Electronic Supplementary Information

Sub-nanosecond tryptophan radical deprotonation mediated by a protein-bound water cluster in class II DNA photolyases

Pavel Müller,**a Elisabeth Ignatz,*b Stephan Kiontke, % Klaus Brettela and Lars-Oliver Essen*b

- ^a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France. *E-mail: pavel.muller@i2bc.paris-saclay.fr
- ^b Department of Chemistry, LOEWE Center for Synthetic Microbiology, Philipps University, 35032 Marburg, Germany. *E-mail: <u>essen@chemie.uni-marburg.de</u>
- [¶] Present address: Structural Biology, FB5 Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
- [‡] The authors contributed equally to this work.

Fig. S1 Flash-induced absorption changes on a $ns/\mu s$ time scale for WT *Mm*CPDII at all measured wavelengths. Experimental conditions are described in the legend of Fig. 3.

Fig. S2 Flash-induced absorption changes on a ps/ns time scale for WT *Mm*CPDII at all measured wavelengths. Experimental conditions are described in the legend of Fig. 4.

Fig. S3 Flash-induced absorption changes on a seconds time scale for 20.9 μ M W388F mutant *Mm*CPDII (in the presence of 10 mM cysteine) reflecting the slow (630 ms) protonation of FAD⁻⁻ to FADH⁻. The sample was excited at 470 nm by a 5 ns pulse of *E* ~10.0 mJ per cm². The signals are averages of three single-flash experiments spaced by ~1 minute.

Fig. S4 Flash-induced absorption changes on a ms time scale for W388F mutant *Mm*CPDII at all measured wavelengths. Experimental conditions are described in the legend of Fig. 10.

Fig. S5 Comparison of the flash-induced absorption changes on a ps/ns time scale for a) WT *Mm*CPDII (64 μ M) and b) its Y345F mutant (69 μ M). The samples were excited at 355 nm by 100 ps pulses of *E* ~5 mJ per cm² (WT) or ~4 mJ per cm² (Y345F).

Fig. S6 Comparison of mono- and biexponential fits of the flash-induced absorption changes at 562 nm in E387Q *Mm*CPDII (identical to the signal shown in Fig. 11 of the main text). Fit functions: $\Delta A(t) = a_1 e^{-\frac{t}{\tau_1}} + y_0$ (black solid line) and $\Delta A(t) = a_1 e^{-\frac{t}{\tau_1}} + a_2 e^{-\frac{t}{\tau_2}} + y_0$ (blue dashed line).

Fig. S7 The immediate environment of the terminal tryptophan and the water network participating in its deprotonation during photoactivation: superposition of two crystal structures of class II CPD photolyases from the archaeon *Methanosarcina mazei* (PDB entry 2XRZ)¹ and the plant *Oryza sativa* (PDB entry 3UMV)². The degree of conservation of the individual amino acids determined from 451 non-redundant class II photolyase sequences is proportional to the height of the corresponding symbols (W360, W381 and W388 are strictly conserved).

Determination of intrinsic rate/time constants of FAD^{-} Trp_{388}^{-} recombination, competing ET from Tyr_{345} to Trp_{388}^{-} and FAD^{-} Tyr_{345}^{-} recombination for the Scheme 1 in the main text

To describe the reaction kinetics following the formation of $FAD^{-}Trp_{388}^{-}$, we used the following simplified scheme neglecting the very low population of $FAD^{-}Trp_{388}H^{+}$ in protonation equilibrium with Trp_{388}^{-}):

Scheme S1

Scheme S1 is described by two coupled differential equations:

$$\frac{d[A]}{dt} = -(k_1 + k_2)[A]$$
 (1)
$$\frac{d[B]}{dt} = k_2[A] - k_3[B].$$
 (2)

Initially, only the state A is populated, *i.e.*, $[A](t=0) = [A]_0 = 1$ and [B](t=0) = 0.

Solving these equations for [A] and [B] gives:

$$[A](t) = [A]_0 e^{-(k_1 + k_2)t}$$
(3)

$$[B](t) = [A]_0 \frac{k_2}{k_1 + k_2 - k_3} \left(e^{-k_3 t} - e^{-(k_1 + k_2)t} \right)$$
(4)

Using for the absorption change

$$\Delta A(t) = \left(\Delta \varepsilon_{\rm A}[{\rm A}](t) + \Delta \varepsilon_{\rm B}[{\rm B}](t)\right) d,\tag{5}$$

where *d* is the optical path length, one obtains

$$\Delta A(t) = a_1 e^{-(k_1 + k_2)t} + a_2 e^{-k_3 t}$$
(6)

with

$$a_{1} = \left(\Delta\varepsilon_{A} - \Delta\varepsilon_{B}\frac{k_{2}}{k_{1}+k_{2}-k_{3}}\right)[A]_{0}d \quad \text{and} \quad a_{2} = \frac{k_{2}}{k_{1}+k_{2}-k_{3}}\Delta\varepsilon_{B}[A]_{0}d$$

$$\frac{a_{1}}{a_{2}} = \frac{k_{1}+k_{2}-k_{3}}{k_{2}}\frac{\Delta\varepsilon_{A}}{\Delta\varepsilon_{B}} - 1 \quad (7)$$

Eq. 6 consists of two terms corresponding to the two fitted phases. The pre-exponential factors reflect the relative amplitudes (a_1 and a_2) of the respective phases, the rates of the phases are described by the constants in the exponents: the sum ($k_1 + k_2$) determines the fast phase (disappearance of A and

the concomitant formation of B) and k_3 determines the slow phase (disappearance of B). The sum $(k_1 + k_2)$ and k_3 and are obtained directly from the fit: $k_1 + k_2 = 4444$ s⁻¹ (1/225x10⁻⁶s) and $k_3 = 909$ s⁻¹ (1/1.1x10⁻³s), respectively.

To obtain k_1 and k_2 individually, we additionally used the amplitude ratio $a_1/a_2 = 7/3$ observed at 450 nm, where the FAD⁻/FAD_{ox} contribution largely prevails over those of Trp⁻/TrpH and Tyr⁻/TyrH (Fig. 2).

Using eq. 7 with $\Delta \varepsilon_{\rm A} / \Delta \varepsilon_{\rm B} = 0.923$ (Fig. 2), one obtains:

$$\boldsymbol{k}_{2} = \frac{(k_{1} + k_{2} - k_{3})}{\frac{a_{1}}{a_{2}} + 1} = \frac{(4444 - 909) \ 0.923}{\frac{7}{3} + 1} s^{-1} = 979 \ s^{-1}$$

 $k_1 = (4444 - 979)s^{-1} = 3465 s^{-1}$

The intrinsic rate constants k_1 , k_2 and k_3 convert into time constants τ_1 , τ_2 and τ_3 of ~300 µs, ~1ms and 1.1 ms, respectively, which are indicated in the **Scheme 1** of the main text.

References

- 1. S. Kiontke, Y. Geisselbrecht, R. Pokorny, T. Carell, A. Batschauer and L.-O. Essen, *EMBO J.*, 2011, **30**, 4437-4449.
- 2. K. Hitomi, A. S. Arvai, J. Yamamoto, C. Hitomi, M. Teranishi, T. Hirouchi, K. Yamamoto, S. Iwai, J. A. Tainer, J. Hidema and E. D. Getzoff, *J. Biol. Chem.*, 2012, **287**, 12060-12069.