1	Multifactorial Chromosomal Variants Regulate Polymyxin Resistance in Extensively
2	Drug-Resistant Klebsiella pneumoniae
3 4	
5	SUPPLEMENTARY FIGURES AND TABLES
6	
7	
8	
9	Table S1. Oligonucleotides used in this study

Assay	Gene	Forward sequence (5' to 3')	Reverse sequence (5' to 3')	Reference
PCR				
	mgrB	ATT CTG CCG CTT TTG CTG	CGT TTT GAA ACA AGT CGA TGA	24
Complex	mentation			
	mgrB	TTA AGA AGG CCG TGC TAT CC	AAG GCG TTC ATT CTA CCA CC	48
	phoP	CAC CAG GGG CCC TTT TTA T	GCT AAC GCT ATA GCC CAC CA	This study
	phoQ	ATA CCC ACA GGA CGT CAT CA	CAG GTG TCT GAC AGG GAT TA	48
	pmrB	ACC TAC GCG AAA AGA TTG GC	GAT GAG GAT AGC GCC CAT GC	48

		Resistance Profile ⁺																						
		1		2 3		4 5		6		7	7 8		10	11	12	13	14	15	1	6	1	17		
Strain [*]	AMK	GEN	TOB	CPT	TZP	MdI	MEM	CFZ	FEP	CTX	CAZ	FOX	CIP	SXT	TGC	ATM	AMP	SAM	CHL	FOF	CST	PMB	MIN	TET
ATCC 25922	≤2	≤0.5	≤0.5	≤0.25	≤1/4	≤0.5	≤0.25	≤2	≤0.5	≤0.25	≤0.5	≤2	≤0.125	≤0.5/ ≤16	≤0.25	≤0.5	8	8/4	≤8	≥27	0.25	0.25	≤0.5	≤0.5
ATCC 700603	≤1	≤8	≤ 8	≤4	128/> 64	≤0.5	≤0.25	≥64	≤0.5	2	64	≤16	≤0.125	≤2/> 128	≥4	≥32	>64	>64/ ≥32	≥32	≤12	0.5	0.5	≥16	8
ATCC 13883	≤0.5	≤0.5	≤0.5	≤0.25	16/4	≤0.5	≤0.25	≤2	≤0.5	≤0.25	≤0.5	≤2	≤0.125	≤0.5/ ≤32	≤1	≤0.5	>64	>64/ ≥8	≤4	≤18	≤4	≤4	≤1	≤0.5
ATCC BAA-2146	>64	>64	>64	>32	>128/ >64	>32	>32	>64	>64	>32	>64	>64	>16	>64/ >128	≥4	>64	>64	>64/ ≥32	>64	≤20	≤0.25	≤0.25	≥64	>64
1_GR_13	>64	>64	>64	>32	>128/ >64	≥64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	≥2	>64	>64	>64/ >64	64	≤19	16	≥8	≥16	>64
2_GR_12	>64	>64	>64	>32	>128/ >64	≥64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	2	>64	>64	>64/ >64	>64	≤20	16	8	16	>64
3_GR_13	>64	>64	>64	>32	>128/ >64	≥16	≥8	>64	≥16	>32	>64	64	>16	>64/ 128	2	>64	>64	>64/ >64	≥32	≤22	16	8	≥8	>64
4_GR_12	>64	>64	>64	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	2	>64	>64	>64/ >64	>64	20	32	≥16	≥ 8	>64
5_GR_13	≤16	≤4	≥ 8	>32	>128/ >64	≥32	≥4	>64	>64	>32	>64	>64	>16	>64/ 128	2	>64	>64	>64/ >64	>64	≤21	≥16	16	16	>64
6_GR_12	≤8	2	8	>32	>128/ >64	32	≥8	>64	≥64	>32	>64	>64	>16	>64/ 128	≥2	>64	>64	>64/ >64	>64	20	≤0.5	≤1	≤ 8	>64
7_GR_13	64	≤2	64	>32	>128/ >64	≥64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	≥2	>64	>64	>64/ >64	>64	19	>64	≥64	4	≤4
8_GR_13	>64	>64	>64	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	≥2	>64	>64	>64/ >64	>64	≤19	64	≥32	≥16	>64
9_GR_12	≥32	≤2	≥32	>32	>128/ >64	16	≥4	>64	>64	>32	>64	64	>16	>64/ 128	2	>64	>64	>64/ >64	>64	≤8	≥16	≥ 8	≤8	≤4
10_GR_13	16	≤1	≥16	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	2	>64	>64	>64/ >64	>64	≤20	64	≥32	≤4	≤4
11_BR_13	≤16	≤0.5	≥16	>32	>128/ >64	>64	>32	>64	≥64	>32	≥64	>64	>16	>64/ 128	≤2	>64	>64	>64/ >64	8	≤15	≥64	64	≤4	≤2
12_BR_13	≤1	>64	≥ 8	>32	>128/ >64	≥64	>32	>64	>64	>32	≥64	>64	>16	>64/ 128	≤2	>64	>64	>64/ >64	>64	23	>64	>64	≤8	≤2
13_GR_14	≤32	≤0.5	≥16	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	≤1	>64	>64	>64/ >64	>64	20	16	16	≤1	≤0.5
14_GR_14	≤32	≤0.5	≥16	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	≤1	>64	>64	>64/ >64	>64	20	≥32	≥16	≤2	≤1
15_GR_13	≤32	≤1	≥16	>32	>128/	32	≥8	>64	≥64	>32	>64	64	>16	>64/	2	>64	>64	>64/ >64	>64	≤22	64	≥32	≤4	1

Table S2. Broth microdilution values acquired for the 24 clinical isolates

16_GR_13	>64	>64	>64	>32	>128/ >64	≥8	≥16	>64	>64	>32	>64	64	>16	>64/ 128	≥2	>64	>64	>64/ >64	32	≤19	64	64	≤ 8	>64
17_GR_14	>64	>64	>64	>32	>128/ >64	≥4	≥4	>64	>64	>32	>64	32	>16	>64/ 128	2	>64	>64	>64/ >64	≥16	≤20	64	32	4	>64
18_GR_14	≤32	≤0.5	≥16	>32	>128/ >64	>64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	2	>64	>64	>64/ >64	≥32	≤20	64	64	2	≤2
19_GR_14	≤32	≤0.5	≥16	>32	>128/ >64	≥16	≥8	>64	>64	>32	>64	>64	>16	>64/ 128	≥4	>64	>64	>64/ >64	64	21	64	64	≥ 8	8
20_GR_12	64	1	64	>32	>128/ >64	≥8	≥8	>64	≥16	>32	>64	64	>16	>64/ 128	≥2	>64	>64	>64/ ≥64	≥32	≤22	0.125	≤0.25	16	>64
21_GR_13	≤4	≤4	≥8	>32	>128/ >64	8	≤2	>64	≥16	>32	>64	>64	0.25	>64/ 128	1	≤4	>64	>64/ ≥64	≤4	≥24	≤0.25	0.125	≤1	≤0.5
22_GR_12	≤32	≤1	≥16	>32	>128/ >64	≥16	≥8	>64	≥16	>32	>64	64	>16	>64/ 128	≥1	>64	>64	>64/ ≥64	32	20	≤0.25	≤0.25	≤4	1
23_GR_12	>64	>64	>64	>32	>128/ >64	≥64	>32	>64	>64	>32	>64	>64	>16	>64/ 128	8	>64	>64	>64/ >64	>64	≤20	≥8	≥4	>64	>64
24_GR_13	≤32	≤1	≥16	>32	>128/ >64	≥8	≥4	>64	≥16	>32	>64	≥32	>16	>64/ 128	2	>64	>64	>64/ ≥64	>64	≤23	≤0.25	≤0.25	≤8	2

13

^{*}Strain identification, numerical order catalogued at IMB_Country (GR:Greece, BR:Brazil)_last two digits of isolation year.

[†]Antibiotic resistance as determined by broth microdilution according to CLSI guidelines except fosfomycin (disk diffusion) and tigecycline which 15 followed EUCAST breakpoints. Antibiotic classes tested include 1, Aminoglycosides (Amikacin, AMK; Gentamicin, GEN; Tobramycin, TOB); 16 2, Anti-MRSA cephalosporins (Ceftaroline, CPT); 3, Antipseudomonal penicillins + β -lactamase inhibitors (Piperacillin-tazobactam, TZP); 4, 17 Carbapenems (Imipenem, IPM; Meropenem, MEM); 5, Non-extended spectrum cephalosporins (1st and 2nd generation) (Cefazolin, CFZ); 6, 18 Extended-spectrum cephalosporins (3rd and 4th generation) (Cefepime, FEP; Cefotaxime, CTX, Ceftazidime, CAZ); 7, Cephamycins (Cefoxitin, 19 FOX); 8, Fluoroquinolones (Ciprofloxacin, CIP); 9, Folate pathway inhibitors (Trimethoprim-sulfamethoxazole, SXT); 10, Glycylcyclines 20 (Tigecycline, TGC); 11, Monobactams (Aztreonam, ATM); 12, Penicillins (Ampicillin, AMP); 13, Penicillins + β-lactamase inhibitors 21 (Amipicillin-sulbactam, SAM); 14, Phenicols (Chloramphenicol, CHL); 15, Phosphonic acids (Fosfomycin, FOF); 16, Polymyxins (Colistin, CST; 22

- 23 Polymyxin B, PMB); 17, Tetracyclines (Minocycline, MIN; Tetracycline, TET). The two antibiotics for TZP, SXT and SAM were assayed
- separately and both MICs separated with a /. Shading indicates **R**, Resistant; **I**, Intermediate; **S**, Susceptible.

$\begin{array}{c} {\rm Strain}^* & {\rm Polymyxin} \\ {\rm Profile}^{\dagger} \end{array}$		Gene	Variant [‡]	PROVEAN score [§]
		pmrA	S64A, N131D, L140Q, E199D, N219H	-
ATCC	G	pmrB	T8N, N105S, A228T, Q232E, I242V, N244S, G256R, E272O, O356R	-
700603	S	phoP	R34K	-
		phoQ	Q92K, A106T, E112D, I139V, L163F, V196I, T372S, Q424P, Q482L, Q487E	-
$1_{\text{GR}}13^{\Delta}$	R	pmrB	T140P	-4.39
2 GR 12^{Δ}	D	phoP	A95S	-2.97
	K	phoQ	N253T	-3.86
3_GR_13	R	mgrB	D29E	-3.97
4 GR 12^{Δ}	R	phoP	P74L	-9.98
4_0K_12	K	phoQ	N253T	-3.86
		mgrB	Q30STOP	-14.86
5_GR_13	R	pmrA	N131D, G144D, D149E, N219H	-
		pmrB	A5V, N105S, M175V, A228T, G256R	-
6 GR 12	S	pmrA	N131D, G144D, D149E, N219H	-
12	5	pmrB	A5V, N105S, M175V, A228T, G256R	-
<u>8_GR_13</u>	R	phoQ	G385C	-8.06
<u>9_GR_12</u>	R	phoQ	T281M	-5.36
10 GR 13^{Δ}	R	phoQ	A225T, N253T	-, -3.86
13 GR 14^{Δ}	R	pmrB	P158R (66)	-8.68
		phoQ	V446G (65)	-5.46
14 GR 14^{Δ}	R	pmrB	P158R (57)	-8.68
	D	phoQ	<u>V446G (52)</u>	-5.46
	R	mgrB	C28STOP	-19.00
		pmrA	S64A, N131D, L140Q, E199D, N219H, 1220N, D221E	-
		D	T8N, N105S, A228T, O232E, I242V, N244S, G256R,	
21 GR 13	S	pmrB	E272Q, Q356R, G358A	-
		phoP	R34K	-
		1	Q92K, A106T, E112D, I139V, L163F, V196I, T372S,	
		pnoQ	Q424P, Q482L, Q487E	-
22 CD 124	р	phoP	A95S (57)	-2.97
23_GK_12 ⁻	К	phoQ	N253T (57)	-3.86

Table S3. Non-synonomous changes relative to 20_GR_12 and PROVEAN prediction

27 *Strains also harboring an IS element disruption in *mgrB* shown as, \triangle .

28 ^{*†*}S, Susceptible (MIC: $\leq 2 \mu g/ml$); R, Resistant (MIC: $\geq 2 \mu g/ml$).

29 ^tVariant represented as initial amino acid, position and new amino acid; () corresponds to

30 percentage of reads mapping to alteration if $\leq 98\%$.

31 §PROVEAN predicted deleterious score which is set to \leq -2.5; -, value not predicted deleterious.

MI ST*			$Gene^\dagger$		
WILSI	mgrB	phoP	phoQ	pmrA	pmrB
11 (3)	-	K34R	K64R, K92R,T106A, D112E,V139E, F163L, I196V, S372T, P424Q, L482Q, E487Q	A64S, D131N, Q140L , D199E, H219N	N8T, S105N, T228A, E232Q, V242I, S244N, R256G , Q272E, R356Q,
147 (1)	-	K34R	K64R, K92R,T106A, D112E,V139E, F163L, I196V, S372T, P424Q, L482Q, E487Q	A64S, D131N, Q140L , D199E, H219N	N8T, S105N, T140P , T228A, E232Q, V242I, S244N, R256G , Q272E, R356Q,
258 (16)	C28STOP, D29E	K34R, P74L , A95S	K64R, K92R,T106A, D112E,V139E, F163L, I196V, A225T , N253T , T281M , G385C S372T, P424Q, V446G , L482Q, E487Q	A64S, D131N, <u>Q140L,</u> D199E, H219N	N8T, S105N, P158R ,T228A, E232Q, V242I, S244N, <u>R256G</u> , Q272E, R356Q
383 (2)	Q30STOP	K34R	K64R, K92R,T106A, D112E,V139E, F163L, I196V, S372T, P424Q, L482Q, E487Q	A64S, <u>Q140L,</u> G144D,D149E, D199E	A5V, N8T,M175V, E232Q, V242I, S244N, Q272E, R356Q
437 (1)	-	K34R	K64R, K92R,T106A, D112E,V139E, F163L, I196V, S372T, P424Q, L482Q, E487Q	A64S, D131N, Q140L , D199E, H219N	N8T, S105N, T228A, E232Q, V242I, S244N, R256G , Q272E, R356Q
2401 (1)	-	-	-	I220N, D221E	G358A

Table S4. Non-synonymous mutations relative to ATCC 700603

34

^{*}Multi-locus sequence type and in brackets, the number of isolates in this group.

[†]Genes *mgrB*, *pmrAB* and *phoPQ* were aligned to ATCC 700603 and represented as initial amino acid, position and new amino acid. Bold indicates a predicted deleterious variant in polymyxin-resistant strains according to PROVEAN analysis and an underline identifies this change also being present in polymyxin-susceptible isolates. Strains impacted by an IS element disruption in *mgrB* only had flanking regions interrogated to detect variants.

Fig. S1. Amplification of *mgrB*. (a) PCR products of 1, ATCC 25922 (*E. coli* negative control); 2, ATCC 700603; 3, ATCC 13883; 4, ATCC BAA-2146; 5,
1_GR_13; 6, 2_GR_12; 7, 3_GR_13; 8, 4_GR_12; 9, 5_GR_13; 10, 6_GR_12; 11, 7_GR_13; 12, 8_GR_13; 13, 9_GR_12; 14, 10_GR_13; 15, 11_BR_13; 16,
12_BR_13; 17, 13_GR_14; 18, 14_GR_14; 19, 15_GR_13; 20, 16_GR_13; 21, 17_GR_14; 22, 18_GR_14; 23, 19_GR_14; 24, 20_GR_12; 25, 21_GR_13; 26,
22_GR_12; 27, 23_GR_12; 28, 24_GR_13. (b) IS5-like (IS*Kpn26*-like or IS*Kpn13* for 12_BR_13) element producing 1700 bp amplicon. (c) IS*IR*-like element
resulting in 1268 bp amplicon in 16 GR 13 and 17 GR 14 (d) IS*IR* element in 11 BR 13 resulting in 1268 bp amplicon.

Fig. S2. Amplification of chromosomal mgrB for complemented 13_GR_14 (lanes 1 to 6) and 14_GR_14 (lanes 7 to 12). Complementation via pTOPO-mgrB is shown in lanes 1 to 3 and 7 to 9 and for pTOPO-pmrB, lanes 4 to 6 and 10 to 12. Three colonies were tested per treatment group and reversion to a polymyxin-susceptible phenotype is indicated by *. A 500 bp amplicon represents an intact mgrB whilst a 1700 bp amplicon is the result of the ISKpn26-like insertion in mgrB.

Fig. S3. Sanger sequencing traces of amplified *phoQ* from (a) DNA extraction of 14_GR_14 used for
whole genome sequencing. (b) complementation of 14_GR_14 where susceptibility was recovered by
pTOPO-*mgrB*. (c) complementation of 14_GR_14 where susceptibility was recovered by pTOPO-*pmrB*. WT sequence contains T at nucleotide position 1337 (shaded) and mutation of G causing V446G
was isolated in condition (c).