Electronic Supplementary Information for:

Exchange Coupling and Single Molecule Magnetism in Redox-active Tetraoxolene-bridged Dilanthanide

Complexes

Peng Zhang,^a Mauro Perfetti,^{a,b} Michal Kern,^a Philipp P. Hallmen,^a Liviu Ungur,^c Samuel Lenz,^a Mark R. Ringenberg,^d Wolfgang Frey,^e Hermann Stoll,^f Guntram Rauhut,^f Joris van Slageren^{*,a}

a Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany

b Department of Chemistry, University of Copenhagen, Universitetparken 5, 2100 Copenhagen, Denmark

^c Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke, Universiteit Leuven, 3001 Leuven, Belgium

d Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

e Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

f Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Table of Contents

Ab initio **calculations**

Multi-configurational *ab initio* calculations were performed for **1Tb** and **1Dy**, replacing one of the two Tb³⁺/ Dy³⁺ by diamagnetic Y³⁺. The calculations were carried out with the Molpro^{1,2} suite of *ab initio* programs using the measured crystal structure. The (state-averaged) orbitals were obtained by employing the local density-fitted configuration-averaged Hartree-Fock (LDF-CAHF) method^{3,4}. The active space included 8 electrons of Tb^{III}/9 electrons of Dy^{III} in seven 4f-type orbitals. The 28 electron pseudopotential/effective core potential (ECP) ECP28MWB5,6 was used for Tb/Dy and Y. The basis set employed for Tb/Dy and Y was def2-TZVPP⁷ and the auxiliary basis set for density fitting def2-TZVPP-JKFIT⁷. The elements O and N were described by the cc-pVTZ⁸⁻ 10 basis set and the corresponding auxiliary basis set for these elements was cc-pVTZ-JKFIT¹¹. For the remaining elements except of H, the cc-pVDZ $8-10$ basis set and the corresponding cc-pVDZ- $JKFIT¹¹$ basis set for density fitting were used. The hydrogen atoms were described by a minimal basis (MINAO)¹² and the auxiliary basis set cc-pVDZ-JKFIT¹¹ was employed for density fitting. In the spin-orbit coupling step the ECP-SO operator corresponding to ECP28MWB was employed⁵. The orbitals resulting from the LDF-CAHF calculation are equivalent to the orbitals of a stateaveraged CASSCF calculation averaging over all possible roots, i.e. 7 septets, 140 quintets, 588 triplets and 490 singlets for **1Tb** and 21 sextets, 224 quartets and 490 doublets for **1Dy**, taking into account the *M*_s-degeneracy of the corresponding spin-manifold by a weighting factor, i.e. a weighting factor of 7 for the septets, 5 for the quintets, 3 for the triplets and 1 for the singlets (**1Tb**) and moreover 3 for the sextets, 2 for the quartets and 1 for the doublets (**1Dy**). The stateaveraged orbitals were used in a subsequent CASCI (complete active space configuration interaction) step to obtain the multi-configurational spin-free wave functions. In the following SO-coupling step, a limited number of roots was mixed, i. e., all septets (7), all quintets (140), 294 triplets and 292 singlets for **1Tb** and 21 sextets, 128 quartets and 130 doublets for **1Dy**, respectively. On the basis of the resulting spin-orbit multiplets, the q_z -value of the lowest pseudo-doublet and its direction for **1Tb** and the *g*-tensor for the ground Kramers doublet of **1Dy**, as well as the composition of the wave functions in terms of *m*j-microstates for both compounds, were calculated using the SINGLE ANISO¹³ program.

Fig. S1. Cyclic voltammogram of 1Tb, 1Gd and 1Y in CH₂Cl₂/0.1 M Bu₄NPF₆ measured at 295 K. $Fc^{0/+}$ = ferrocene/ferrocenium couple.

Fig. S2. Cyclic voltammogram of 1Dy in CH₃CN (Left) and THF (Right) /0.1 M Bu₄NPF₆ measured at 295 K. F $c^{0/+}$ = ferrocene/ferrocenium couple.

Fig. S3. UV-vis electronic absorption spectra of compound 1Ln (top) and 2Ln (bottom) in CH₃CN.

Fig. S4. ESI-MS spectra of compound **1Dy** in positive mode. m/z 1385 and 1407 correspond to $[M+H]^+$ and $[M+Na]^+$.

Fig. S5. ESI-MS spectra of compound **2Dy** in negative mode. m/z 1384 and 1613 correspond to $[M]$ ⁻ and $[M+2(TFA)]$ ⁻. TFA = Trifluoroacetic acid

Fig. S6. ESI-MS spectra of compound **2Tb** in negative mode. m/z 1376 and 1607 correspond to [M] $\overline{}$ and [M+2(TFA)] $\overline{}$. TFA = Trifluoroacetic acid

Fig. S7. ESI-MS spectra of compound **2Gd** in negative mode. m/z 1603 corresponds to [M+2(TFA)] – . TFA = Trifluoroacetic acid

S8

Fig. S8. ESI-MS spectra of compound **2Y** in negative mode. m/z 1236 and 1467 correspond to [M] $^-$ and [M+2(TFA)] $^-$. TFA = Trifluoroacetic acid

Fig. S9. IR spectra of compounds **1Ln** and **2Ln**.

Fig. S10. The fit of $\chi_M T$ *vs T* plots for 2Gd. The red line corresponds to the fit to a isotropic Hamiltonian only and blue line corresponds to the fit using parameters derived from HFEPR.

Fig. S11. Field dependences of magnetization in the field range 0-70 kOe. Left, non-radical compounds; Right, radical compounds.

Fig. S 12. Frequency dependence of in-phase ac susceptibilities, which corresponds to Fig. 6a-e.

Fig. S13. An example of the least-squares-fitting (Solid line) via the sum of two modified Debye functions (200 Oe) at 1.8 K for **2Dy**.

Fig. S14. Field dependence of relaxation time for compound **1Dy** and **2Dy** at 1.8 K.

Fig. S15. ln(*τ*) vs ln(*T*) plots for compound **1Dy** and **2Dy** in 1000 Oe. The red lines correspond to the fit of $\tau^{-1} \sim T^n$.

Fig. S16. Frequency and temperature dependence of ac susceptibilities under 0 Oe dc field for **2Tb**.

Fig. S17. Temperature dependence of ac susceptibility under 5000 Oe dc field for **2Y**, and plots of lnτ versus *T*⁻¹ with the Arrhenius fit, and the comparison between dc susceptibility and (χ _T- χ _S) value from ac measurements.

Fig. S18. Hahn-echo decay of 1mM **2Y** in acetonitrile at 7 K, 35 GHz and 1249 mT fitted with a biexponential decay function.

Fig. S19. The calculated orientation of the local g_z axes of ground doublets on Dy^{III} and Tb^{III} ions for **1Dy** and **1Tb**.

Fig. S20. HFEPR spectra of sample **Gd@1Y** recorded at 320 GHz and different temperatures.

Fig. S21. HFEPR spectra of **1Gd** recorded at 5 K and various frequencies. The red lines correspond to simulations using spin Hamiltonian approach.

Fig. S22. The HFEPR comparison between **1Gd** and **2Gd** at 5K and 245 GHz, and spectra of sample **2Gd** recorded at 290 GHz and different temperatures.

Fig. S23. HFEPR spectra of **2Gd** recorded at various frequencies. The red lines correspond to simulations using spin Hamiltonian approach.

Fig. S24. The fit of magnetization for **2Gd**. The blue line corresponds to the fit using parameters derived from HFEPR parameters.

Fig. S25. HFEPR spectra of **1Tb** recorded at 5 K and various frequencies, and frequency-field plots. The red line correspond to the linear fit.

Fig. S26. Simulations of the HFEPR spectra of **2Tb**, using a model consisting of two effective spins *S* = 1 with *D* values, isotropically exchange coupled to an *S* = 1/2 radical. H = *J***Ŝrad** (**Ŝ1**+**Ŝ2**) + μB**Ŝ**·**g**·**Ĥ** + ∑*D*Ŝ_z², with *S*_{rad} = 1/2, *S*₁ = *S*₂ = 1, *D* = −2000 cm⁻¹, *E* = 1 cm⁻¹, *g*_{rad} =2.07, *g*_{Tb} = (0.1, 0.1, 4.0), *J* = 4.3 cm⁻¹.

Compound	1Dy	1Tb	1Gd	1Y
Formula	$Dy_2C_{44}N_{24}O_4$	$Tb_2C_{44}N_{24}O_4$	$Gd_2C_{44}N_{24}O_4$	$Y_2C_{44}N_{24}O_4$
	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$	$B_4Cl_6H_{44}$
Mr	1553.93	1546.79	1543.44	1406.75
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n
T[K]	156(2)	156(2)	296(2)	156(2)
<i>a</i> [Å]	13.9322	14.0030	14.1500	13.9374
<i>b</i> [Å]	15.0142	15.0792	15.2250	15.0463
$c[\AA]$	14.8268	14.8247	14.9690	14.7862
α [°]	90.000	90.000	90.000	90.000
β [°]	107.692	107.593	107.750	107.464
$v [^{\circ}]$	90.000	90.000	90.000	90.000
$V[\AA^3]$	2954.79	2983.88	3071.31	2957.83
Z	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$
ρ_{calcd} [g cm ⁻³]	1.747	1.722	1.669	1.580
μ (Mo-Kα) [mm ⁻	2.845	2.68	2.46	2.29
1]				
F(000)	1524	1520	1516	1416
Reflns collected	28184	28220	28997	26061
Unique reflns	7240	7353	8275	6076
R_{int}	0.0779	0.0521	0.3682	0.0819
Param/restraint	379/0	379/0	379/0	379/0
S				
GOF	1.004	1.045	0.814	1.029
R_1 [$>2\sigma(1)$]	0.0399	0.0405	0.0933	0.0478
wR_2 (all data)	0.0753	0.1078	0.1463	0.1203

Table S1. Crystallographic data and structure refinement details for compounds **1Ln**

2000	8.91		- $\overline{}$ U.ID	\sim \sim \sim U.L
3000	4.69		0.09	\sim U.L

Inversion Recovery Temperature / K $\begin{vmatrix} A_f & T_{1,f} \end{vmatrix}$ ms $\begin{vmatrix} A_s & T_{1,s} \end{vmatrix}$ ms 7 -1.3 ± 0.1 0.06 ± 0.01 -0.65 ± 0.04 0.9 ± 0.1 Hahn-echo decay Temperature / K A_f A_f $T_{m,f}$ / μs A_s $T_{m,s}$ / μs 7 1.0 ± 0.1 0.5 ± 0.1 0.36 ± 0.01 9 ± 2

Table S3. Parameters of the biexponential fits of the Q-band relaxation measurements on **2Y**

Table S5. Calculated energies (in cm⁻¹) for the 13 energy levels of the ⁷F₆ ground multiplet of Tb^{III} in complexes **1Tb**, and projection of the total moment on quantization axis of every state.

Table S6. Elemental Analysis for compounds **1Ln** and **2Ln**.

Reference

- ¹ H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. **2,** 242 (2012).
- ² H.J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushchenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J. O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, *MOLPRO, version 2015.1, a package of ab initio programs* (2015, see www.molpro.net).
- ³ C. Köppl and H.-J. Werner, J. Chem. Theory. Comput. **12,** 3122 (2016).
- ⁴ P. P. Hallmen, C. Köppl, G. Rauhut, H. Stoll, and J. van Slageren, J. Chem. Phys. **147,** 164101 (2017).
- ⁵ M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. **90,** 1730 (1989).
- ⁶ D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß, Theoret. Chim. Acta **77,** 123 (1990).
- ⁷ R. Gulde, P. Pollak, and F. Weigend, J. Chem. Theory. Comput. **8,** 4062 (2012).
- ⁸ A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. **110,** 7667 (1999).
- ⁹ D. E. Woon and T. H. Dunning, J. Chem. Phys. **98,** 1358 (1993).
- ¹⁰ D. E. Woon and T. H. Dunning, J. Chem. Phys. **100,** 2975 (1994).
- ¹¹ F. Weigend, Phys. Chem. Chem. Phys. **4,** 4285 (2002).
- ¹² G. Knizia, J. Chem. Theory. Comput. **9,** 4834 (2013).
- ¹³ L. F. Chibotaru and L. Ungur, J. Chem. Phys. **137,** 64112 (2012).