Supplementary Online Content

- Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. *JAMA Pediatr*. Published online January 22, 2018. doi: 10.1001/jamapediatrics.2017.4540
- eTable 1. Search Strategy
- eTable 2. List of Conference Proceedings Searched
- eTable 3. Newcastle-Ottawa Quality Assessment Scale
- eTable 4. Fluid Balance Assessment Methods
- **eTable 5.** Weights Used in FO Definitions
- eTable 6. Studies Reporting Respiratory Dysfunction and Outcomes
- **eTable 7.** Other Outcomes From Individual Studies
- **eFigure 1.** Flow Diagram of the Study Selection Process
- **eFigure 2.** Association Between FO (Categorical Exposure) and Mortality in Studies Adjusting for Severity of Illness
- **eFigure 3.** Association Between Fluid Overload (Categorical Exposure) and Mortality Omitting Studies of Children Receiving CRRT
- **eFigure 4.** Percent Fluid Overload (%FO) (Continuous Variable) Association With Mortality, Stratified by Assessment Period
- **eFigure 5.** Percent Fluid Overload (%FO) (Continuous Variable) Association With Mortality in Studies Adjusting for Severity of Illness (Stratified by Case-Mix)
- **eFigure 6.** Funnel Plot of FO Odds of Mortality (Categorical Exposure) Analysis
- **eFigure 7.** Funnel Plot of Fluid Overload Percent (%FO) (Continuous Variable) Association With Mortality Analysis
- eFigure 8. Random-Effects Meta-analysis of FO and Prolonged Mechanical Ventilation
- **eFigure 9.** Random-Effects Meta-analysis of FO and Acute Kidney Injury
- eFigure 10. Random-Effects Meta-analysis of FO and PICU Length of Stay

This supplementary material has been provided by the authors to give readers additional information about their work.

Database: Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

- 1. Acute Kidney Injury/
- 2. Acute Lung Injury/
- 3. exp Cardiac Surgical Procedures/
- 4. exp Critical Care/
- 5. Critical Illness/
- 6. Heart Defects, Congenital/su
- 7. exp Intensive Care Units/
- 8. Kidney/in
- 9. Multiple Organ Failure/
- 10. Multiple Trauma/
- 11. exp Organ Transplantation/
- 12. Postoperative Complications/
- 13. exp Renal Replacement Therapy/
- 14. Respiration, Artificial/
- 15. Respiratory Insufficiency/
- 16. exp Sepsis/
- 17. Transplant Recipients/
- 18. Transplantation/
- 19. Transplants/
- 20. (acute kidney adj (failure or injur* or insufficien*)).tw,kf.
- 21. acute lung injur*.tw,kf.
- 22. (acute renal adj (failure or injur* or insufficien*)).tw,kf.
- 23. (AKI or ALI).tw,kf.
- 24. ((artificial* or mechanic*) adj (respirat* or ventilat*)).tw,kf.
- 25. ((cardiac or heart) adj surg*).tw,kf.
- 26. (coronary care adj (department* or unit* or ward or wards)).tw,kf.
- 27. critical care.tw,kf,jw.
- 28. (critical* adj2 (department* or unit* or ward or wards)).tw,kf.
- 29. critical* ill*.tw,kf.
- 30. CRRT.tw,kf.
- 31. CVVH.tw,kf.
- 32. (haemo filtrat* or haemofiltrat* or hemo filtrat* or hemofiltrat*).tw.kf.
- 33. intensive care*.tw,kf,jw.
- 34. (intensive adj2 (department* or unit* or ward or wards)).tw,kf.
- 35. intensivist*.tw,kf.
- 36. (ICU* or NICU* or PICU* or SICU*).tw,kf.
- 37. (multi* organ adj (disfunction* or dis function* or dysfunction* or dysfunction* or failure*)).tw,kf.
- 38. (multi* system adj (disfunction* or dis function* or dysfunction* or dys function* or failure*)).tw,kf.
- 39. (polytrauma* or trauma*).tw,kf.
- 40. (post op* or postop*).tw,kf.
- 41. (renal replacement adj2 (therap* or treatm* or support*)).tw.kf.

- 42. (respiratory care adj (department* or unit* or ward or wards)).tw,kf.
- 43. respiratory failure.tw,kf.
- 44. RRT.tw,kf.
- 45. (sepsis or septic*).tw,kf. 46. transplant*.tw,kf.
- 47. or/1-46
- 48. Body Fluids/
- 49. Diuretics/
- 50. Fluid Therapy/
- 51. exp Solutions/ad, ae
- 52. Water-Electrolyte Imbalance/
- 53. Water Intoxication/
- 54. diuretic*.tw,kf.
- 55. (fluid* adj1 (accumulat* or administ* or balance or excess* or imbalance or manag* or over load* or overload* or retain* or retention or remov*)).tw,kf.
- 56. or/48-55
- 57. exp Adolescent/
- 58. exp Child/
- 59. exp Infant/
- 60. exp Infant, Newborn Diseases/
- 61. exp Infant, Premature, Diseases/
- 62. exp Minors/
- 63. Neonatology/
- 64. exp Pediatrics/
- 65. Perinatal Care/
- 66. Perinatology/
- 67. Postnatal Care/ 68. Premature Birth/
- 69. exp Puberty/
- 70. (baby* or babies or infant* or infancy or new born* or newborn*).tw,kf.
- 71. (boy* or girl* or teen*).tw,kf.
- 72. (child* or kid or kids or pre school* or preschool* or school age* or schoolchild* or toddler*).tw,kf.
- 73. (ELBW* or VLBW*).tw,kf.
- 74. low birth weight.tw,kf.
- 75. minors*.tw,kf.
- 76. (neonat* or perinat* or postnat*).tw,kf.
- 77. (paediatric* or peadiatric* or pediatric*).tw,kf,jw.
- 78. (prepubescen* or pubescen* or pubert*).tw,kf.
- 79. small for gestational age.tw,kf.
- 80. or/57-79
- 81. and/47.56.80
- 82. animals/ not (animals/ and humans/)
- 83. 81 not 82
- 84. (case reports or comment or editorial or

letter).pt. 85. 83 not 84

86. remove duplicates from 85

eTable 2. List of Conference Proceedings Searched

- The Society of Critical Care Medicine (SCCM)
- Canadian Critical Care Society
- The European Society of Intensive Care Medicine (ESICM)
- The International Symposium on Intensive Care and Emergency Medicine (ISICEM)
- The World Federation of Pediatric Intensive and Critical Care Societies
- American Society of Nephrology (ASN)
- International Society of Nephrology (ISN)
- International Symposium on AKI in Children
- International Conference on Pediatric Continuous Renal Replacement Therapy (pCRRT)

eTable 3. Newcastle-Ottawa Quality Assessment Scale

1. Cohort studies

	Newcastle-Ottawa Scale (Cohort Studies)											
		Selection				Compar ability				Tot al		
Author and Year	Stu dy Des ign	Representati veness of cohort	Selection of non-expo sed cohor t	Ascertai nment of exposur e	Outc ome of intere st	Compar ability of cohorts	Assess ment of outcom e	Adeq uate durati on of follow -up	Adeq uate follow -up of cohor t	Tot al Sc ore		
Abulebda , 2014 ¹	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
Arikan, 2012 ²	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9		
Askenazi, 2013 ³	PC	0	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	7		
Baird, 2010 ⁴	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	7		
Boschee, 2014 ⁵	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	7		
Chen, 2016 ⁶	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9		
Choi, 2017 ⁷	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
De Galasso, 2016 ⁸	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9		
Diaz, 2017 ⁹	PC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9		
Elbahlaw an, 2010	RC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6		
Flores, 2008 ¹¹	PC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6		
Flori, 2011 ¹²	PC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
Foland, 2004 ¹³	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
Gillespie, 2004 ¹⁴	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
Goldstein , 2005 15	PC	0	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	7		
Goldstein , 2001 ¹⁶	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		
Gulla, 2015 17	RC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6		
Hassinge r, 2014 18	PC	1*	A (1*)	A (1*)	A (1*)	A (1) B (0)	A (1*)	A (1*)	A (1*)	8		

Hayes, 2009 ¹⁹	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Hazle, 2013 ²⁰	PC	0	A (1*)	A (1*)	A (1*)	A (1) B (1)	A (1*)	A (1*)	A (1*)	8
Ingelse, 2017 ²¹	RC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6
Jhang, 2014 ²²	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8
Kaempfe n, 2017 23	RC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6
Ketharan athan, 2014 ²⁴	PC	1*	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	7
Lex, 2016 ²⁵	PC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Li, 2016	PC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Lombel, 2012 27	RC	0	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	7
Michael, 2004 ²⁸	PC	0	A (1*)	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6
Modem, 2014 ²⁹	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8
Naveda, 2016 30	PC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Park, 2016 31	RC	0	A (1*)	A (1*)	A (1*)	A (1) B (0)	A (1*)	A (1*)	A (1*)	7
Randolph , 2005 32	PC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Sampaio, 2015 33	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Seguin, 2014 ³⁴	RC	1*	A (1*)	A (1*)	A (1*)	A (1) B (1*)	A (1*)	A (1*)	A (1*)	9
Selewski, 2011 35	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Selewski, 2012 ³⁶	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Sinitsky, 2015 ³⁷	RC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1)	A (1*)	A (1*)	A (1*)	8
Sutherlan d, 2010 ³⁸	PC	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8
Valentine , 2012 39	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9
Vidal, 2016 ⁴⁰	RC	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9

RC = retrospective cohort; PC= prospective cohort For comparability: A is age, B is illness severity

2. Case Control studies

	Newcastle-Ottawa Scale (Case control studies)										
	Selection	n	•		Compara bility	Outcome			Tot al		
Autho r and Year	Case definiti on adequ ate?	Representativ eness of t cases	Select ion of Contr ols	Definit ion of Contr ols	Compara bility of cases and controls	Assess ment of expsour e	Same method of ascertain ment	Non- Respo nse rate	Tot al Sco re		
Bhask ar, 2015	1*	A (1*)	A (1*)	A (1*)	A (1*) B (1*)	A (1*)	A (1*)	A (1*)	9		
Hoove r, 2008	1*	0	A (1*)	A (1*)	A (0) B (0)	A (1*)	A (1*)	A (1*)	6		
Sutaw an, 2016	1*	A (1*)	A (1*)	A (1*)	A (0) B (1*)	A (1*)	A (1*)	A (1*)	8		

For comparability: A is age, B is illness severity

eTable 4. Fluid Balance Assessment Methods

Main Fluid Balance		nent Period	Paper(s)		
Measure	Start	End			
		24 hours	Chen, 2016 ⁶ Li, 2016 ²⁶ Hassinger, 2014 ¹⁸		
		48 hours	Sinitsky, 2015 ³⁷ Vidal, 2016 ⁴⁰		
		72 hours	Hazle, 2013 ²⁰		
		7 days	Abulebda, 2014 ¹ Bhaskar,2015 ⁴¹ Sampaio, 2015 ³³		
		14 days	Arikan, 2012 ²		
	PICU admission	PICU discharge	Diaz, 2017 ⁹ Ketharanathan, 2014 ²⁴ Michael, 2004 ²⁸ Naveda, 2016 ³⁰ Sutawan, 2016 ⁴³		
Percent Fluid Overload (FO%) (intake-output based)		CRRT initiation	Askenazi, 2013 ³ Boschee, 2014 ⁵ de Galasso, 2016 ⁸ Flores, 2008 ¹¹ Gillespie, 2004 ¹⁴ Goldstein, 2005 ¹⁵ Gulla, 2015 ¹⁷ Hayes, 2009 ¹⁹ Jhang, 2014 ²² Kaempfen, 2017 ²³ Lombel, 2012 ²⁷ Modem, 2014 ²⁹ Selewski, 2011 ³⁵ Sutherland, 2010 ³⁸		
	24 hours before CRRT initiation		Elbahlawan, 2010 ¹⁰ Choi, 2017 ⁷		
	7 days before CRRT initiation		Baird, 2010 ⁴ Foland, 2004 ¹³		
		48 hours	Lex, 2016 ²⁵		
	Intra-operative	72 hours	Park, 2016 31		
		PICU discharge	Seguin, 2014 ³⁴		
Doroont Cluid		7 days	Hazle, 2013 ²⁰		
Percent Fluid Overload FO% (weight based)	PICU admission	CRRT initiation	Lombel, 2012 ²⁷ Selewski, 2011 ³⁵ Selewski, 2012 ³⁶		
	DICU admississ	7 days	Valentine, 2012 39		
Nat Fluid Balana	PICU admission	PICU discharge	Ingelse, 2017 ²¹		
Net Fluid Balance (ml/kg)	Intubation	Extubation	Randolph, 2005 32		
(IIII/Kg)	Onset of ALI	72 hours post ALI	Flori, 2011 ¹²		
	ECMO start	ECMO end	Hoover, 2008 42		
Net Fluid Balance (L/m²)	PICU admission	7 days	Willson, 2013 44		

eTable 5. Weights Used in FO Definitions

Weight used	Paper (s)
PICU admission weight	Chen, 2016 ⁶
-	Choi, 2017 ⁷
	Diaz, 2017 ⁹
	Li, 2016 ²⁶
	Abulebda, 2014 ¹
	Bhaskar,2015 ⁴¹
	Arikan, 2012 ²
	Askenazi, 2013 ³
	Boschee, 2014 ⁵
	de Galasso, 2016 ⁸
	Flores, 2008 ¹¹
	Gillespie, 2004 ¹⁴
	Goldstein,2001 ¹⁶
	Goldstein, 2005 ¹⁵
	Gulla, 2015 ¹⁷
	Jhang, 2014 ²²
	Ketharanathan, 2014 ²⁴
	Lembel 2012 ²⁷
	Lombel, 2012 ²⁷
	Modem, 2014 ²⁹
	Selewski, 2011 ³⁵
	Sutherland, 2010 ³⁸
	Sutawan, 2016 ⁴³
Hospital admission weight	Hayes, 2009 ¹⁹
	Lombel, 2012 ²⁷
	Michael, 2004 ²⁸
	Selewski, 2011 ³⁵
	Selewski, 2012 ³⁶
	Baird, 2010 ⁴
	Sinitsky, 2015 ³⁷
Hospital admission weight or the most recent available PICU weight	Lex, 2016 ²⁵
The lowest patient weight from either hospital admission or the most	Foland,2004 ¹³
recent within 1 month of admission	
PICU dry or ideal bodyweight *	Lombel, 2012 ²⁷
, , ,	Randolph, 2005 32
Outpatient weight	Hazle, 2013 ²⁰
	Lombel, 2012 ²⁷
Not specified	Elbahlawan, 2010 ¹⁰
The opposition	Flori, 2011 ¹²
	Hassinger, 2014 ¹⁸
	Hoover, 2008 ⁴²
	Ingelse, 2017 ²¹
	Kaempfen, 2017 ²³
	Naveda, 2016 ³⁰
	Park, 2016 ³¹
	Sampaio, 2015 ³³
	Seguin, 2014 ³⁴
	Valentine, 2012 ³⁹
	Valentine, 2012 Vidal, 2016 ⁴⁰
	Willson, 2013 ⁴⁴
	vviii5011, ZU 13

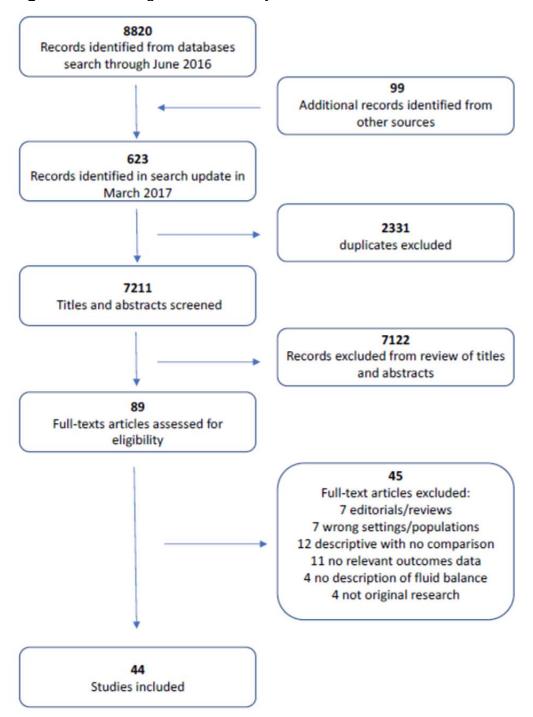
^{*} Randolph et al used "ideal body weight": Estimated as the 50th percentile for recumbent length and sex from the National Center for Health Statistics growth charts

Statistics growth charts.

* Lombel et al used "PICU dry weight": assigned at the time of PICU admission by the PICU staff based on clinical judgment of pre-morbid weight

eTable 6. Studies Reporting Respiratory Dysfunction and Outcomes

Study	Population	Main Respiratory Outcomes
Arikan, 2012 ²	Multisystem (ventilated only)	 Peak %FO correlated significantly with peak OI (r = 0.26, p < 0.02) Higher peak %FO was an independent predictor of higher peak OI (p = 0.009) on multivariate regression analysis Daily %FO >15% was independently associated with that day's OI (regression coefficient= 0.12, p = 0.004) %FO and OI regression coefficient progressively increased with increased %FO cut-off %FO>15% was independently associated with longer duration of MV (OR 0.46, p =0.01)
Bhaskar, 2015 ⁴¹	Sepsis/shock	 MV was longer in patients with FO (median 2 vs 6 days, p = 0.004). However, the difference was not significant in matched analysis (5 vs 6 days, p = 0.36)
Elbahlawan, 2010 ¹⁰	Stem cell transplant on CRRT	 Improvement of PaO2/FiO2 correlated significantly with reduction of fluid balance after initiation of CRRT (median PaO2/FiO2 increase of 30.51 after 24 hours, and 43 after 48 hours, p <0.05)
Flori, 2011 ¹²	ALI	 Positive fluid balance (in 10 mL/kg/day increments) was independently associated with fewer ventilator-free days (regression coefficient = -0.21, p = 0.02)
Hassinger, 2014 ¹⁸	Post cardiac surgery	 Early FO was associated with prolonged MV (43% vs 8.8%). However, the association was not significant after adjusting for severity of illness (OR 3.15, p = 0.18)
Hayes, 2009 ¹⁹	CRRT	 Higher %FO was associated with longer MV (median 7 vs 16 days, p = 0.02). The association was not significant on multivariable regression.
Ketharanathan, 2014 24	Multisystem	 %FO correlated significantly with OI (r = 0.33, p = 0.01) and length of MV (r = 0.34, p < 0.001)
Lex, 2016 ²⁵	Post cardiac surgery	 Higher %FO was independently associated with prolonged MV (OR 1.01, p = 0.03)
Li, 2016 ²⁶	Multisystem	There was a trend towards prolonged MV in the early FO group but it was not significant statistically (26.6% vs 17%, p = 0.07)
Sampaio, 2015 ³³	Post cardiac surgery	 %FO was independently associated with Length of MV in multiple linear regression (p < 0.01) Peak %FO correlated significantly with maximum OI (Spearman's test = 0.37, p = 0.01) Peak %FO was associated with chest wall edema (p = 0.003) and pleural effusion (p = 0.01) Peak %FO was not associated with extubation failure (p = 0.98)
Seguin, 2014 ³⁴	Post cardiac Surgery	 Peak %FO correlated significantly with maximum OI (r = 0.32, p = 0.001) Higher FO % was independently associated with worse OI (HR 0.16, p = 0.03) %FO at day 2 was independently associated with length of mechanical ventilation (HR 0.97, p = 0.03)


Study	Population	Main Respiratory Outcomes
Sinitsky, 2015 ³⁷	Multisystem	 %FO correlated significantly with oxygenation index (Spearman's test = 0.32, p < 0.001) and with length of MV (Spearman's test = 0.27; p < 0.001) %FO was independently associated with OI at 48 hours (regression coefficient 0.26, p < 0.001) %FO was independently associated with MV days (regression coefficient 0.14, p = 0.002)
Valentine, 2012 ³⁹	ALI	 Higher fluid balance (mL/kg/day) at day 3 was independently associated with fewer ventilator-free days (regression coefficient= -0.02, p = 0.01)
Willson, 2013 ⁴⁴	ALI	 Higher fluid balance (L/m²) was associated with fewer ventilation-free days (p <0.001) Fluid balance (L/m²) was independently associated with OI (regression coefficient 0.52, p =0.01)
Randolph, 2005 ³²	Multisystem (ventilated only)	 Higher fluid balance (ml/kg/day) was associated with nonsignificant trend towards longer duration of ventilation weaning (HR 0.94, P = 0.051) Positive fluid balance did not predict extubation failure
Chen, 2016 ⁶	Sepsis	 Early FO was an independent predictor for the need of MV (OR 1.2, p =0.04) However, FO was not associated with the duration of MV (p = 0.3)
Diaz, 2017 ⁹	Multisystem	Peak %FO correlated with length of MV (r = 0.67, p < 0.01)
Ingelse, 2017 ²¹	Multisystem (ventilated only)	 Fluid balance (mL/kg/day) on day 3 was independently associated with duration of MV (p = 0.048), but not with OI
Vidal, 2016 ⁴⁰	Multisystem (ventilated only)	 FO was associated with prolonged MV (OR 4.02, p = 0.04). However, the association was not significant after adjusting for severity of illness (OR 3.7, p = 0.06)

OI = Oxygenation index MV = Mechanical ventilation ALI = Acute lung injury OR = Odds ratio HR = Hazard ratio

eTable 7. Other Outcomes From Individual Studies

Study	Outcome	Result
Abulebda, 2014 ¹	Composite of "complicated course": death within the 28-day study period or persistence of >2 organ failures at day-7 post admission.	Those with complicated course had higher %FO (8.5% Vs 3.8%, P <0.001)
Bhaskar, 2015 ⁴¹	ECMO use	FO group had more ECMO use compared to no FO (OR 6.2, P=0.01)
Hassinger, 2014 ¹⁸	Hemodynamic variables	 In FO group: Later first inotrope-free day (day 5 Vs day 3, P <0.001) Higher peak inotropic score (P <0.01) More likely to have escalation in inotropic support (20% vs 4.4%) (p = 0.01)
Hazle, 2013 ²⁰	Composite of poor outcome: need for CRRT, upper quartile time to first extubation or intensive care length of stay, or death within 30 days of surgery	Maximum %FO was higher in patients who developed "poor outcome" (24% vs 14%, p=0.02)
Lex, 2016 ²⁵	Post cardiac bypass low cardiac output syndrome	Cumulative %FO on day of surgery was independently associated with low cardiac output syndrome (OR 1.21, P= 0.002)

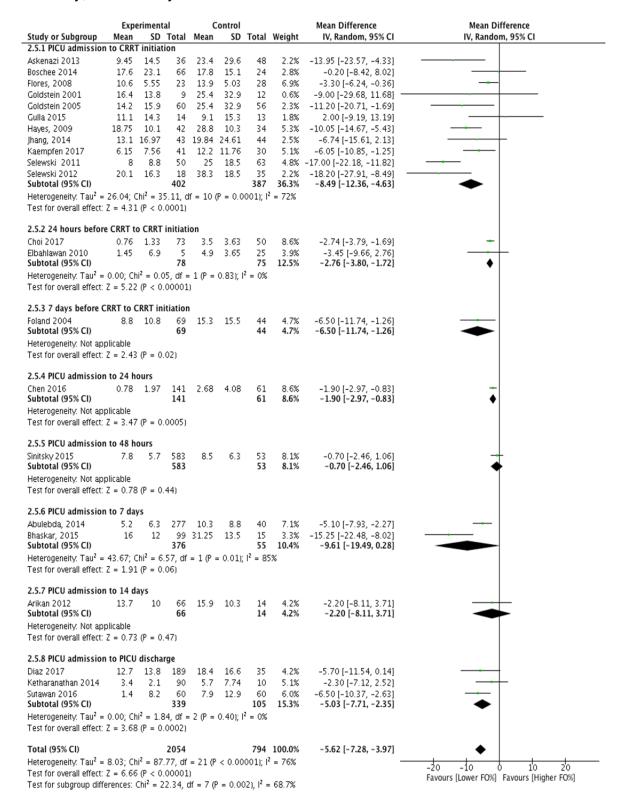
eFigure 1. Flow Diagram of the Study Selection Process

eFigure 2. Association Between FO (Categorical Exposure) and Mortality in Studies Adjusting for Severity of Illness

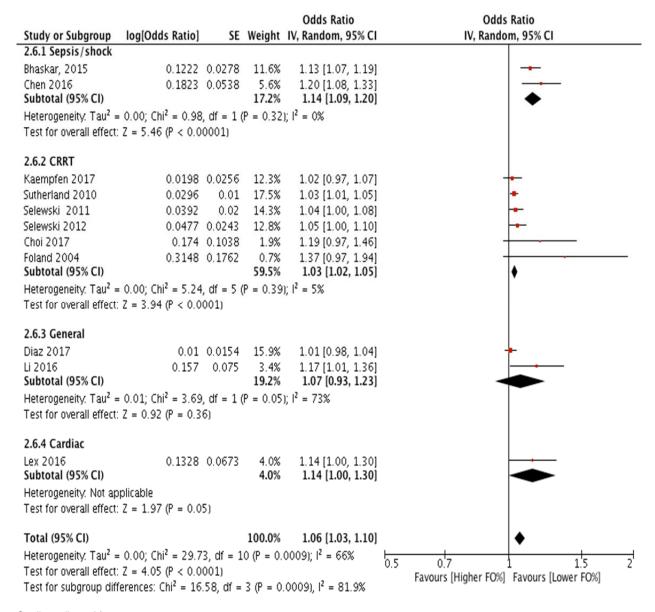
				Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Rando	m, 95% CI	
Bhaskar, 2015	2.2159	0.7237	11.5%	9.17 [2.22, 37.88]			-	_
de Galasso 2016	0.1906	0.8721	8.2%	1.21 [0.22, 6.69]		1	•	
Gillespie, 2004	1.1053	0.357	36.0%	3.02 [1.50, 6.08]			-	
Hayes, 2009	1.7579	0.69	12.5%	5.80 [1.50, 22.43]				
Jhang, 2014	1.4956	0.6452	14.1%	4.46 [1.26, 15.80]				
Sutherland 2010	2.1401	0.5666	17.7%	8.50 [2.80, 25.81]				
Total (95% CI)			100.0%	4.38 [2.64, 7.28]			•	
Heterogeneity: Tau ² =	: 0.06; Chi ² = 5.83,	df = 5 (P = 0.32); I ² = 14%	0.02	0.1	1 10	50
Test for overall effect:	Z = 5.71 (P < 0.00)	001)			0.02		Favours no fluid overlaod	50

Studies adjusted for:

- Bhaskar, 2015: PIM 2, age, indication for ICU admission, duration of hospitalization prior to ICU transfer, presence of infectious diagnoses, presence of oncologic disease(s), presence of respiratory failure, need for vasopressor support and presence of renal dysfunction.
- De Glasso, 2016: PIM2, diagnosis, MODS at CRRT initiation, hypotension at CRRT initiation
- Gillespie, 2004: PRISM2, dose of CVVH replacement of fluid, number of inotropes
- Hayes, 2009: PRISM 2, age, race, sex
- Jhang, 2014: SOFA score
- Sutherland, 2010: PRISM, MODS, CRRT modality, number of inotropes

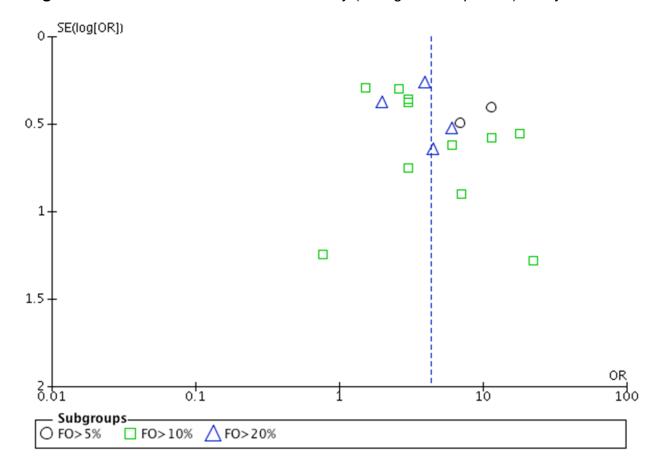

eFigure 3. Association Between Fluid Overload (Categorical Exposure) and Mortality Omitting Studies of Children Receiving CRRT

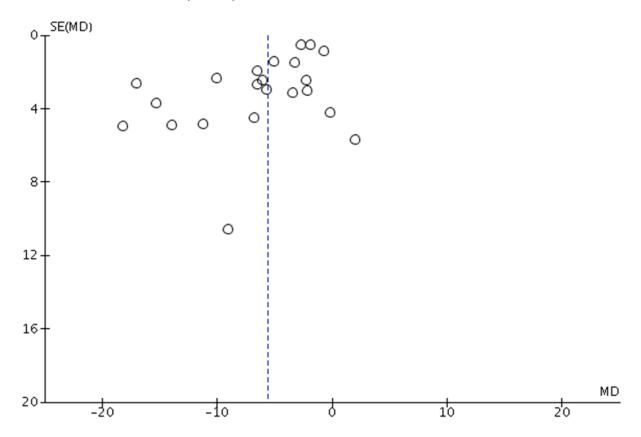
				Odds Ratio		Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI
1.2.1 CRRT						
de Galasso 2016		0.3765	0.0%	2.99 [1.43, 6.26]		
Elbahlawan 2010	-0.2719	1.244	0.0%	0.76 [0.07, 8.73]		
Gillespie 2004	1.1053	0.357	0.0%	3.02 [1.50, 6.08]		
Hayes, 2009	1.8036	0.5252	0.0%	6.07 [2.17, 17.00]		
Jhang, 2014	1.4956	0.6452	0.0%	4.46 [1.26, 15.80]		
Michael 2004	1.9459	0.8997	0.0%	7.00 [1.20, 40.82]		
Modem 2014	0.9442	0.3021	0.0%	2.57 [1.42, 4.65]		
Selewski 2012	1.0922	0.7478	0.0%	2.98 [0.69, 12.91]		
Sutherland 2010 Subtotal (95% CI)	1.3604	0.2643	0.0%	3.90 [2.32, 6.54] Not estimable		
Heterogeneity. Not ap	plicable					
Test for overall effect:	Not applicable					
1.2.2 Sepsis/Shock						
Bhaskar, 2015	1.7971	0.6228	11.8%	6.03 [1.78, 20.45]		
Chen 2016	2.4368	0.4052	14.3%	11.44 [5.17, 25.30]		
Naveda 2016 Subtotal (95% CI)	2.8856	0.5574	12.5% 38.6%	17.91 [6.01, 53.41] 11.24 [6.37, 19.85]		•
Heterogeneity: Tau ² =	0.00; Chi ² = 1.70.	df = 2 (F	0.43):	$1^2 = 0\%$		
Test for overall effect:			,			
1.2.4 General						
Diaz 2017	0.6799	0.3777	14.6%	1.97 [0.94, 4.14]		-
Ketharanathan 2014	3.1023	1.2792	6.0%	22.25 [1.81, 273.00]		
Li 2016	1.9313	0.4969	13.2%	6.90 [2.60, 18.27]		
Sinitsky 2015	0.4152	0.2926	15.4%	1.51 [0.85, 2.69]		+-
Sutawan 2016	2.4384	0.579	12.3%	11.45 [3.68, 35.63]		
Subtotal (95% CI)			61.4%	4.22 [1.73, 10.30]		
Heterogeneity: Tau ² =	0.72; Chi ² = 17.10	0, df = 4	(P = 0.00)	2); $I^2 = 77\%$		
Test for overall effect:			• Suppose	ena * 0 vitir - 1,000 3,54400		
Total (95% CI)			100.0%	6.20 [2.89, 13.28]		•
Heterogeneity: Tau ² =	0.90; Chi ² = 35.0	6, df = 7	(P < 0.00	01); $I^2 = 80\%$	0.01	
Test for overall effect:				(Z)	0.01	0.1 1 10 1 Favors fluid overload Favors no fluid overload
Test for subgroup diff			(P = 0.07)	7), $I^2 = 69.6\%$		ravors nuiu overioau - ravors no nuiu overioau


Association between fluid overload (continuous exposure) and mortality omitting studies of children receiving CRRT

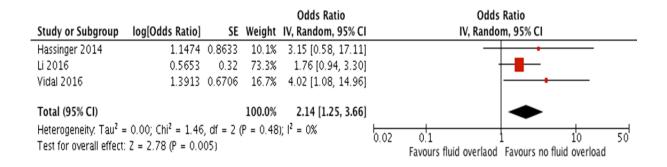
	Su	ırvivors		Non-	-surviv	ors		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.2.1 CRRT									
Askenazi 2013	9.45	14.5	36	23.4	29.6	48	0.0%	-13.95 [-23.57, -4.33]	
Boschee 2014	17.6	23.1	66	17.8	15.1	24	0.0%	-0.20 [-8.42, 8.02]	
Choi 2017	0.76	1.33	73	3.5	3.63	50	0.0%	-2.74 [-3.79, -1.69]	
Elbahlawan 2010	1.45	6.9	5	4.9	3.65	25	0.0%	-3.45 [-9.66, 2.76]	
Flores, 2008	10.6	5.55	23	13.9	5.03	28	0.0%	-3.30 [-6.24, -0.36]	
Foland 2004	8.8	10.8	69	15.3	15.5	44	0.0%	-6.50 [-11.74, -1.26]	
Goldstein 2001	16.4	13.8	9	25.4	32.9	12	0.0%	-9.00 [-29.68, 11.68]	
Goldstein 2005	14.2	15.9	60	25.4	32.9	56	0.0%	-11.20 [-20.71, -1.69]	
Gulla 2015	11.1	14.3	14	9.1	15.3	13	0.0%	2.00 [-9.19, 13.19]	
Hayes, 2009	18.75	10.1	42	28.8	10.3	34	0.0%	-10.05 [-14.67, -5.43]	
Jhang, 2014		16.97	43	19.84	24.61	44	0.0%	-6.74 [-15.61, 2.13]	
Kaempfen 2017	6.15	7.56	41		11.76	30	0.0%	-6.05 [-10.85, -1.25]	
Selewski 2011	8	8.8	50	25	18.5	63		-17.00 [-22.18, -11.82]	
Selewski 2012	20.1	16.3	18	38.3	18.5	35	0.0%	-18.20 [-27.91, -8.49]	
Subtotal (95% CI)			0			0		Not estimable	
Heterogeneity. Not ap	plicable								
Test for overall effect:	Not appl	icable							
2.2.2 Shock/Sepsis									
Abulebda, 2014	5.2	6.3	277	10.3	8.8	40	15.6%	-5.10 [-7.93, -2.27]	
Bhaskar, 2015	16	12	99	31.25	13.5	15	6.1%	-15.25 [-22.48, -8.02]	
Chen 2016	0.78	1.97	141	2.68	4.08	61	20.6%	-1.90 [-2.97, -0.83]	•
Subtotal (95% CI)			517			116	42.3%	-6.01 [-10.91, -1.11]	•
Heterogeneity: Tau² =	,		,	f = 2 (P)	= 0.00	03); I²	= 88%		
Test for overall effect:	Z = 2.40) (P = 0	.02)						
2.2.3 ALI									
Arikan 2012	13.7	10	66	15.9	10.3	14	8.0%	-2.20 [-8.11, 3.71]	
Subtotal (95% CI)			66			14	8.0%	-2.20 [-8.11, 3.71]	~
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.73	3 (P = 0	.47)						
2.2.4 General									
Diaz 2017	12.7	13.8	189	18.4	16.6	35	8.1%	-5.70 [-11.54, 0.14]	
Ketharanathan 2014	3.4	2.1	90	5.7	7.74	10	10.2%	-2.30 [-7.12, 2.52]	-+
Sinitsky 2015	7.8	5.7	583	8.5	6.3	53	18.9%	-0.70 [-2.46, 1.06]	+
Sutawan 2016	1.4	8.2	60	7.9	12.9	60	12.5%	-6.50 [-10.37, -2.63]	
Subtotal (95% CI)			922			158		-3.39 [-6.64, -0.14]	◆
Heterogeneity: Tau² = Test for overall effect:				= 3 (P =	0.03); I	² = 669	6		
	L = 2.04	T (F = 0.							
Total (95% CI)			1505				100.0%	-3.94 [-6.04, -1.83]	◆
Heterogeneity: Tau² =	,		,	= 7 (P :	= 0.000	6); l² =	73%	-	-20 -10 0 10 20
Test for overall effect:		•				_			Favours lower % FO Favours higher % FO
Test for subgroup diff	erences:	$Chi^2 = 1$	l.12, df	= 2 (P	= 0.57)	$ 1^2 = 0 $	%		Salar Salar As a salar mgma As a

eFigure 4 Percent Fluid Overload (%FO) (Continuous Variable) Association With Mortality, Stratified by Assessment Period


eFigure 5. Percent Fluid Overload (%FO) (Continuous Variable) Association With Mortality in Studies Adjusting for Severity of Illness (Stratified by Case-Mix)


Studies adjusted for:

- Bhaskar, 2015: PIM 2, age, indication for ICU admission, duration of hospitalization prior to ICU transfer, presence of infectious diagnoses, presence of oncologic disease(s), presence of respiratory failure, need for vasopressor support and presence of renal dysfunction.
- Chen, 2016: PIM2, age
- Kaempfen, 2017: Weight, length of stay prior to CRRT, inotrope need, mean blood pressure prior to CRRT
- Sutherland, 2010: PRISM, MODS, CRRT modality, number of inotropes
- Selewski, 2011: Age, hospital days pre CRRT, extracorporeal life support status, pRIFLE status, and number of vasoactive agents
- Selewski, 2012: Age, PRISM
- Choi, 2017: PRISM III, inotrope score, length of PICU stay, length of stay prior to CRRT, duration of CRRT, lactic acid, Creatinine, Urea
- Foland, 2004: PRISM III
- Diaz, 2017: PRISM II, age, AKI status, vasoactive support, >3 organ failure
- Li, 2016: PRISM III, age, need for mechanical ventilation, AKI
- Lex, 2016: age, emergency operation, cardiac bypass time, CRRT, low cardiac output syndrom


eFigure 6. Funnel Plot of FO Odds of Mortality (Categorical Exposure) Analysis

eFigure 7. Funnel Plot of Fluid Overload Percent (%FO) (Continuous Variable) Association With Mortality Analysis

eFigure 8. Random-Effects Meta-analysis of FO and Prolonged Mechanical Ventilation

eFigure 9. Random-Effects Meta-analysis of FO and Acute Kidney Injury

	Fluid ove	rload	No Fluid ov	erload		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Bhaskar, 2015	13	42	7	72	12.4%	4.16 [1.50, 11.52]	· · · · · · · · · · · · · · · · · · ·
Chen 2016	17	41	19	161	14.3%	5.29 [2.42, 11.60]	
Hassinger 2014	13	30	23	68	13.5%	1.50 [0.62, 3.61]	· · · · ·
Li 2016	12	64	13	306	13.9%	5.20 [2.25, 12.03]	
Park 2016	14	46	78	174	15.1%	0.54 [0.27, 1.08]	· · · · · · · · · · · · · · · · · · ·
Seguin 2014	32	65	37	128	15.7%	2.38 [1.28, 4.43]	
Sinitsky 2015	18	208	18	428	15.2%	2.16 [1.10, 4.24]	· · · · · · · · · · · · · · · · · · ·
Total (95% CI)		496		1337	100.0%	2.36 [1.27, 4.38]	-
Total events	119		195				
Heterogeneity: Tau ² =	0.54; Chi ²	= 27.1	.4, df = 6 (P =	0.0001); $I^2 = 78$	%	0.05 0.2 1 5 20
Test for overall effect:	Z = 2.72 (P = 0.0	07)				Favours fluid overload Favours no fluid overload

eFigure 10. Random-Effects Meta-analysis of FO and PICU Length of Stay

	No flu	id over	load	Fluid overload			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bhaskar, 2015	17.5	8.6	72	15.75	10.75	42	14.7%	1.75 [-2.06, 5.56]	
Chen 2016	5.7	4.6	161	5.7	5.9	41	19.8%	0.00 [-1.94, 1.94]	+
Hassinger 2014	5.8	2.96	68	9.02	4.85	30	20.0%	-3.22 [-5.09, -1.35]	
Hayes, 2009	18.5	10.5	34	31.5	16.25	8	3.7%	-13.00 [-24.80, -1.20] +	
Li 2016	2.4	2.43	298	3.6	3.14	54	22.0%	-1.20 [-2.08, -0.32]	+
Seguin 2014	4.7	2.8	128	11.7	7.9	65	19.7%	-7.00 [-8.98, -5.02]	
Total (95% CI)			761			240	100.0%	-2.51 [-4.99, -0.03]	•
Heterogeneity. $Tau^2 = 7.07$; $Chi^2 = 40.38$, $df = 5$ (P < 0.00001); $I^2 = 88\%$							= 88%	-	-10 -5 0 5 10
Test for overall effect:	Z = 1.99	9 (P = 0	.05)						Favours no fluid overload Favours fluid overload

References:

- 1. Abulebda K, Cvijanovich NZ, Thomas NJ, et al. Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Crit Care Med. 2014;42(2):397-403.
- 2. Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253-258.
- 3. Askenazi DJ, Goldstein SL, Koralkar R, et al. Continuous renal replacement therapy for children <10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587-592.e583.
- 4. Baird JS, Wald EL. Long-duration (>4 weeks) continuous renal replacement therapy in critical illness. Int J Artif Organs. 2010;33(10):716-720.
- 5. Boschee ED, Cave DA, Garros D, et al. Indications and outcomes in children receiving renal replacement therapy in pediatric intensive care. J Crit Care. 2014;29(1):37-42.
- 6. Chen J, Li X, Bai Z, et al. Association of Fluid Accumulation with Clinical Outcomes in Critically Ill Children with Severe Sepsis. PLoS ONE. 2016;11(7):e0160093.
- 7. Choi SJ, Ha EJ, Jhang WK, Park SJ. Factors Associated With Mortality in Continuous Renal Replacement Therapy for Pediatric Patients With Acute Kidney Injury. Pediatr Crit Care Med. 2017;18(2):e56-e61.
- 8. de Galasso L, Emma F, Picca S, Di Nardo M, Rossetti E, Guzzo I. Continuous renal replacement therapy in children: fluid overload does not always predict mortality. Pediatr Nephrol. 2016;31(4):651-659.
- 9. Diaz F, Benfield M, Brown L, Hayes L. Fluid overload and outcomes in critically ill children: A single center prospective cohort study. J Crit Care. 2017;39:209-213.

- 10. Elbahlawan L, West NK, Avent Y, et al. Impact of continuous renal replacement therapy on oxygenation in children with acute lung injury after allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(3):540-545.
- 11. Flores FX, Brophy PD, Symons JM, et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol. 2008;23(4):625-630.
- 12. Flori HR, Church G, Liu KD, Gildengorin G, Matthay MA. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract. 2011;2011:854142.
- 13. Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771-1776.
- 14. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394-1399.
- 15. Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653-658.
- 16. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309-1312.
- 17. Gulla KM, Sachdev A, Gupta D, Gupta N, Anand K, Pruthi PK. Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction A pilot study on timing of initiation. Indian Journal of Critical Care Medicine. 2015;19(10):613-617.

- 18. Hassinger AB, Wald EL, Goodman DM. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med. 2014;15(2):131-138.
- 19. Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394-400.
- 20. Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid overload in infants following congenital heart surgery. Pediatr Crit Care Med. 2013;14(1):44-49.
- 21. Ingelse SA, Wiegers HM, Calis JC, van Woensel JB, Bem RA. Early Fluid Overload Prolongs Mechanical Ventilation in Children With Viral-Lower Respiratory Tract Disease. Pediatr Crit Care Med. 2017;18(3):e106-e111.
- 22. Jhang WK, Kim YA, Ha EJ, et al. Extrarenal sequential organ failure assessment score as an outcome predictor of critically ill children on continuous renal replacement therapy. Pediatr Nephrol. 2014;29(6):1089-1095.
- 23. Kaempfen S, Dutta-Kukreja P, Mok Q. Continuous Venovenous Hemofiltration in Children Less Than or Equal to 10 kg: A Single-Center Experience. Pediatr Crit Care Med. 2017;18(2):e70-e76.
- 24. Ketharanathan N, McCulloch M, Wilson C, et al. Fluid overload in a South African pediatric intensive care unit. J Trop Pediatr. 2014;60(6):428-433.
- 25. Lex DJ, Toth R, Czobor NR, et al. Fluid Overload Is Associated With Higher Mortality and Morbidity in Pediatric Patients Undergoing Cardiac Surgery. Pediatr Crit Care Med. 2016;17(4):307-314.
- 26. Li Y, Wang J, Bai Z, et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175(1):39-48.

- 27. Lombel RM, Kommareddi M, Mottes T, et al. Implications of different fluid overload definitions in pediatric stem cell transplant patients requiring continuous renal replacement therapy. Intensive Care Med. 2012;38(4):663-669.
- 28. Michael M, Kuehnle I, Goldstein SL. Fluid overload and acute renal failure in pediatric stem cell transplant patients. Pediatr Nephrol. 2004;19(1):91-95.
- 29. Modem V, Thompson M, Gollhofer D, Dhar AV, Quigley R. Timing of continuous renal replacement therapy and mortality in critically ill children. Crit Care Med. 2014;42(4):943-953.
- 30. Naveda OE, Naveda AF. Positive fluid balance and high mortality in paediatric patients with severe sepsis and septic shock. Pediatria. 2016;49(3):71-77.
- 31. Park SK, Hur M, Kim E, et al. Risk Factors for Acute Kidney Injury after Congenital Cardiac Surgery in Infants and Children: A Retrospective Observational Study. PLoS ONE. 2016;11(11):e0166328.
- 32. Randolph AG, Forbes PW, Gedeit RG, et al. Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med. 2005;6(6):642-647+719-721.
- 33. Sampaio TZ, O'Hearn K, Reddy D, Menon K. The Influence of Fluid Overload on the Length of Mechanical Ventilation in Pediatric Congenital Heart Surgery. Pediatr Cardiol. 2015;36(8):1692-1699.
- 34. Seguin J, Albright B, Vertullo L, et al. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery. Crit Care Med. 2014;42(12):2591-2599.
- 35. Selewski DT, Cornell TT, Lombel RM, et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 2011;37(7):1166-1173.

- 36. Selewski DT, Cornell TT, Blatt NB, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40(9):2694-2699.
- 37. Sinitsky L, Walls D, Nadel S, Inwald DP. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015;16(3):205-209.
- 38. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316-325.
- 39. Valentine SL, Sapru A, Higgerson RA, et al. Fluid balance in critically ill children with acute lung injury. Crit Care Med. 2012;40(10):2883-2889.
- 40. Vidal S, Perez A, Eulmesekian P. Fluid balance and length of mechanical ventilation in children admitted to a single Pediatric Intensive Care Unit. Archivos Argentinos de Pediatria. 2016;114(4):313-318.
- 41. Bhaskar P, Dhar AV, Thompson M, Quigley R, Modem V. Early fluid accumulation in children with shock and ICU mortality: a matched case-control study. Intensive Care Med. 2015;41(8):1445-1453.
- 42. Hoover NG, Heard M, Reid C, et al. Enhanced fluid management with continuous venovenous hemofiltration in pediatric respiratory failure patients receiving extracorporeal membrane oxygenation support. Intensive Care Med. 2008;34(12):2241-2247.
- 43. Sutawan IBR, Wati DK, Suparyatha IBG. Association of fluid overload with mortality in pediatric intensive care unit. Critical Care and Shock. 2016;19(1):8-13.

44. Willson DF, Thomas NJ, Tamburro R, et al. The relationship of fluid administration to									
outcome in the pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care									
Med. 2013;14(7):666-672.									
2.10d. 2010,1 1(7)1000 07 2 1									