Electronic Supplementary Information

Sub-nanosecond tryptophan radical deprotonation mediated by a protein-bound water cluster in class II DNA photolyases

Pavel Müller,^{*‡a} Elisabeth Ignatz,^{‡b} Stephan Kiontke,^{¶b} Klaus Brettel^a and Lars-Oliver Essen^{*b}

- ^a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France. *E-mail[: pavel.muller@i2bc.paris-saclay.fr](mailto:pavel.muller@i2bc.paris-saclay.fr)
- b Department of Chemistry, LOEWE Center for Synthetic Microbiology, Philipps University, 35032 Marburg, Germany. *E-mail[: essen@chemie.uni-marburg.de](mailto:essen@chemie.unimarburg.de)
- ¶ Present address: Structural Biology, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
- ‡ The authors contributed equally to this work.

Fig. S1 Flash-induced absorption changes on a ns/us time scale for WT *MmCPDII* at all measured wavelengths. Experimental conditions are described in the legend of Fig. 3.

Fig. S2 Flash-induced absorption changes on a ps/ns time scale for WT *Mm*CPDII at all measured wavelengths. Experimental conditions are described in the legend of Fig. 4.

Fig. S3 Flash-induced absorption changes on a seconds time scale for 20.9 µM W388F mutant MmCPDII (in the presence of 10 mM cysteine) reflecting the slow (630 ms) protonation of FAD^{*-} to FADH^{\cdot}. The sample was excited at 470 nm by a 5 ns pulse of $E \sim 10.0$ mJ per cm². The signals are averages of three single-flash experiments spaced by \sim 1 minute.

Fig. S4 Flash-induced absorption changes on a ms time scale for W388F mutant *Mm*CPDII at all measured wavelengths. Experimental conditions are described in the legend of Fig. 10.

Fig. S5 Comparison of the flash-induced absorption changes on a ps/ns time scale for a) WT *Mm*CPDII (64 μ M) and b) its Y345F mutant (69 μ M). The samples were excited at 355 nm by 100 ps pulses of $E \sim$ 5 mJ per cm² (WT) or \sim 4 mJ per cm² (Y345F).

Fig. S6 Comparison of mono- and biexponential fits of the flash-induced absorption changes at 562 nm in E387Q *Mm*CPDII (identical to the signal shown in Fig. 11 of the main text). Fit functions: $\Delta A(t)=a_1e^{-\frac{t}{\tau_1}}+y_0$ (black solid line) and $\Delta A(t)=a_1e^{-\frac{t}{\tau_1}}+a_2e^{-\frac{t}{\tau_2}}+y_0$ (blue dashed line).

Fig. S7 The immediate environment of the terminal tryptophan and the water network participating in its deprotonation during photoactivation: superposition of two crystal structures of class II CPD photolyases from the archaeon *Methanosarcina mazei* (PDB entry 2XRZ)¹ and the plant *Oryza sativa* (PDB entry 3UMV)². The degree of conservation of the individual amino acids determined from 451 non-redundant class II photolyase sequences is proportional to the height of the corresponding symbols (W360, W381 and W388 are strictly conserved).

Determination of intrinsic rate/time constants of FAD^{+−} Trp₃₈₈[•] recombination, competing ET from **Tyr**₃₄₅ to Trp₃₈₈[•] and FAD^{•−} Tyr₃₄₅[•] recombination for the Scheme 1 in the main text

To describe the reaction kinetics following the formation of FAD⁺⁻ Trp₃₈₈', we used the following simplified scheme neglecting the very low population of FAD⁺⁻ Trp₃₈₈H⁺⁺ in protonation equilibrium with Trp₃₈₈[•]):

Scheme S1

Scheme S1 is described by two coupled differential equations:

$$
\frac{d[A]}{dt} = -(k_1 + k_2)[A] \qquad (1) \qquad \frac{d[B]}{dt} = k_2[A] - k_3[B]. \qquad (2)
$$

Initially, only the state A is populated, *i.e.*, $[A](t=0) = [A]_0 = 1$ and $[B](t=0) = 0$.

Solving these equations for [A] and [B] gives:

$$
[A](t) = [A]_0 e^{-(k_1 + k_2)t}
$$
 (3)

$$
[B](t) = [A]_0 \frac{k_2}{k_1 + k_2 - k_3} \left(e^{-k_3 t} - e^{-(k_1 + k_2)t} \right)
$$
(4)

Using for the absorption change

$$
\Delta A(t) = (\Delta \varepsilon_A[A](t) + \Delta \varepsilon_B[B](t))d,\tag{5}
$$

where *d* is the optical path length, one obtains

$$
\Delta A(t) = a_1 e^{-(k_1 + k_2)t} + a_2 e^{-k_3 t} \tag{6}
$$

with

$$
a_1 = \left(\Delta\varepsilon_A - \Delta\varepsilon_B \frac{k_2}{k_1 + k_2 - k_3}\right) [A]_0 d \quad \text{and} \quad a_2 = \frac{k_2}{k_1 + k_2 - k_3} \Delta\varepsilon_B [A]_0 d.
$$

$$
\frac{a_1}{a_2} = \frac{k_1 + k_2 - k_3}{k_2} \frac{\Delta\varepsilon_A}{\Delta\varepsilon_B} - 1
$$
 (7)

Eq. 6 consists of two terms corresponding to the two fitted phases. The pre-exponential factors reflect the relative amplitudes (a_1 and a_2) of the respective phases, the rates of the phases are described by the constants in the exponents: the sum $(k_1 + k_2)$ determines the fast phase (disappearance of A and the concomitant formation of B) and k_3 determines the slow phase (disappearance of B). The sum $(k_1 + k_2)$ and k_3 and are obtained directly from the fit: $k_1 + k_2 = 4444$ s⁻¹ (1/225x10⁻⁶s) and $k_3 = 909$ s⁻¹ $(1/1.1x10^{-3}s)$, respectively.

To obtain k_1 and k_2 individually, we additionally used the amplitude ratio $a_1/a_2 = 7/3$ observed at 450 nm, where the FAD^{•-}/FAD_{ox} contribution largely prevails over those of Trp[•]/TrpH and Tyr[•]/TyrH (Fig. 2).

Using eq. 7 with $\Delta \varepsilon_A / \Delta \varepsilon_B$ = 0.923 (Fig. 2), one obtains:

$$
k_2 = \frac{(k_1 + k_2 - k_3) \frac{\Delta \varepsilon_{\text{A}}}{\Delta \varepsilon_{\text{B}}}}{\frac{a_1}{a_2} + 1} = \frac{(4444 - 909) 0.923}{\frac{7}{3} + 1} \text{s}^{-1} = 979 \text{ s}^{-1}
$$

 $k_1 = (4444 - 979)s^{-1} = 3465 s^{-1}$

The intrinsic rate constants *k*1, *k*² and *k*³ convert into time constants *τ***1**, *τ***²** and *τ***³** of **300 s**, **1ms** and **1.1 ms**, respectively, which are indicated in the **Scheme 1** of the main text.

References

- 1. S. Kiontke, Y. Geisselbrecht, R. Pokorny, T. Carell, A. Batschauer and L.-O. Essen, *EMBO J.*, 2011, **30**, 4437-4449.
- 2. K. Hitomi, A. S. Arvai, J. Yamamoto, C. Hitomi, M. Teranishi, T. Hirouchi, K. Yamamoto, S. Iwai, J. A. Tainer, J. Hidema and E. D. Getzoff, *J. Biol. Chem.*, 2012, **287**, 12060-12069.