Electronic Supplementary Information for:

Exchange Coupling and Single Molecule Magnetism in Redox-active Tetraoxolene-bridged Dilanthanide

Complexes

Peng Zhang,^a Mauro Perfetti,^{a,b} Michal Kern,^a Philipp P. Hallmen,^a Liviu Ungur,^c Samuel Lenz,^a Mark R. Ringenberg,^d Wolfgang Frey,^e Hermann Stoll,^f Guntram Rauhut,^f Joris van Slageren^{*,a}

^a Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany

^b Department of Chemistry, University of Copenhagen, Universitetparken 5, 2100 Copenhagen, Denmark

^c Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke, Universiteit Leuven, 3001 Leuven, Belgium

^d Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

^e Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

^f Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Table of Contents

	Ab initio calculations	S4
Fig. S1	Cyclic voltammogram of 1Tb , 1Gd and 1Y in $CH_2Cl_2/0.1$ M Bu_4NPF_6 measured	S5
	at 295 K.	
Fig. S2	Cyclic voltammogram of 1Dy in CH ₃ CN (Left) and THF (Right) /0.1 M Bu_4NPF_6	S 5
	measured at 295 K.	
Fig. S3	UV-vis electronic absorption spectra of compound 1Ln (top) and 2Ln (bottom)	S5
	in CH ₃ CN.	
Fig. S4	ESI-MS spectra of compound 1Dy in positive mode.	S6
Fig. S5	ESI-MS spectra of compound 2Dy in negative mode.	S7
Fig. S6	ESI-MS spectra of compound 2Tb in negative mode.	S7
Fig. S7	ESI-MS spectra of compound 2Gd in negative mode.	S8
Fig. S8	ESI-MS spectra of compound 2Y in negative mode.	S9
Fig. S9	IR spectra of compounds 1Ln and 2Ln.	S 9
Fig. S10	The fit of $\chi_{M}T$ vs T plots for 2Gd . The red line corresponds to the fit to a	S10
	isotropic Hamiltonian only and blue line corresponds to the fit using	
	parameters derived from HFEPR.	
Fig. S11	Field dependences of magnetization in the field range 0-70 kOe. Left, non-	S10
	radical compounds; Right, radical compounds.	
Fig. S12	Frequency dependence of in-phase ac susceptibilities, which corresponds to	S11
	Fig. 6a-e.	
Fig. S13	An example of the least-squares-fitting (Solid line) via the sum of two modified	S12
	Debye functions (200 Oe) at 1.8 K for 2Dy .	
Fig. S14	Field dependence of relaxation time for compound 1Dy and 2Dy at 1.8 K.	S12
Fig. S15	$ln(\tau)$ vs $ln(T)$ plots for compound 1Dy and 2Dy in 1000 Oe. The red lines	S12
	correspond to the fit of $\tau^{-1} \sim T^n$.	
Fig. S16	Frequency and temperature dependence of ac susceptibilities under 0 Oe dc	S13
	field for 2Tb .	
Fig. S17	Temperature dependence of ac susceptibility under 5000 Oe dc field for 2Y ,	S13
	and plots of $\ln \tau$ versus T^{-1} with the Arrhenius fit, and the comparison between	
	dc susceptibility and $(\chi_T - \chi_S)$ value from ac measurements.	
Fig. S18	Hahn-echo decay of 1mM 2Y in acetonitrile at 7 K, 35 GHz and 1249 mT fitted	S14
	with a biexponential decay function.	
Fig. S19	The calculated orientation of the local g_z axes of ground doublets on Dy ^{III} and	S14
	Tb ^{III} ions for 1Dy and 1Tb .	
Fig. S20	HFEPR spectra of sample Gd@1Y recorded at 320 GHz and different	S14
	temperatures.	
Fig. S21	HFEPR spectra of 1Gd recorded at 5 K and various frequencies. The red lines	S15
	correspond to simulations using spin Hamiltonian approach.	
Fig. S22	The HFEPR comparison between 1Gd and 2Gd at 5K and 245 GHz, and spectra	S15
	of sample 2Gd recorded at 290 GHz and different temperatures.	
Fig. S23	HFEPR spectra of 2Gd recorded at various frequencies. The red lines	S15
	correspond to simulations using spin Hamiltonian approach.	

Fig. S24	The fit of magnetization for 2Gd . The blue line corresponds to the fit using	S16
	parameters derived from HFEPR parameters.	
Fig. S25	HFEPR spectra of 1Tb recorded at 5 K and various frequencies, and frequency-	S16
	field plots. The red line correspond to the linear fit.	
Fig. S26	Simulations of the HFEPR spectra of 2Tb , using a model consisting of two	S16
	effective spins $S = 1$ with D values, isotropically exchange coupled to an $S = 1/2$	
	radical.	
Table S1	Crystallographic data and structure refinement details for compounds 1Ln	S17
Table S2	Parameters obtained by least-squares-fitting via the sum of two modified	S17
	Debye functions at different DC field and 1.8 K for 2Dy .	
Table S3	Parameters of the biexponential fits of the Q-band relaxation measurements	S18
	on 2Y	
Table S4	Calculated energies (in cm ⁻¹) for the 16 energy levels of the ${}^{6}H_{15/2}$ ground	S18
	multiplet of Dy ^{III} in complexes 1Dy , and projection of the total moment on	
	quantization axis of every state	
Table S5	Calculated energies (in cm ⁻¹) for the 13 energy levels of the ${}^{7}F_{6}$ ground	S19
	multiplet of Tb ^{III} in complexes 1Tb , and projection of the total moment on	
	quantization axis of every state.	
Table S6	Elemental Analysis for compounds 1Ln and 2Ln .	S19

Ab initio calculations

Multi-configurational *ab initio* calculations were performed for **1Tb** and **1Dy**, replacing one of the two Tb³⁺/ Dy³⁺ by diamagnetic Y³⁺. The calculations were carried out with the Molpro^{1,2} suite of ab initio programs using the measured crystal structure. The (state-averaged) orbitals were obtained by employing the local density-fitted configuration-averaged Hartree-Fock (LDF-CAHF) method^{3,4}. The active space included 8 electrons of Tb^{III}/9 electrons of Dy^{III} in seven 4f-type orbitals. The 28 electron pseudopotential/effective core potential (ECP) ECP28MWB^{5,6} was used for Tb/Dy and Y. The basis set employed for Tb/Dy and Y was def2-TZVPP⁷ and the auxiliary basis set for density fitting def2-TZVPP-JKFIT⁷. The elements O and N were described by the cc-pVTZ⁸⁻ ¹⁰ basis set and the corresponding auxiliary basis set for these elements was cc-pVTZ-JKFIT¹¹. For the remaining elements except of H, the cc-pVDZ⁸⁻¹⁰ basis set and the corresponding cc-pVDZ-JKFIT¹¹ basis set for density fitting were used. The hydrogen atoms were described by a minimal basis (MINAO)¹² and the auxiliary basis set cc-pVDZ-JKFIT¹¹ was employed for density fitting. In the spin-orbit coupling step the ECP-SO operator corresponding to ECP28MWB was employed⁵. The orbitals resulting from the LDF-CAHF calculation are equivalent to the orbitals of a stateaveraged CASSCF calculation averaging over all possible roots, i.e. 7 septets, 140 quintets, 588 triplets and 490 singlets for 1Tb and 21 sextets, 224 quartets and 490 doublets for 1Dy, taking into account the $M_{\rm s}$ -degeneracy of the corresponding spin-manifold by a weighting factor, i.e. a weighting factor of 7 for the septets, 5 for the quintets, 3 for the triplets and 1 for the singlets (1Tb) and moreover 3 for the sextets, 2 for the quartets and 1 for the doublets (1Dy). The stateaveraged orbitals were used in a subsequent CASCI (complete active space configuration interaction) step to obtain the multi-configurational spin-free wave functions. In the following SO-coupling step, a limited number of roots was mixed, i. e., all septets (7), all quintets (140), 294 triplets and 292 singlets for 1Tb and 21 sextets, 128 quartets and 130 doublets for 1Dy, respectively. On the basis of the resulting spin-orbit multiplets, the q_z -value of the lowest pseudo-doublet and its direction for **1Tb** and the *q*-tensor for the ground Kramers doublet of **1Dy**, as well as the composition of the wave functions in terms of m_{i} -microstates for both compounds, were calculated using the SINGLE_ANISO¹³ program.

Fig. S1. Cyclic voltammogram of **1Tb**, **1Gd** and **1Y** in $CH_2Cl_2/0.1$ M Bu_4NPF_6 measured at 295 K. $Fc^{0/+}$ = ferrocene/ferrocenium couple.

Fig. S2. Cyclic voltammogram of **1Dy** in CH₃CN (Left) and THF (Right) /0.1 M Bu₄NPF₆ measured at 295 K. $Fc^{0/+}$ = ferrocene/ferrocenium couple.

Fig. S3. UV-vis electronic absorption spectra of compound 1Ln (top) and 2Ln (bottom) in CH₃CN.

Fig. S4. ESI-MS spectra of compound **1Dy** in positive mode. m/z 1385 and 1407 correspond to $[M+H]^+$ and $[M+Na]^+$.

S6

Fig. S5. ESI-MS spectra of compound **2Dy** in negative mode. m/z 1384 and 1613 correspond to $[M]^-$ and $[M+2(TFA)]^-$. TFA = Trifluoroacetic acid

Fig. S6. ESI-MS spectra of compound **2Tb** in negative mode. m/z 1376 and 1607 correspond to [M] [–] and [M+2(TFA)][–]. TFA = Trifluoroacetic acid

Fig. S7. ESI-MS spectra of compound **2Gd** in negative mode. m/z 1603 corresponds to [M+2(TFA)] ⁻. TFA = Trifluoroacetic acid

Fig. S8. ESI-MS spectra of compound **2Y** in negative mode. m/z 1236 and 1467 correspond to [M] [–] and [M+2(TFA)][–]. TFA = Trifluoroacetic acid

Fig. S9. IR spectra of compounds 1Ln and 2Ln.

Fig. S10. The fit of $\chi_{M}T$ vs T plots for **2Gd**. The red line corresponds to the fit to a isotropic Hamiltonian only and blue line corresponds to the fit using parameters derived from HFEPR.

Fig. S11. Field dependences of magnetization in the field range 0-70 kOe. Left, non-radical compounds; Right, radical compounds.

Fig. S 12. Frequency dependence of in-phase ac susceptibilities, which corresponds to Fig. 6a-e.

Fig. S13. An example of the least-squares-fitting (Solid line) via the sum of two modified Debye functions (200 Oe) at 1.8 K for **2Dy**.

Fig. S14. Field dependence of relaxation time for compound 1Dy and 2Dy at 1.8 K.

Fig. S15. $\ln(\tau)$ vs $\ln(T)$ plots for compound **1Dy** and **2Dy** in 1000 Oe. The red lines correspond to the fit of $\tau^{-1} \sim T^n$.

Fig. S16. Frequency and temperature dependence of ac susceptibilities under 0 Oe dc field for 2Tb.

Fig. S17. Temperature dependence of ac susceptibility under 5000 Oe dc field for **2Y**, and plots of $\ln \tau$ versus T^{-1} with the Arrhenius fit, and the comparison between dc susceptibility and $(\chi_T - \chi_S)$ value from ac measurements.

Fig. S18. Hahn-echo decay of 1mM **2Y** in acetonitrile at 7 K, 35 GHz and 1249 mT fitted with a biexponential decay function.

Fig. S19. The calculated orientation of the local g_z axes of ground doublets on Dy^{III} and Tb^{III} ions for **1Dy** and **1Tb**.

Fig. S20. HFEPR spectra of sample Gd@1Y recorded at 320 GHz and different temperatures.

Fig. S21. HFEPR spectra of **1Gd** recorded at 5 K and various frequencies. The red lines correspond to simulations using spin Hamiltonian approach.

Fig. S22. The HFEPR comparison between **1Gd** and **2Gd** at 5K and 245 GHz, and spectra of sample **2Gd** recorded at 290 GHz and different temperatures.

Fig. S23. HFEPR spectra of **2Gd** recorded at various frequencies. The red lines correspond to simulations using spin Hamiltonian approach.

Fig. S24. The fit of magnetization for **2Gd**. The blue line corresponds to the fit using parameters derived from HFEPR parameters.

Fig. S25. HFEPR spectra of **1Tb** recorded at 5 K and various frequencies, and frequency-field plots. The red line correspond to the linear fit.

Fig. S26. Simulations of the HFEPR spectra of **2Tb**, using a model consisting of two effective spins S = 1 with D values, isotropically exchange coupled to an S = 1/2 radical. H = $J\hat{S}_{rad}(\hat{S}_1+\hat{S}_2) + \mu_B\hat{S}\cdot g\cdot \hat{H}$ + $\Sigma D\hat{S}_z^2$, with $S_{rad} = 1/2$, $S_1 = S_2 = 1$, D = -2000 cm⁻¹, E = 1 cm⁻¹, $g_{rad} = 2.07$, $g_{Tb} = (0.1, 0.1, 4.0)$, J = 4.3 cm⁻¹.

Compound	1Dy	1Tb	1Gd	1Y
Formula	$Dy_2C_{44}N_{24}O_4$	$Tb_2C_{44}N_{24}O_4$	$Gd_2C_{44}N_{24}O_4$	$Y_2C_{44}N_{24}O_4$
	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$
Mr	1553.93	1546.79	1543.44	1406.75
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /n			
<i>Т</i> [K]	156(2)	156(2)	296(2)	156(2)
a [Å]	13.9322	14.0030	14.1500	13.9374
<i>b</i> [Å]	15.0142	15.0792	15.2250	15.0463
<i>c</i> [Å]	14.8268	14.8247	14.9690	14.7862
α[°]	90.000	90.000	90.000	90.000
в [°]	107.692	107.593	107.750	107.464
ץ [°]	90.000	90.000	90.000	90.000
V [ų]	2954.79	2983.88	3071.31	2957.83
Ζ	2	2	2	2
$ ho_{ m calcd}$ [g cm ⁻³]	1.747	1.722	1.669	1.580
μ(Mo-Kα) [mm ⁻	2.845	2.68	2.46	2.29
1]				
F (000)	1524	1520	1516	1416
Reflns collected	28184	28220	28997	26061
Unique reflns	7240	7353	8275	6076
R _{int}	0.0779	0.0521	0.3682	0.0819
Param/restraint	379 / 0	379 / 0	379 / 0	379 / 0
s				
GOF	1.004	1.045	0.814	1.029
$R_1[I > 2\sigma(I)]$	0.0399	0.0405	0.0933	0.0478
wR_2 (all data)	0.0753	0.1078	0.1463	0.1203

Table S1. Crystallographic data and structure refinement details for compounds 1Ln

Table	S2.	Parameters	obtained	by	least-squares-fittir	g vi	a the	sum	of	two	modified	Debye
functio	ons a	at different D	C field and	11.8	3 K for 2Dy .							

			•			
H/Oe	Δχ1/	Δχ ₂ /	τ ₁ /s	α1	τ ₂ /s	α2
	cm³ mol⁻¹	cm³ mol⁻¹				
0	18.17	0	8.87e-4	0.14	0	0
100	16.30	2.02	8.33e-4	0.19	0.08	0
200	11.02	7.50	7.06e-4	0.23	0.10	0.06
300	7.10	11.46	6.23e-4	0.29	0.14	0.12
400	4.10	14.00	4.83e-4	0.30	0.17	0.17
500	2.27	15.08	3.60e-4	0.25	0.19	0.19
1000	0	14.07	0	0	0.22	0.18

2000	0	8.91	0	0	0.16	0.17
3000	0	4.69	0	0	0.09	0.17

Table S3. Paran	neters of the biexpor	ential fits of the Q-b	and relaxation measu	rements on 2Y
-----------------	-----------------------	------------------------	----------------------	---------------

Inversion Recovery							
Temperature / K	A _f	<i>T</i> _{1,f} / ms	As	<i>T</i> _{1,s} / ms			
7	-1.3 ± 0.1	0.06 ± 0.01	-0.65 ± 0.04	0.9 ±0.1			
	Hahn-echo decay						
Temperature / K	A _f	<i>T</i> _{m,f} / μs	As	<i>T</i> _{m,s} / μs			
7	1.0 ± 0.1	0.5 ± 0.1	0.36 ± 0.01	9 ± 2			

Table S4.	Calculated e	energies (ir	n cm ⁻¹) fo	or the 16	energy	levels o	of the	⁶ H _{15/2}	ground	multiple	et of
Dy ^{III} in co	mplexes 1Dy	, and proje	ection of	the total	moment	t on qu	antizat	ion ax	is of eve	ery state	2.

	Energy	Projection of the total moment on quantization axis
	/cm ⁻¹	
1	0.000	80.8% -15/2>+0% -13/2>+0.6% -11/2>+0.7% -9/2>+0.3% -7/2>+0.1% -5/2>+0% -3/2>+0.1% -1/2>
1	0.000	+17% 15/2>+0% 13/2>+0.1% 11/2>+0.1% 9/2>+0.1% 7/2>+0% 5/2>+0% 3/2>+0% 1/2>
2	4 005 6	17% -15/2>+0% -13/2>+0.1% -11/2>+0.1% -9/2>+0.1% -7/2>+0% -5/2>+0% -3/2>+0% -1/2>+
2	4.99E-0	80.8% 15/2>+0% 13/2>+0.6% 11/2>+0.7% 9/2>+0.3% 7/2>+0.1% 5/2>+0% 3/2>+0.1% 1/2>
2	94 407	0.1% -15/2>+16% -13/2>+5.4% -11/2>+1.4% -9/2>+1.1% -7/2>+0.2% -5/2>+0.1% -3/2>+2.0% -1/2>
5	84.497	+0.2% 15/2 >+44.5% 13/2>+17.9% 11/2>+4.2% 9/2>+3.9% 7/2>+0.9% 5/2>+1.7% 3/2 >+0.5% 1/2>
4	94 407	0.2% -15/2>+44.5% -13/2>+17.9% -11/2>+4.2% -9/2>+3.9% -7/2>+0.9% -5/2>+1.7% -3/2>+0.5% -1/2>
4	84.497	+0.1% 15/2>+16% 13/2>+5.4% 11/2>+1.4% 9/2>+1.1% 7/2>+0.2% 5/2>+0.1% 3/2>+2.0% 1/2>
E	122 956	0.1% -15/2>+0.6% -13/2>+1.1% -11/2>+6.8% -9/2>+0.7% -7/2>+0.1% -5/2>+5.5% -3/2>+4.1% -1/2>
5	122.850	+0.5% 15/2 >+23% 13/2>+14% 11/2>+20.9% 9/2>+2.7% 7/2>+13.8% 5/2>+0.8% 3/2 >+5.1% 1/2>
6	122.056	0.5% -15/2>+23% -13/2>+14% -11/2>+20.9% -9/2>+2.7% -7/2>+13.8% -5/2>+0.8% -3/2>+5.1% -1/2>
0	122.850	+0.1% 15/2>+0.6% 13/2>+1.1% 11/2>+6.8% 9/2>+0.7% 7/2>+0.1% 5/2>+5.5% 3/2>+4.1% 1/2>
7	142 044	0.3% -15/2>+4.2% -13/2>+9.6% -11/2>+9.8% -9/2>+2.1% -7/2>+4.4% -5/2>+10.5% -3/2>+8.1% -1/2>
<i>′</i>	142.044	+0.3% 15/2 >+1.6% 13/2>+14.8% 11/2>+0.7% 9/2>+18.8% 7/2>+3.5% 5/2>+8.9% 3/2 >+2.5% 1/2>
0	142 0447	0.3% -15/2>+1.6% -13/2>+14.8% -11/2>+0.7% -9/2>+18.8% -7/2>+3.5% -5/2>+8.9% -3/2>+2.5% -1/2>
0	142.0447	+0.3% 15/2>+4.2% 13/2>+9.6% 11/2>+9.8% 9/2>+2.1% 7/2>+4.4% 5/2>+10.5% 3/2>+8.1% 1/2>
0	172 207	0.1% -15/2>+0.9% -13/2>+3.4% -11/2>+15.7% -9/2>+1.4% -7/2>+2.5% -5/2>+10.4% -3/2>+9.1% -1/2>
9	172.307	+0.1% 15/2 >+0.3% 13/2>+6.1% 11/2>+0.4% 9/2>+15.5% 7/2>+10.8% 5/2>+3.0% 3/2 >+20.1% 1/2>
10	172 207	0.1% -15/2>+0.3% -13/2>+6.1% -11/2>+0.4% -9/2>+15.5% -7/2>+10.8% -5/2>+3.0% -3/2>+20.1% -1/2>
10	172.307	+0.1% 15/2>+0.9% 13/2>+3.4% 11/2>+15.7% 9/2>+1.4% 7/2>+2.5% 5/2>+10.4% 3/2>+9.1% 1/2>
11	221 7540	0.1% -15/2>+3.5% -13/2>+0.4% -11/2>+5.6% -9/2>+15.3% -7/2>+17.3% -5/2>+13.5% -3/2>+0.2% -1/2>
11	221.7549	+0.1% 15/2 >+3.5% 13/2>+2.6% 11/2>+4.2% 9/2>+14.4% 7/2>+15.2% 5/2>+3.9% 3/2 >+2.9% 1/2>
12	221 7540	0.1% -15/2>+3.5% -13/2>+2.6% -11/2>+4.2% -9/2>+14.4% -7/2>+15.2% -5/2>+3.9% -3/2>+2.9% -1/2>+
12	221.7549	0.1% 15/2>+3.5% 13/2>+0.4% 11/2>+5.6% 9/2>+15.3% 7/2>+17.3% 5/2>+13.5% 3/2>+0.2% 1/2>
12	250.224	0% -15/2>+4.6% -13/2>+22.9% -11/2>+26.3% -9/2>+15.3% -7/2>+12.1% -5/2>+9.7% -3/2>+2.7% -1/2>
13	259.231	+0.0% 15/2>+0.1% 13/2>+0.1% 11/2>+0.1% 9/2>+0.7% 7/2>+1.8% 5/2>+1.5% 3/2>+1.9% 1/2>
14	250 221	0.0% -15/2>+0.1% -13/2>+0.1% -11/2>+0.1% -9/2>+0.7% -7/2>+1.8% -5/2>+1.5% -3/2>+1.9% -1/2>
14	259.231	+0.0% 15/2>+4.6% 13/2>+22.9% 11/2>+26.3% 9/2>+15.3% 7/2>+12.1% 5/2>+9.7% 3/2>+2.7% 1/2>

1	409.047	0.0% -15/2>+0.1% -13/2>+0.4% -11/2>+1.5% -9/2>+3.8% -7/2>+7.3% -5/2>+17.6% -3/2>+15.3% -1/2>
15 4	498.047	+0.0% 15/2>+0.1% 13/2>+0.5% 11/2>+1.5% 9/2>+3.9% 7/2>+9.9% 5/2>+12.8% 3/2>+25.3% 1/2>
10	400.047	0.0% -15/2>+0.1% -13/2>+0.5% -11/2>+1.5% -9/2>+3.9% -7/2>+9.9% -5/2>+12.8% -3/2>+25.3% -1/2>
10	498.047	+0.0% 15/2>+0.1% 13/2>+0.4% 11/2>+1.5% 9/2>+3.8% 7/2>+7.3% 5/2>+17.6% 3/2>+15.3% 1/2>

Table S5. Calculated energies (in cm⁻¹) for the 13 energy levels of the ${}^{7}F_{6}$ ground multiplet of Tb^{III} in complexes **1Tb**, and projection of the total moment on quantization axis of every state.

	Energy	Projection of the total moment on quantization axis
	/cm ^{−1}	
1	0	45.3% -6>+2.7% -4>+0.2% -3>+1.3% -2>+0.1% -1>+0.8% 0>+
1	0	45.3% 6>+2.7% 4>+0.2% 3>+1.3% 2>+0.1% 1>
2	2 5 2 2	47.9% -6>+1.7% -4>+0.1% -3>+0.3% -2>
2	2.525	47.9% 6>+1.7% 4>+0.1% 3>+0.3% 2>
2	52.064	0.2% -6>+22.9% -5>+1.5% -4>+12.6% -3>+1.3% -2>+11% -1>+0.9% 0>+
5	52.904	0.2% 6>+22.9% 5>+1.5% 4>+12.6% 3>+1.3% 2>+11% 1>
	70.054	2.4% -6>+19% -5>+8.8% -4>+4.7% -3>+8.8% -2>+1.3% -1>+9.9% 0>+
4	70.954	2.4% 6>+19% 5>+8.8% 4>+4.7% 3>+8.8% 2>+1.3% 1>
-	107 496	2.0% -6>+25.4% -5>+7.9% -4>+1.0% -3>+8.1% -2>+0.7% -1>+9.8% 0>+
5	5 107.486	2.0% 6>+25.4% 5>+7.9% 4>+1.0% 3>+8.1% 2>+0.7% 1>
6	159 533	1.0% -6>+22.2% -5>+12.6% -4>+4.5% -3>+2.2% -2>+7.3% -1>+0.5% 0>+
0	158.533	1.0% 6>+22.2% 5>+12.6% 4>+4.5% 3>+2.2% 2>+7.3% 1>
-	102 /15	0.9% -6>+4.2% -5>+28.7% -4>+5.1% -3>+2.8% -2>+8.1% -1>+0.4% 0>+
/	105.415	0.9% 6>+4.2% 5>+28.7% 4>+5.1% 3>+2.8% 2>+8.1% 1>
0	256 722	0.1% -6>+1.3% -5>+22.4% -4>+10.8% -3>+15.1% -2>+0.2% -1>+0.2% 0>+
ð	250.733	0.1% 6>+1.3% 5>+22.4% 4>+10.8% 3>+15.1% 2>+0.2% 1>
0	261.092	0.1% -6>+3.1% -5>+4.5% -4>+32.9% -3>+7.8% -2>+1.2% -1>+0.9% 0>+
9	261.982	0.1% 6>+3.1% 5>+4.5% 4>+32.9% 3>+7.8% 2>+1.2% 1>
10	272 724	0.1% -6>+0.1% -5>+3.3% -4>+1.5% -3>+12.5% -2>+11.4% -1>+42.3% 0>+
10	3/3./24	0.1% 6>+0.1% 5>+3.3% 4>+1.5% 3>+12.5% 2>+11.4% 1>
11	274 720	0.9% -5>+0.4% -4>+6.3% -3>+5.2% -2>+29.6% -1>+15.3% 0>+
	374.728	0.9% 5>+0.4% 4>+6.3% 3>+5.2% 2>+29.6% 1>
12	412.074	0.6% -5>+0.8% -4>+18.1% -3>+3.5% -2>+26.4% -1>+1.2% 0>+
12	412.974	0.6% 5>+0.8% 4>+18.1% 3>+3.5% 2>+26.4% 1>
12	412.065	0.3% -5>+4.8% -4>+2.1% -3>+31.1% -2>+2.8% -1>+17.7% 0>+
13	413.965	0.3% 5>+4.8% 4>+2.1% 3>+31.1% 2>+2.8% 1>

Table S6. Elemental Analysis for compounds 1Ln and 2Ln.

Samples	C (%)		H (%)		N (%)	
	Found	Calc	Found	Calc	Found	Calc
1Dy	34.75	34.01	2.871	2.85	22.22	21.63
2Dy	38.95	39.7	3.211	3.20	20.1	21.36
1Tb	33.55	34.16	2.99	2.87	21.69	21.73
2Tb	39.29	39.88	3.169	3.22	20.25	21.46

1Gd	35.08	34.24	2.942	2.87	22.86	21.78
2Gd	39.55	39.97	3.248	3.22	21.06	21.51
1Y	38.50	37.57	3.314	3.15	24.70	23.90
2Y	43.35	43.8	3.571	3.53	22.93	23.57

Reference

- ¹ H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. **2**, 242 (2012).
- ² H.J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushchenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J. O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, *MOLPRO, version 2015.1, a package of ab initio programs* (2015, see www.molpro.net).
- ³ C. Köppl and H.-J. Werner, J. Chem. Theory. Comput. **12**, 3122 (2016).
- ⁴ P. P. Hallmen, C. Köppl, G. Rauhut, H. Stoll, and J. van Slageren, J. Chem. Phys. **147**, 164101 (2017).
- ⁵ M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. **90**, 1730 (1989).
- ⁶ D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß, Theoret. Chim. Acta **77**, 123 (1990).
- ⁷ R. Gulde, P. Pollak, and F. Weigend, J. Chem. Theory. Comput. 8, 4062 (2012).
- ⁸ A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. **110**, 7667 (1999).
- ⁹ D. E. Woon and T. H. Dunning, J. Chem. Phys. **98**, 1358 (1993).
- ¹⁰ D. E. Woon and T. H. Dunning, J. Chem. Phys. **100**, 2975 (1994).
- ¹¹ F. Weigend, Phys. Chem. Chem. Phys. **4**, 4285 (2002).
- ¹² G. Knizia, J. Chem. Theory. Comput. **9**, 4834 (2013).
- ¹³ L. F. Chibotaru and L. Ungur, J. Chem. Phys. **137**, 64112 (2012).