown.

Supplementary Information 2: NGS data

A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function

Trubiroha, A.^{1,a}, Gillotay, P.¹, Giusti, N.¹, Gacquer, D.¹, Libert, F.¹, Lefort, A.¹, Haerlingen, B.¹, De Deken, X.¹, Opitz, R.^{1,2} and Costagliola, S.¹

¹ Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium

² Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany

A. Trubiroha, P. Gillotay and N. Giusti contributed equally to this work

^a present address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany

Corresponding authors: Sabine Costagliola (<u>scostag@ulb.ac.be</u>) Robert Opitz (<u>robert.opitz@charite.de</u>)

Allele frequencies of individual F0 crispants as analysed by CrispRVariants.

Data of HiSeq sequencing of zebrafish mutagenesis experiments were analysed by $CrispRVariants^{26,45}$. For each target locus, variant allele plots and barplots are presented for individual zebrafish categorized by phenotype. Only variants with a frequency of $\geq 5\%$ in at least one zebrafish were considered.

Variant allele plots show on the left the alignment of each variant to the reference genome (top line) with the sgRNA sequence and the 3' PAM indicated by boxes. The cut site is indicated by a vertical line. The gene scheme on the top shows the binding site of the sgRNA (in red) in relation to known Ensemble transcripts. Within the alignment, deletions and insertions are indicated by '-' and by symbols, respectively, with the corresponding insert sequence explained below the plot. Deletions, insertions, single nucleotide variants and chimeric reads are indicated by D, I, SNV, or 'other' respectively. Each variant is further characterized by its size and by the position of the most upstream base in relation to the cut site. For example, a 4 bp deletion starting at -4 bases upstream of the cut site would be -4:4D. The right panel of the variant allele plots shows the frequency (in read counts) of each variant for individual zebrafish with the top line indicating the total number of derived sequences. Color codes on the right represent the relative frequencies in percentages of each variant.

Barplots show the relative frequencies (x-axis) of no variant alleles, frameshift indels, inframe indels, single nucleotide variants, and chimeric reads for individual zebrafish (Y-axis) as indicated by color codes. The number of different alleles (variants) and the total number of sequences for each individual zebrafish are shown to the right of the barplots.

pax2a ENSDARG0000028148

ENSDARG00000104107 *nkx2.4b* exon 1

4897	2000 48973000					4897400	0						2	48975000			
Reference -	CCGGGTTCGAGCCGTACCAAGCCGTGGCCGTGGCGCCGTTTCTCATGCTCTCA	27613	34221	18812	20300	159635	79904	134581	41104	123895	138024	226794	219202	250612	283064	150827	122062
no variant -	C C G G G T T C G A G C C G T A C C A A G C C G T G G C C G T G G C G C C G T T T C T C	26185	32304	17829	19272	6068	738	273	0	15376	4483	2	16098	236573	202035	141102	64544
SNV:-2 -	C C G G G T T C G A G C C G T A C C A T G C C G T G G C C G T G G C G C C G T T T C T C	51	84	38	42	30	4	18742	0	57	24	1	418	822	911	567	260
–3:5D -	CCGGGTTCGAGCCGTACCGTGGCCGTGGCGCCGTTTCTCATGCTCTCCT	0	0	0	0	37330	18559	44275	2469	26307	34774	64072	63423	1	14978	4	14427
-6:10D -	C C G G G T T C G A G C C G T G G C C G T G G C G C C G T T T C T C A T G C T C T C C T	- 0	0	0	0	26894	780	13801	8258	19672	19045	5594	16532	0	4212	0	6173
–3:11D -	C C G G G T T C G A G C C G T A C C G T G G C G C C G T T T C T C A T G C T C T C C T	0	0	0	0	1018	32	1807	0	5211	5176	65121	4455	0	2071	1	2614
–12:15D -	C C G G G T T C G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	9463	2308	4257	3687	1275	249	29823	15837	0	3113	0	2100 -
–6:16D -	CCGGGTTCGAGCCGTGGCGCCGTTTCTCATGCTCTCCT	0	0	0	0	5660	4573	2637	11403	3259	8164	14679	16324	0	1918	0	2820
1:11 -	C C G G G T T C G A G C C G T A C C R W G C C G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	3118	1779	8442	0	1571	6418	4589	6065	0	3669	0	821 -
1:3D -	T C C G G G T T C G A G C C G T A C C A A G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	2907	1045	0	468	3843	11555	0	8216	0	3991	0	377 -
–2:3D -	T C C G G G T T C G A G C C G T A C C A C G T G G C C G T G G C G C C G T T T C T C	- 0	0	0	0	573	16214	0	0	1259	44	0	1341	0	633	0	1944 -
-4:6D -	CCGGGTTCGAGCCGTACGTGGCCGTGGCGCGTTTCTCATGCTCTCT	- 0	0	0	0	2491	8	1241	0	1278	10424	1	3484	0	260	0	2283
1:31 -	T C C G G G T T C G A G C C G T A C C A A G C C G T G G C C G T G G C G C C G T T T C T C	- 0	0	0	0	520	0	0	0	8620	9	2730	6815	0	224	0	392
-3:4D -	T C C G G G T T C G A G C C G T A C A C G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	1333	3	0	2	1	11621	68	1720	0	0	0	0 -
-2:2D -	TCCGGGTTCGAGCCGTACCACCGTGGCCGTGGCGCCGTTTCTCATGCTCTCCT	0	0	0	0	4038	10	9382	0	1	0	1	4	0	4	0	18
–12:17D -	C C G G G T T C G G C C G T G G C G C C G T T T C T C A T G C T C T C C T	0	0	0	0	215	8297	0	0	452	0	0	1462	0	730	0	742
–2:16D -	C C G G G T T C G A G C C G T A C C A C C G T T T C T C A T G C T C T C C T	0	0	0	0	941	0	6	0	0	0	0	1	0	1	0	8827
2:11 -	T C C G G G T T C G A G C C G T A C C G G G T C G T G G C C G T G G C G C	0	0	0	0	393	5	7900	0	4	77	17	25	0	15	0	3
1:27l -	T C C G G G T T C G A G C C G T A C C A A G C C G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	0	0	0	7659	0	0	0	0	0	0	0	0 -
-4:8D -	F C C G G G T T C G A G C C G T A C G G C C G T G G C G C C G T T T C T C A T G C T C T C C T O	0	0	0	0	6	5563	0	0	402	0	0	552	0	337	0	0 -
5:201 -	T C C G G G T T C G A G C C G T A C C A A G C C G T G G C C G T G G C G C C G T T T C T C	0	0	0	0	0	5913	0	0	0	0	0	0	0	0	0	0
Other -		1	1	2	1	1278	92	1	5342	577	366	1086	32	1	975	2	2089
	-20 -15 -10 -5 -11 5 10 15 20 25 30		2-2		4-р	d-1	d-2	d-3	4-b	a-1	a-2	a_3	a-4		e-2	e-3	e-4-
	T ▼ 27I GCG, TGG	jecte	jecte	jecte	jecte	hyroi	hyroi	hyroi	hyroi	plasi	plasi	plasi	plasi	lotyp	lotyp	lotyp	lotyp
		n-in	n-in	n-in.	n-in _.	at	at	at	at	hypo	hypo	hypo	hypo	pher	pher	pher	pher
	v Č	ou	ou	ou	ou					_	_	_	_	2	2	2	2

ENSDARG00000104107 *nkx2.4b* exon 2

48972000	48973000					4897400	0							48975000			
Reference - A G A A A A G C A C G C G C C G T T T C C T C	G C G C G C G C G C G C G T G T A G A G T T A C C A T A G A T T T	31615	42629	22132	30836	157508	103282	153558	74888	159010	138002	221227	169805	253611	300499	153058	204838
	G C G C G G C G C G C G T G T A G A G T T A C C A T A G A T T T	30823	41596	21554	30012	50407	38632	2127	6793	99896	15456	9088	31667	128242	99622	52960	149527
-6:17D - <mark>A G A A A A G C A C G C G C C G</mark>	C G T G T A G A G T T A C C A T A G A T T T	0	1	0	0	38375	16306	15818	19972	13686	17612	31806	15287	28362	50117	15269	8792
1:11 - A G A A A A G C A C G C G C C G T T T C C T	, G C G C G G C G C G C G C G T G T A G A G T T A C C A <mark>T</mark> A G A T T T	0	0	0	0	13059	6992	14423	2029	3857	17313	15401	6118	17227	19620	7056	8542
–11:16D - A G A A A A G C A C G – – – – – – – – – – – – –		- 0	0	0	0	2675	3797	56786	743	4040	8278	9641	1890	8256	9384	6399	357
-8:12D - A G A A A A G C A C G C G C	G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	0	0	0	0	6328	2308	7110	3688	1347	9536	13833	4455	15391	6300	12673	282
-14:16D - A G A A A A G C	G C G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	- 0	0	0	0	2129	2606	17037	704	2690	3222	11125	20862	2187	4877	4155	1381 -
–1:3D - <mark>A G A A A A G C A C G C G C C G T T T C C</mark> – ·	– – G C G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	0	0	0	0	10	1097	16178	2888	556	454	2534	5031	2334	1672	622	646
-5:17D - A G A A A A G C A C G C G C C G T	G T G T A G A G T T A C C A T A G A T T T	- 0	0	0	0	5269	3130	1312	7042	2731	2014	5507	1913	1487	2712	269	6
-14:18D - A G A A A A G C	G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	- 0	0	0	0	1039	1817	214	861	643	2240	5466	10525	3010	2073	3240	1340 -
2:51 - A G A A A A G C A C G C G C C G T T T C C A G	• •	- 0	0	0	0	5	1	0	0	0	19912	930	0	453	0	0	0
–6:7D - <mark>A G A A A A G C A C G C G C C R</mark> – – – – – –	– C R C G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	0	0	0	0	315	852	9	0	0	0	14789	475	281	583	1328	0
–5:6D - A G A A A A G C A C G C G C C G C	- C G C G G C G C G C G C G T G T A G A G T T A C C A T A G A T T T	- 0	0	0	0	1	0	0	0	294	0	173	10279	0	0	515	16
	O C C G C G G C G C C G C G T G T A G A G T T A C C A T A G A T T T	0	0	0	0	0	0	0	0	0	0	0	8969	0	0	0	0
_20 _15 _10 _5 _1	1 5 10 15 20 25 30	ed-1	ed-2	ed-3	ed-4	oid-1	oid-2	oid-3	oid-4	sia-1	sia-2	sia-3	sia-4	pe-1	pe-2	pe-3	pe-4
		inject	inject₀	inject	i−inject	athyrc	athyrc	athyrc	athyrc	ypoplas	ypoplas	ypoplas	ypopla	henoty	henoty	henoty	henoty
\checkmark		non	uou	non	non					Ē	Ē	Ē	Ē	d Q	d 2	d ou	d Q

ENSDARG0000062632 duox

		31536000					31540	0000								;	3154400	00						
Reference	GCCACGTATTCCCGGTAGAATG	AAGAGGAAACTG	ACAGCCAGAA	C C G A G A A A A C C	30686	44101	29684	37836	39481	47003	235829	182080	184731	1257472	200772	254844	318187	341359	316594	4063532	246678	218774	19074	11769
no variant	GCCACGTATTCCCGGTAGAATG	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	28026	40269	27074	34822	4019	8238	14899	11394	14999	9403	29120	14857	11322	16929	95941 ⁻	174345 <mark>1</mark>	81026	61265	1422	5406
-5:4D	GCCACGTATTCCCGGTAG	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	24	23	1	17144	5982	42379	20055	18295	23671	15607	26910	31500	52300	32526	30886	12358	23673	1707	1123
-6:7D	GCCACGTATTCCCCGGT	– AGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	399	72	3	0	255	9494	20415	40393	9929	6795	27853	<u>39357</u>	13899	17363	9860	16049	3947	19001	2201	475
-1:3D	GCCACGTATTCCCGGTAGAAT	– – GAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	1	0	0	1	8729	2059	16283	15679	13993	8713	9973	25874	15664	15450	19880	10779	10420	9704	539	416
-1:11	GCCACGTATTCCCCGGTAGAATG	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	891	915	2949	3822	40	2033	9013	6266	1962	71725	7092	17265	2188	5449	200	206
-6:8D	GCCACGTATTCCCGGT	– – CAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	0	184	0	0	0	0	1 1	<mark>112760</mark>	299	1	1	0	1	0	0
-3:3D	GCCACGTATTCCCGGTAGA	ARGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	14	502	16087	4096	45142	4961	5312	16803	3868	5200	1868	3541	281	1799	250	251
-5:10D	GCCACGTATTCCCGGTA	G A A A C T G	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	263	642	12035	6494	11553	3801	4552	2969	10307	15529	3229	6537	2274	11022	177	115
-1:5D	GCCACGTATTCCCCGGTAGAAT -	– – – – <mark>GGAAACT</mark> G	ACAGCCAGAA	CCGAGAAAACC	836	1479	1075	1322	739	2271	2236	1699	21722	724	6134	6823	3141	1248	11754	3465	404	4491	1945	561
-6:9D	GCCACGTATTCCCCGGT	– – – AGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	192	14646	4961	371	9711	5900	1673	8978	4788	5813	6970	258	5068	515	178
1:41	GCCACGTATTCCCCGGTAGAATG	ARGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	159	123	2	3	181	2	1437	703	46176	2211	3438	928	1228	138	3
-3:6D	GCCACGTATTCCCGGTAGA	– – – AGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	17	917	810	447	10	3551	3138	1907	2678	23356	1374	870	250	41	135
1:11	GCCACGTATTCCCGGTAGAATG	MAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	3	145	212	705	1	438	16259	731	172	1161	2255	5646	867	8	24	17
-1:16D,19:4D	GCCACGTATTCCCGGTAGAAT		<mark>T C C</mark>	CCGAGAAAACC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27586	0	0	0	0
1:71	GCCACGTATTCCCGGTAGAATG	AACAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	0	0	18130	1	177	6	1888	255	354	242	472	0	1	0	21
-1:21	GCCACGTATTCCCGGTAGAATG	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	3555	98	6297	192	6	306	909	112	1760	2635	2230	301	177	1323	57	0
-1:2D	GCCACGTATTCCCGGTAGAAT -	– AGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	106	557	1	661	9233	368	516	274	2980	2673	749	0	271	131	113
-1:1D	GCCACGTATTCCCGGTAGAAT -	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	1	0	0	1	0	272	2961	3	2548	176	3099	146	875	970	649	904	1105	1538	3298	19
-1:10l	GCCACGTATTCCCGGTAGAATG	AAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	88	479	2	0	0	310	14364	249	2	1	633	0	2	289	5
-1:5l	GCCACGTATTCCCCGGTAGAATG	WAGAGGAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	144	270	526	4	749	3920	834	1318	16	4092	447	3	611	1225	26
1:171	GCCACGTATTCCCGGTAGAATG	A A G A G G A A A C T G	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	0	0	1	0	0	3	0	2	1558	1	2	352	0	1291	0
–2:7D	GCCACGTATTCCCGGTAGAA	– – – – – GAAACTG	ACAGCCAGAA	CCGAGAAAACC	0	0	0	0	0	4	19	18	1	3	247	65	493	7	3	386	3	6	1145	0
	-20 -15 -10 -5 -	11 5 10	15 20	25 30		7-2-7	ν - Π	4	Ţ	2	- - -	4	Ī	2	ကို	4	2	9	T .	N N	e G	4	-2	9
		1001	ACGTA,		ctec	cted	cted	cted	d T⊿	d T⊿	d T ²	d T⊿	d T⊿	7⊥ p	7⊥ p	7⊥ p	7⊥ p	d T⊿	type	type	type	type	type	type
	$ \bigcirc \begin{array}{c} A, \\ T \end{array} $	AGGA, ATAC	GAGGA,		-inje	-inje	-inje	-inje	ase	ase	ase	ase	ase	ase	ase	ase	ase	ase	ieno	ieno	ieno	ieno	ieno	ieno
	▲ A, ▲	AAACTGA,			-not	-uot	-not	-not	ecre	ecre	ecre	ecre	scre	ecre	ecre	ecre	acre	ecre	hd o	hd o	hd o	hd o	hq o	hq o
	AC,	AAACTGACAAAACTGGA,	•		<u> </u>	<u> </u>	<u> </u>	-	ia/de	ia/de	ia/de	ia/de	ğ	ŏ	ŏ	ŏ	ŏ	ď	č	Ĕ	č	č	č	Ĕ
		AGAAAAGAGAAAGAGGA, GAAACTGTAGAGGAAAA							plas	plas	plas	plas												
									per	per	per	per												
									Ê	Ê	h L	É												

Π

	4		1					I										
	$\rightarrow \rightarrow $	$\rightarrow \rightarrow $	$\rightarrow \rightarrow$	\longrightarrow	\rightarrow	╢╢─→		\rightarrow		\rightarrow	\rightarrow	\rightarrow	\rightarrow	<u>≻</u>	\rightarrow	\rightarrow	>	
	1		•					I										
	600000	6010	000					6020000)					6030000				
5 (107070							
Reference			499879	500203	436252	497851	1005	62222	58785	50069	125958	62143	62034	52992	56005	62953	55345	
no variant			420020	425110	361955	401200	1035	104	382	654 EE	3880	1305	32030	27039	34305	25/18 75	543	
SINV2,-1			2000	2024	1015	0.00	200	104	71	22	340 200	490	100	00	147	100	007	
SINV2			2090	2034	040	920	4034	0	0	44	200 30	279	0	90	0	0	997	
_5·4D			15533	16508	12372	22864	24313	13256	3860	5821	56139	23356	8585	7464	6101	1043	10042	
-5:5D		T C T C C C T A A T T T A C A G T	7977	9494	10538	11552	2235	1299	20594	783	2215	1212	2013	1338	1275	896	1088	
-3:6D	- CGAAAGCTGACATTCATCC AGGCTTTTAAGA	TCTCCCTAATTTACAGT	3627	3546	5102	5380	4966	504	203	15428	1297	2394	1503	932	787	278	9151	
-8:8D	- C G A A A G C T G A C A T T C A G A G G C T T T T A A G A	TCTCCCTAATTTACAGT	3992	5308	5173	5423	5111	1896	219	4905	1109	5396	1092	941	968	375	1941	
-2:1D	- CGAAAGCTGACATTCATCCA - CCAGAGGCTTTTAAGA	TCTCCCTAATTTACAGT	1428	2030	2127	3037	3418	10300	485	160	1414	2195	2112	1104	2161	172	1895	Percentage
-10:11,-6:6D		TCTCCCTAATTTACAGT	0	0	0	0	1	0	0	1	31482	0	0	0	0	0	0	n creentage
-1:7D	- CGAAAGCTGACATTCATCCAC CATTTAAGA	TCTCCCTAATTTACAGT	166	237	0	0	200	4	22189	1722	89	733	13	242	153	35	0 -	25
-4:41	- CGAAAGCTGACATTCATCCATCCAGAGGCTTTTAAGA	TCTCCCTAATTTACAGT	194	71	317	68	1219	8417	54	42	93	660	127	167	161	52	26 -	75
–1:51	I - C G A A A G C T G A C A T T C A T C C A C A G A G G C T T T T A A G A	TCTCCCTAATTTACAGT	253	0	0	346	0	32	0	0	49	414	130	65	48	0	10027	100
-2:8D	- CGAAAGCTGACATTCATCCA CTTTTAAGA	TCTCCCTAATTTACAGT	430	0	0	0	258	44	18	2868	6282	71	263	80	56	31	27	
-5:3D	- CGAAAGCTGACATTCAT CTCAGAGGCTTTTAAGA	TCTCCCTAATTTACAGT	2	2	0	1	648	7929	0	0	73	1	1	35	37	1	361	
-5:11D	- CGAAAGCTGACATTCAT CTTTTAAGA	TCTCCCTAATTTACAGT	362	0	0	541	94	6299	27	9	0	265	37	78	20	25	137 -	
-2:91	I - CIGA A AGCTIGA CATTICATICICA CAGAGIGICTTITA AGA	TCTCCCTAATTTACAGT	0	123	338	876	124	35	5	4991	0	0	14	0	24	0	0 -	
-2:191	I - C G A A A G C T G A C A T T C A G C A A T C C A G A G G C T T T T A A G A	T C T C C C T A A T T T A C A G T	0	0	0	0	0	0	0	4660	0	32	1	0	0	0	0 -	
-6:11D	- CGAAAGCTGACATTCA	T C T C C C T A A T T T A C A G T	0	0	0	0	4520	13	0	25	0	0	0	6	0	0	0	
-4:3I,2:1D	- CGAAAGCTGACATTCAGCCATTC-GAGGCTTTTAAGA	T C T C C C T A A T T T A C A G T	0	0	0	0	0	4247	0	0	0	0	0	0	0	0	0 -	
-2:61,1:31		TCTCCCTAATTTACAGT	0	0	0	0	1	0	0	0	0	3839	0	0	1	0	0	
-1:221	C G A A A G C T G A C A T T C A T C C A C C A G A G G C T T T T A A G A	TCTCCCTAATTTACAGT	- 1	0	0	0	0	0	3180	0	0	0	0	0	155	0	14	
	-20 -15 -10 -5 -11 5 10 15	20 25 30		Ŋ	ကု	4	T	·Y	ကု	4	ທ	မို	T	Ņ	ကို	4	ц	
			ted	ted	ted	ted	T4.	T4.	T4.	T 4	T4.	T4.	/be	/be	/be	/be	/be	
	AAAAAGTGG, OATT OTGA		jec	jec	jec	jec	MO	MO	NO	MO	NO	M	lot	lot	lot	lot	lot	
	CTTAT, CATT, ACC		. <u>–</u>	-i-	-i-	- Li	sia/l	sia/l	sia/l	sia/l	sia/l	sia/l	her	her	her	hei	hei	
			nor	nor	nor	nor	plas	plat	plas	plas	plat	plat	<u>0</u>	<u>o</u>	<u>o</u>	0	e e	
	GAGGAT 🛛 💙 221 🔍 G						lod,	lod,	lod,	lod,	lod,	lod,					<u> </u>	
	v v v						h	۲ ۲	<u>ل</u>	۲ ۲	<u>ک</u>	Ê						

ENSDARG00000037195 *tshr* exon 10

	$\blacksquare \rightarrow \rightarrow$	$\rightarrow \rightarrow $				> > >													
	600000	60100	000					602	0000					(6030000				
Reference -	C T G G T G A T C A T A G G T G T C T C T G A A G A G G T T A T C	A C T C A A G T C G A T	47322	51783	22322	41406	57495	79028	85456	47452	35628	41396	76936	84196	167506	84742	50756	44282	
no variant -	C T G G T G A T C A T A G G T G T C T C T G A A G A G G T T A T C	A C T C A A G T C G A T	45426	49665	21456	39854	3558	7825	8353	19695	8394	2564	74301	81760	89887	58157	36373	14158	
SNV:-1 -	C T G G T G A T C A T A G G T G T C T C T C A A G A G G T T A T C	A C T C A A G T C G A T	36	78	24	22	308	404	6183	232	269	1	51	49	348	54	28	867	
2:3D -	C T G G T G A T C A T A G G T G T C T C T G A G G T T A T C	A C T C A A G T C G A T	2	0	0	0	9573	1083	2400	3529	1065	2006	0	1	15735	4517	2174	1842	
-7:14D -	C T G G T G A T C A T A G G T T A T C	A C T C A A G T C G A T	0	1	0	3	4872	3723	609	1523	5359	913	0	0	4512	3191	1259	2201	
1:5D -	C T G G T G A T C A T A G G T G T C T C T G G T T A T C	A C T C A A G T C G A T	0	0	0	0	4990	483	12093	1901	973	829	0	0	1686	58	1205	1604	
1:25I -	C T G G T G A T C A T A G G T G T C T C T G A A G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	0	25473	14	84	0	0	0	0	0	0	0	0	
–12:13D -	C T G G T G A T C A A G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	2563	36	237	1368	7	14222	0	0	491	23	220	101	Percentage
-4:4D -	C T G G T G A T C A T A G G T G T C A A G A G G T T A T C	A C T C A A G T C G A T	- 1	0	0	0	3081	7013	6767	59	311	1154	1	0	278	62	0	3	25 50
-2:2D -	C T G G T G A T C A T A G G T G T C T C A A G A G G T T A T C	A C T C A A G T C G A T	- 1	0	0	0	181	4342	1091	232	57	0	0	0	1266	1342	66	798	75 100
4:81 -	C T G G T G A T C A T A G G T G T C T C T C A A G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	8	7599	1	0	0	0	0	0	54	0	22	3	
2:21 -	C T G G T G A T C A T A G G T G T C T C T G A A K A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	65	70	4343	55	70	114	52	0	235	68	650	533	
–2:3D,8:6I -	C T G G T G A T C A T A G G T G T C T C A T A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	0	0	4314	0	0	0	0	0	0	0	0	0	
-6:9I,-4:4D -	C T G G T G A T C A T A G G T G T C A A G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	0	0	4308	0	0	0	0	0	0	0	0	0	
–3:11D –	C T G G T G A T C A T A G G T G T C T A T C	A C T C A A G T C G A T	0	0	0	0	0	0	1	64	3230	2	0	0	0	0	0	1	
-4:11 -	C T G G T G A T C A T A G G T G T T T C A T A G G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	0	0	0	0	2531	0	0	0	0	11	0	0	
–22:22D -	A A G A G G T T A T C	A C T C A A G T C G A T	0	0	0	0	0	0	1	0	2461	0	0	0	0	0	0	0	
	-20 -15 -10 -5 -11 5 10	15 20	- 1 - bé	3d-2 -	-93 -	- 4 be	-4-1	4-2	4-3	4-4	-4-5	4-6	-1-	0e-2	0e3	0e-4	06-5 <mark>-</mark>	99	
	A TCGATGAG		njecte	njecte	njecte	njecte	sed 1	notyp	notyp	notyp	notyp	notyp	notyp						
	AAACGGTGA O TA, TA, TC 251		ii–nor	ii–not	ii–not	i-not	ecrea	ecrea	ecrea	ecrea	ecrea	ecrea	o phe	o phe	o phe	o phe	o phe	o phe	
			Ľ	C		Ľ	sia/de	sia/de	sia/de	sia/de	sia/de	sia/de	č	č	Ĕ	č	Ĕ	č	
							popla	popla	popla	popla	popla	popla							
							hyl	hyl	hyi	hyl	hyl	hyi							

Hiseq sequencing data tables and reads statistic.

- A) Scheme representing the organisation of the data tables: a) Raw number of total reads pairs generated during Hiseq sequencing experiment. b) Number of sequences extracted from the raw data and used for analysis. c) Number of sequences successfully mapped on the genomic regions of interest. d) Number sequences unsuccessfully mapped on the genomic regions of interest. e) Genomic region of interest. f) Number of mapped reads corresponding to the genomic region of interest in (e). g) Proportion of a specific genomic region mapped reads on the total of Hiseq sequencing run reads. h) Barcode library reference for a specific set of samples. i) Hiseq sequencing run reference.
- B) This example coming from the 1st barcode library generated and used in the first run of NGS experiment illustrates how one can read the data tables presented here. This NGS run generated 311923 reads, among those, 290449 could be used for analysis. Analysis showed that 284435 reads were mapped on the different regions of interest while 6014 could not be mapped. Out of those 284435 mapped reads 27634 could be mapped on the nkx2.4b exon1 targeted region. This number represents around 10% of the mapped reads from this experiment.

Important note on the analysis:

- 1) Note that the number of mapped reads reported in the following tables might be slightly higher than the total number of reads reported in CrispRVariant plots (first row). This is due to CrispRVariant analyses that excludes reads that do not fully span the target window used to summarize mutations for a given amplicon.
- 2) Note that the sum of the mapped reads might be slightly lower that the total number of mapped reads. This is due to off-target reads that could be mapped on the genome of the zebrafish but not on any of our genomic regions of interest.

		nkx2.4b ex1	nkx2.4b ex2	pax2a	Duox ex23	<i>duoxa</i> ex2	<i>tshr</i> ex10	tshr ex4	Unrellated genes	
	1	27624	21620	2007	21070	20027	47224		0700	311923
	ode	27634	31620	26897	31979	30837	47331	N/A	87680	290449
	arco	10%	11%	0%	11%	11%	17%	NI/A	21%	284435
	q	10%	11/0	370	11/0	11/0	1770	N/A	51/0	6014
	2	3/12/18	42630	15531	11827	44120	51791	N/A	103777	383709
	ode	54240	42030	43334	44027	44120	51751		103777	369209
	arc	9%	12%	12%	12%	12%	1/1%	N/A	28%	367165
	q	570	1270	1270	1270	1270	1470	N/A	2070	2044
	33	18827	22136	30775	41469	29698	22327	N/A	79966	251393
	ode	10027	22150	30//3	41405	25050	22527	14/74	75500	246266
	arc	8%	9%	13%	17%	12%	9%	N/A	33%	245383
er 1	q	0/0	570	1370	1770	1270	570	N/A	5570	883
qm	4	20309	30839	35138	31209	37855	41416	N/A	94699	305698
nu	od€	20303	50055	33130	51205	57055	41410	14/74	54055	294573
loo	oarco	7%	11%	12%	11%	13%	14%	N/A	A 32%	291627
d Bi	q	770	11/0	12/0	11/0	13/0	11/0	,,,	3270	2946
ncin	55	N/A	N/A	N/A	N/A	39548	N/A	N/A	237629	300855
ner	ode	,//	,/.	,	,/.	000.0	,,,	,/.	207020	279833
seq	arc	N/A	N/A	N/A	N/A	14%	N/A	N/A	86%	277513
ed	q	,//	,//	,//	,,,	11/0	,,,	,/	0070	2320
His	<u> </u>	N/A	N/A	N/A	N/A	47499	N/A	N/A	372064	517319
	ode	,//	,,,	,//	,,,	17 155	,,,	,,,	572001	464391
	arc	N/A	N/A	N/A	N/A	11%	N/A	N/A	87%	428781
	q	,//	,//	,//	,,,	11/0	,,,	,/	0//0	35610
	2	Ν/Δ	N/A	Ν/Δ	N/A	19555	Ν/Δ	N/A	146163	178411
	ode	N/A	11/1	N/A	N/A	15555	N/A	N/A	140105	168333
	arc	Ν/Δ	N/A	Ν/Δ	N/A	12%	Ν/Δ	N/A	88%	166187
	q	N/A	11/1	N/A	11/14	1270	N/A	N/A	0070	2146
	8	N/A	N/A	N/A	N/A	11929	N/A	N/A	82630	104141
	ode	11/7	11/7	19/7	11/1	11529	11/7	11/1	02030	97050
	arc	N/A	N/A	N/A	N/A	13%	N/A	N/A	87%	94703
	q	11/7	11/7	19/7	11/1	13/0	11/7	11/1	87%	2347

		nkx2.4b	nkx2.4b	nav2a	Duox	duoxa	tshr	tshr ovA	Unrellated	
		ex1	ex2	ραλΖα	ex23	ex2	ex10	13111 CA4	genes	
	de1	167333	157614	158825	113132	241650	66333	N/A	574859	1515679 1483691
	arco	11%	11%	11%	8%	16%	4%	N/A	39%	1480170
	4			11/0	0,0	10/0	.,	,	0070	3521
	e2	118677	103410	119374	60543	185064	80453	N/A	560086	1251645
	poc							,		1230863
	oarc	10%	8%	10%	5%	15%	7%	N/A	46%	1227690
										3173
	le3	141879	153593	134503	54679	185980	94678	N/A	570641	1359848
	202.									1226161
	bar	11%	11%	10%	4%	14%	7%	N/A	43%	2155
										887505
	de4	61284	75101	94298	73743	143437	48962	N/A	362124	861800
	rco									859002
	ba	7%	9%	11%	9%	17%	6%	N/A	42%	2798
	10									1358958
	deE	132492	160579	180481	97663	203510	37577	N/A	525620	1340590
	irco									1338015
er 2	ра	10%	12%	13%	7%	15%	3%	N/A	39%	2575
nbe	6	102274	120217	100000	104754	250055	42602	N1 / A	F 470F F	1530808
unu	ode	162274	138317	160662	194754	256055	43682	N/A	547955	1508150
loc	oa r co	110/	0%	110/	120/	170/	20/		269/	1503778
g þí	;q	11%	9%	1170	15%	1770	5%	N/A	50%	4372
ncin	7	222122	222020	9/1298	336642	329571	76950	N/A	861336	2382353
uer	ode	255152	222020	54250	550042	525571	/0550	11/1	001550	2337036
seq	arc	10%	10%	4%	14%	14%	3%	N/A	37%	2330502
seq	R							,		6534
Ηİ	e8	230917	170524	132492	264755	359011	84203	N/A	919718	2331461
	cod									2288821
	ban	10%	7%	6%	12%	16%	4%	N/A	40%	2282616
										6205
	le9	250798	254568	97663	194652	318695	170679	N/A	944916	2436898
	000									2405457
	baı	10%	11%	4%	8%	13%	7%	N/A	39%	6027
	0									2664509
	le1(285564	300872	202930	184546	412454	84971	N/A	1058048	2620212
	202.									2614461
	bar	11%	12%	8%	7%	16%	3%	N/A	40%	5751
	1									1496017
	de1	150956	153261	44130	103825	24/152	50893	N/A	5/1//5	1472009
	rco	1.00/	100/	20/	70/	170/	20/	N1 / A	200/	1468389
	ba	10%	10%	3%	1%	17%	3%	N/A	39%	3620
	12	120164	205105	160663	120456	220160	46222	NI / A	E0100E	1409077
	jabr	120104	202182	100002	120450	220109	40332	N/A	201032	1386484
	arco	9%	15%	12%	۵%	16%	3%	N/A	36%	1382764
	þε	370	17/0	12/0	<i>31</i> 0	10/0	570	N/A	50%	3720

		nkx2.4b	nkx2.4b	nax2a	Duox	duoxa	tshr	tshr exA	Unrellated	
		ex1	ex2	ραλΖα	ex23	ex2	ex10	13111 274	genes	
	e1	N/A	N/A	N/A	N/A	N/A	N/A	501161	N/A	540387
	cod	-			-					503599
	bar	N/A	N/A	N/A	N/A	N/A	N/A	100%	N/A	2335
	0									556699
	de2	N/A	N/A	N/A	N/A	N/A	N/A	500742	N/A	504044
	arco	N1 / A		N1 / A	N1 / A	N1/A	N1/A	1000/	N1/A	500843
	þá	N/A	N/A	N/A	N/A	N/A	N/A	100%	N/A	3201
	23	N/A	N/A	N/A	N/A	N/A	N/A	436873	N/A	474455
	sod€	,,,,	,//	,//	,//			130073	,//	438540
	bard	N/A	N/A	N/A	N/A	N/A	N/A	100%	N/A	436924
										1010
	de4	N/A	N/A	N/A	N/A	N/A	N/A	498319	N/A	552900
	rco									498645
	ba	N/A	N/A	N/A	N/A	N/A	N/A	100%	N/A	2799
	5		NI / A	NI/A	NI / A			75772	250706	352047
	ode	NA	N/A	N/A	N/A	N/A	N/A	13123	238780	339806
	arc	N/A	N/A	N/A	N/A	N/A	N/A	23%	77%	334673
	q	,,,	,	,,,,	,,,,	,,,	,,,	2070		5133
	e6	N/A	N/A	N/A	N/A	N/A	N/A	62429	283350	400162
	pop.									374983
	bar	N/A	N/A	N/A	N/A	N/A	N/A	18%	82%	28568
	2									378762
r 3		N/A	N/A	N/A	N/A	N/A	N/A	58862	311639	370965
nbe	arco	NI/A	NI/A	NI/A	NI / A	NI/A	NI/A	16%	0/10/	370550
nur	q	NA	N/A	N/A	N/A	NA	NA	10%	0470	415
00	89	N/A	N/A	N/A	N/A	N/A	N/A	50357	250810	318162
ց ել	code	,	,	,	,	,	,			302204
nciı	bar	N/A	N/A	N/A	N/A	N/A	N/A	17%	83%	301209
edue										412041
q se	de9	N/A	N/A	N/A	N/A	N/A	N/A	128219	262062	393245
Hise	arco	NI/A	NI / A	N1/A	NI / A	N1/A	N1/A	220/	C70/	390403
-	þ	N/A	N/A	N/A	N/A	N/A	N/A	33%	07%	2842
	10	N/A	N/A	N/A	N/A	N/A	N/A	63494	263287	337536
	ode	,	,	,	,					327778
	oarc	N/A	N/A	N/A	N/A	N/A	N/A	19%	81%	326823
	1 F									271673
	de1:	N/A	N/A	N/A	N/A	N/A	N/A	62188	298405	361404
	rcoc							4 70 (000/	360630
	ba	N/A	N/A	N/A	N/A	N/A	N/A	17%	83%	774
	12	Ν/Δ	Ν/Δ	Ν/Δ	N/A	N/A	N/A	5321/	338873	412222
	ode	N/A	N/A	N/A	N/A	N/A	N/A	55214	220012	392883
	arco	N/A	N/A	N/A	N/A	N/A	N/A	14%	86%	392125
	q		-		-					758
	e13	N/A	N/A	N/A	N/A	N/A	N/A	56137	268006	333838
	cod									324973
	bar	N/A	N/A	N/A	N/A	N/A	N/A	17%	83%	739
	4									330028
	de1	N/A	N/A	N/A	N/A	N/A	N/A	63064	256022	320154
	arco	N/A	N/A	N/A	N/A	N/A	N/A	20%	80%	319160
	bē	N/A N/A N			19/74	11/74	11/74	2070	0070	994
F	:15	N/A	N/A	N/A	N/A	N/A	N/A	55541	262144	324996
	sod€		-	-						318001
	barc	N/A	N/A	N/A	N/A	N/A	N/A	17%	83%	31//31
										270

pax2a exon 2 HiSeq sequencing most frequent alleles alignment:

a) ref rna: ATG | GAT | ATT | CAC | TGC | AAA | GCA | GCA | GCC | TTC | TCG | GCG | ATG | CAC | CGC | GGC | GGT | GTG | AAC | CCA | GGA | GGG | GTT | GTG | AAT | GGC | AGA | CCC | CTA | CCT | GCG | GTG | GTC | AGG | CAC | CGC | GGT | GTG | AAC | CAC | CTA | GGA | GGG | GTG | TT | GTG | AAT | GGC | AGA | CCC | CTA | CCT | GGC | GTG | GTG | AGG | CAC | CGC | GGT | GTG | AAC | CAC | CTA | GGA | GGC | CTT | GTG | AAT | GGC | AGA | CCC | CTA | CCT | GCC | GTG | GTG | AGG | CCC | TTC | GGA | GGA | GGA | GTG | TTT | GTG | AAT | GGC | AGA | CCC | CTA | CCT | GGC | GTG | GTG | AGG | CCC | TTC | GGG | GGG | GTG | TTT | GTG | AAT | GGC | AGA | CCC | CTA | CCT | GGC | GTG | GTG | AGG | CCC | GTG | GTG | AAC | CAG | CTA | GGA | GGA | GTG | TTT | GTG | AAT | GGC | AGA | CCC | CTT | GTG | GGG | GTG | TTT | GTG | GAT | GTG | AAT | GGC | GGA | GTG | GTG | ATT | CAC | GCA | GAC | CCC | TTC | TCT | CGG | CCC | GCC | GGC | GTG | GTG | GTG | GTG | GTG | TTT | GTG | GAA | GCA | GCA | GCC | CCC | TTC | TCG | GCG | ATG | CAC | CGC | GCC | GCC | GGC | GGT | GTG | GAA | CCA | GTG | GTG | TTT | GTG | GAA | GCA | GCA | GCC | CCC | TTC | TCG | GCG | ATG | CAC | CGC | GCC | GCC | GGC | GGT | GTG | GAC | CCA | GCA | GGC | GTG | TTT | GTG | GAA | GCA | GCA | GCC | CCC | TTC | TCG | GCG | GGC | GCC | GGC | GGT | GTT | TGT | GAA | TGG | CAG | ACC | CCC | TCC | TCC | TCC | TCC | TCC | GCG | GTG | GCC | G

- a) Reference transcript (ENSDARG0000028148).
- 1) Deletion of 4nt (AGCT). Occurrence: 14-50%.
- 2) Deletion of 7nt (CAGCTAGG). Occurrence: 1-13%.
- 3) Insertion of 1nt (T). Occurrence: 1-6%.

tshr exon 4 HiSeq sequencing most frequent alleles alignment:

```
a) ref rna:...AAG|CTG|ACA|TTC|ATC|CAC|CCA|GAG|GCT|TTT|AAG|AAT|CTC|CCT|AAT|TTA|CAG|TAT|CTA|GGA|TTA|TTC|AAC| ... ref aa: ...K L T F I H P E A F K N L P N L Q Y L G L F N ...
1) mut rna:...AAG|CTG|ACA|TTC|ATC|CAG|AGG|CTT|TTA|AGA|ATC|TCC|CTA|ATT|TAC|AGT|ATC|TAG mut aa: ...K L T F I Q R L L R I S L I Y S I *
2) mut rna:...AAG|CTG|ACA|TTC|ATC|AGA|GGC|TTT|TAA
mut aa: ...K L T F I R G F *
3) mut rna:...AAG|CTG|ACA|TTC|ATC|CAC|CAT|TTA|AGA|ATC|TCC|CTA|ATT|TAC|AGT|ATC|TAG mut aa: ...K L T F I R G F *
a) mut rna:...AAG|CTG|ACA|TTC|ATC|CAC|CAT|TTA|AGA|ATC|TCC|CTA|ATT|TAC|AGT|ATC|TAG
mut aa: ...K L T F I R G F *
a) mut rna:...AAG|CTG|ACA|TTC|ATC|CAC|CAT|TTA|AGA|ATC|TCC|CTA|ATT|TAC|AGT|ATC|TAG
mut aa: ...K L T F I H H L R I S L I Y S I *
```

- 1) Deletion of 4nt (CCAC). Occurrence: 6.6-44.6%.
- 2) Deletion of 5nt (CCACC). Occurrence: 1.6-35%.
- 3) Deletion of 7nt (CCAGAGG). Occurrence: 0-37.8%.

tshr exon 10 HiSeq sequencing most frequent alleles alignment:

a) ref rna:... TTG|AGT|GAT|AAC|CTC|TTC|AGA|GAC|ACC|TAT|GAT|CAC|CAG|GAG|TTT|TTC|GGC|AAC|GGA|CAT|TAT|CTC|ACT|TAT|TTT|GAC|AGA|CAT|GAC|GAT|GAG|AAC|ATG|GGT|TTC|GGT... ref aa:... L S D N L F R D T Y D H Q E F F G N G H Y P T Y F D R H A D E N M G F G ... 1) mut rna:... TTG|AGT|GAT|AAC|CTC| |AGA|GAC|ACC|TAT|GAT|CAC|CAG|GAG|TTT|TTC|GGC|AAC|GGA|CAT|TAT|CCC|ACT|TAT|TTT|GAC|AGA|CAT|GCA|GAT|GAG|AAC|ATG|GGT|TTC|GGT... mut aa:... L S D N L R D T Y D H Q E F F G N G H Y P T Y F D R H A D E N M G F G ... 2) mut rna:... TTG|AGT|GAT|AAC|CTA|TGA mut aa:... L S D N L * 3) mut rna:... TTG|AGT|GAT|AAC|CTA|TGA mut aa:... L S D N L * 4) mut rna:... TTG|AGT|GAT|AAC|CCC|TAT|GAA|GAC|ACC|TAT|GAT|AAC|CAG|AGA|CAC|CTA|TGA mut aa:... L S D N L * 5) mut rna:... TTG|AGT|GAT|AAC|CCC|TAT|TCA|CTC|AGA|GAC|ACC|TAT|GAT|AAC|CAG|AGA|CAC|CTA|TGA mut aa:... L S D N L L S L R D T Y D N Q R H L * 5) mut rna:... TTG|AGT|GAT|AAC|CTC|TTG|ATC|ACC|CGA|GAC|ACC|TAT|GAT|AAC|CAG|AGA|CAC|CTA|TGA mut aa:... L S D N L L S L R D T Y D N Q R H L * 5) mut rna:... TTG|AGT|GAT|AAC|CTC|TG|ATC|ACC|GGA|GAC|ACC|TAT|ATC|CCA|CCC|CTT|ATT|TTG|ACA|GAC|ATG|GGTT|TCG|GTG|AAA|CAC|TGA mut aa:... L S D N L L S L R D T Y D N Q R H L * 5) mut rna:... TTG|AGT|GAT|AAC|CTC|TG|ATC|ACC|GGA|TTT|TTC|GGCA|ACG|GAC|ATT|ATC|CCA|CTT|ATT|TTG|ACA|GAC|AGA|ACA|TGG|GTT|TCG|GTG|AAA|CAC|TGA mut aa:... L S D N L L S L R D T Y D N Q R H L * 5) mut rna:... TTG|AGT|GAT|AAC|CTC|TG|ATC|ACC|GGAC|TTT|TTC|GGCA|ACG|GAC|ATT|ATC|CCA|CTT|ATT|TTG|ACA|GAC|AGA|ACA|TGG|GTT|TCG|GTG|AAA|CAC|TGA mut aa:... L S D N L L I T R S F S A T D I I P L I L T D M Q M R T W V S V K H *

- 1) Deletion of 3nt (TCT), no frameshift induced. Occurrence: 1.4-16.7%.
- 2) Deletion of 14nt (ACCTCTTCAGAGAC). Occurrence: 0.8-15%.
- 3) Deletion of 5nt (CTCTT). Occurrence: 0.6-14.2%.
- 4) Insertion of 25nt (ATCACTCAGAGACACCTATGATAAC). Occurrence: 0-32.2%.
- 5) Deletion of 12nt (TCAGAGACACCTA). Occurrence: 0.1-34.4%

duox exon 23 HiSeq sequencing most frequent alleles alignment:

- a) ref rna:...GTC|ATC|TCC|GCC|ATC|TCC|GCC|GCC|GCC|GCC|GCT|TTG|GAA|AGA|TGC|ATC|TAT|GGT|TTA|GGT|TTA|CAG|GCT|CAC|TCC|AGT|GGC|ATC|CCA|GAG|ACC|TCT|ATG|GTG|GTG|TTG|GTG|TTC|CGT refaa:...VIYAISAGLALERCIYYGLOAHSSGIPETSMVGVLVS R ref rna: GGC|TCA|GCG|GCC|GCC|ATT|TCG|TTC|CTG|TTC|CCC|TAC|ATG|CTG|CTG|ACT|GTG|TGC|CGA|AAC| ... G S A A A I S F L F P Y M L L T V C R N ... ref aa: 1) mut rna: GTC|ATC|TAC|GCC|GGC| CTC | GCT | TTG | GAA | AGA | TGC | ATC | TAT | TAT | GGT | TTA | CAG | GCT | CAC | TCC | AGT | GGC | ATC | CCA | GAG | ACC | TCT | ATG | GTG | TCT | CGT V T Y A G TATERCTYYGT, OAHSSGTPETSMVGVT, VS mut aa: R mut rna: GGC|TCA|GCG|GCC|GCC|ATT|TCG|TTC|CTG|TTC|CCC|TAC|ATG|CTG|CTG|ACT|GTG|TGC|CGA|AAC| ... G S A A A I S F L F P Y M L L T V C R N ... mut aa: 2) mut rna:...GTC|ATC|TCC|GCC|ATC|TCG|CTT|TGG|AAA|GAT|GCA|TCT|ATT|ATG|GTT|TAC|AGG|CTC|ACT|CCA|GTG|GCA|TCC|CAG|AGA|CCT|CTA|TGG|TGG|TGT|TGG|TGT|TGG|TGT|CTC|GTG|GCT|CAG|CGG mutaa:...VIYAISLWKDASIMVYRLTPVASORPLWWVCWCLVAOR mut rna: CCG|CCA|TTT|CGT|TCC|TGT|TCC|CCT|ACA|TGC|TGC|TGA mut aa. PPFRSCSPTCC* 3) mut rna:...GTC|ATC|TCG|CCC|ATC|TCG|CCC|GCC|TCG|CTT|TGG|AAA|GAT|GCA|TCT|ATT|ATG|GTT|TAC|AGG|CTC|ACT|CCA|GTG|GCA|TCC|CAG|AGA|CCT|CTA|TGG|TGG|GTG|TGT|TGG|TGT|CTC|GTG mutaa:...VIYAISPASLWKDASIMVYRLTPVASORPLWWVCWCLV
- mut rna: GCT|CAG|CCG|CCA|TTT|CGT|TCC|CTT|ACA|TGC|TGC|TGA mut aa: A Q R P P F R S C S P T C C *
 - a) Reference transcript (ENSDARG0000062632)
 - 1) Deletion of 9nt (CGCCATCTC), no frameshift induced. Occurrence: 18-61.9%.
 - 2) Deletion of 10nt (CTCCGCCGGC). Occurrence: 1.5-18.4%
 - 3) Deletion of 1nt (C). Occurrence: 0-18%

Duoxa (duox2) exon 2 HiSeq sequencing most frequent alleles alignment:

- a) ref rna:...GTC|AGT|TTC|CTC|TTC|ATT|CTA|CCG|GGA|ATA|CGT|GGC|AGA|TCG|AGA|TGG|TTT|TG|ATG|TTC|CGG|ATA|TTC|ATT|AGC|TTA|TTT|ATT|GGA|GTT|TTA|GTT|GTG|CTT|AAT| ... refaa:...VSFLFILPGIRGRSRWFWMFRIFISLFIGVVLVVLN... 1) mut rna:...GTC|AGT|TTC|CTC|TTC|TAC|CGG|GAA|TAC|GTG|GCA|GAT|CGA|GAT|GGT|TTT|GGA|TGT|TCC|GGA|TAT|TCA|TTA|GCT|TTA|TTA|TTG|GAG|TTG|TTT|TAG mutaa:...VSFLFYREYVADRDGFGCSGYSLAYLLELF 2) mut rna:...GTC|AGT|TTC|CTC|TAC|CGG|GAA|TAC|GTG|GCA|GAT|CGA|GAT|GGT|TTT|GGA|TGT|TCC|GGA|TAT|TCA|TTA|GCT|TAT|TTA|TTG|GAG|TTG|TTT|TAG mutaa:...VSFLYREYVADRDGFGCSGYSLAYLLELF 3) mut rna:...GTC|AGT|TTC|CTC| | ATT|CTA|CCG|GGA|ATA|CGT|GGC|AGA|TCG|AGA|TCG|AGA|TGG|TTT|TG|ATG|TTC|CGG|ATA|TTC|ATT|AGC|TTA|TTT|ATT|GGA|GTT|TTA|GTT|GTG|CTT|AAT| ... mut aa: ... V S F L I L P G I R G R S R W F W M F R I F I S L F I G V V L V V L 4) mut rna:...GTC|AGT|TTC|CTC|TTC|TAT|TCT|ACC|GGG|AAT|ACG|TGG|CAG|ATC|GAG|ATG|GTT|TTG|GAT|GTT|CCG|GAT|ATT|CAT|TAG mutaa:...VSFLFYSTGNTWOIEMVLDVPDIH 5) mut rna:...GTC|AGT|TTC|CTC|CTT| |CTA|CCG|GGA|ATA|CGT|GGC|AGA|TCG|AGA|TCG|ATG|TTT|TGG|ATG|TTC|CGG|ATA|TTC|ATT|AGC|TTA|TTT|ATT|GGA|GTT|GTT|TA|GTT|GTG|CTT|AAT| ... mut aa: ... V S F L L L P G I R G R S R W F W M F R I F I S L F I G V V L V V L Reference transcript (ENSDARG00000078962) a) Deletion of 4nt (GAAT). Occurrence: 9.9-43.4%. 1)
 - 2) Deletion of 7nt (AGAATGA). Occurrence: 0.6-22.2%.
 - 3) Deletion of 3nt (GAA), no frameshift induced. Occurrence: 4.4-22.1%
 - 4) Insertion of 1nt (T). Occurrence: 0-21.1%.
 - 5) Deletion of 3nt (ATG), no frameshift induced. Occurrence: 0-24.4%.

nkx2.4b exon 1 HiSeq sequencing most frequent alleles alignment:

- a) Ref rna:... GGC|GCC|ACG|GCC|ACG|GCT|TGG|TAC|GGC|TCG|AAC|CCG|GAG|CCG|AGA|TAC|CCA|ACA|ATC|TCC|AGG|TTT|ATG|GGT|CCC|TCG|GGC|GGC|ATG|AAC|ATG|GGC|ACG|TTA|CCG|GGA|ATG|GAC|GCC|AGT... ref aa: ... G A T A T A W Y G S N P E P R Y P T I S R F M G P S A G M N M G T L P G M D A S ... 1) mut rna:... GGC|GCC|ACG|GCC|ACG|GTA|CGG|CTC|GAA|CCC|GGA|GCC|GAG|ATA|CCC|AAC|AAT|CTC|CAG|GTT|TAT|GGG|TCC|CTC|GGC|GGG|CAT|GGA|CAT|GGG|CAC|GTT|ACC|GGG|AAT|GGA|CCC|GGG|CAG|TAA mut aa: ... G A T A T V R L E P G A E I P N N L Q V Y G S L G G H E H G H V T G N G R Q * 2) mut rna:... GCC|ACG|GCC|ACG|GCT|CGA|ACC|CGG|GAC|CGA|GAT|ACC|CAA|CAA|TCT|CCA|GGT|TTA|TGG|GTC|CCT|CGG|GGA|TGA
- mutaa:...A T A T A R T R S R D T Q Q S P G L W V P R R A *
- 3) mut rna:... AGA|AAC|GGC|GCC|ACG|GTA|CGG|CTC|GAA|CCC|GGA|GCC|GAG|ATA|CCC|AAC|AAT|CTC|CAG|GTT|TAT|GGG|TCC|CTC|GGC|GGG|CAT|GGA|CAT|GGG|CAC|GTT|ACC|GGG|AAT|GGA|CGC|CAG|TAA mut aa: ... R N G A T V R L E P G A E I P N N L Q V Y G S L G G H E H G H V T G N G R Q * 4) mut rna:... AGA|AAC|GGC|GCC|ACG|GCT|CGA|ACC|CGG|AGC|CGA|GAT|ACC|CAA|TCT|CCA|GGT|TTAT|GG|GTC|CCT|CGG|CGG|GCA|TGA
- mutaa:...RNGATARTRSRDTQQSPGLWVPRRA*
 - a) Reference transcript (ENSDARG00000104107).
 - 1) Deletion of 5nt (GGCTT). Occurrence: 6-32.9%.
 - 2) Deletion of 10nt (ACGGCTTGGT). Occurrence: 1-20%.
 - 3) Deletion of 11nt (GGCCACGGCTT). Occurrence: 0-28.7%.
 - 4) Deletion of 16nt (ACGGCCACGGCTTGGT). Occurrence: 2-27.7%.

nkx2.4b exon 2 HiSeq sequencing most frequent alleles alignment:

- 1) mut rna:... CAC|GCG|GCG|GCT|GCT|TTT|CTC|CCA|AGC|GCA|GCT|ATA|CGA|GCT|GAA|GCC|CGC|CTT|CAA|GCA|AAA|ATA|CCT|GTC|GGC|CCC|GGA|GGA|ACA|TTT|GGC|CAG|CAT|GAT|CCA|TCT|AAC|CCC| mut aa: ... H A A R A F L P S A G I R A G A P L Q A A K I P V G P G E G T F G Q H D P S N P mut rna: GAC|GCA|GGT|CAA|GAT|CTG|GTT|CCA|GAA|CCA|GAA|AAT|GAA|GAC|GGA|GGC|GAA|GGA|TAA
- mutaa: DAGQDLVPEPQVQNEAGGEG*
- 2) mut rna:... CAC|GCG|GCG|CCG|CGC|AAG|GAA|ACG|GCG|GCT|GCT|TTT|CTC|CCA|AGC|GCA|GGT|ATA|CGA|GCT|GGA|GCG|CCG|CTT|CAA|GCA|GCA|AAA|ATA|CCT|GTC|GGC|CCC|GGA|GGA|GGA|ACA|TTT|GGC|CGG|CGG|CGG|CGG| mut aa: ... H A A P R K E T A R A F L P S A G I R A G A P L Q A A K I P V G P G E G T F G Q mut rna: CAT|GAT|CCA|TCT|AAC|CCC|GCA|GGT|CAA|GAT|CTG|GTT|CCA|GAA|CCA|CAG|GTA|CAA|AAT|GAA|GCA|GGA|GGA|GGA|GGA|GGA|TAA
- mutaa: HDPSNPDAGQDLVPEPQVQNEAGGEG*
- 3) mut rna:... CAC|GCG|GCG|TGC|TTT|TCT|CCC|AAG|CGC|AGG|TAT|ACG|AGC|TGG|AGC|GCC|GCT|TCA|AGC|AGC|AAA|AAT|ACC|TGT|CGG|CCC|CGG|AGA|GGG|AAC|ATT|TGG|CCA|GCA|TGA mut aa: ... H A A P C F S P K R R Y T S W S A A S S S K N T C R P R R G N I W P A *

a) Reference transcript (ENSDARG00000104107).

- 1) Deletion of 17nt (CGGCGCCGCGCAGGAAA). Occurrence: 8.6-26.7%
- 2) Insertion of 1nt (T). Occurrence: 2.4-12.5%
- 3) Deletion of 16nt (CGCGCAGGAAACGGCG). Occurrence: 1-37%