1 Supplemental Data

2 RAS pathway mutations as predictive biomarker for treatment adaptation in

pediatric BCP-ALL

- 4 Isabel S. Jerchel¹, Alex Q. Hoogkamer¹, Ingrid M. Ariës¹, Elisabeth M.P. Steeghs¹, Judith M.
- 5 Boer¹, Nicolle J.M. Besselink^{2,3}, Aurélie Boeree¹, Cesca. van de Ven¹, Hester A. de Groot-
- 6 Kruseman⁴, Valerie de Haas^{4,7}, Martin A. Horstmann^{5,6}, Gabriele Escherich^{5,6}, C. Michel Zwaan¹,
- 7 Edwin Cuppen^{2,3}, Marco J. Koudijs^{2,3}, R. Pieters^{4,7}, and Monique L. den Boer^{1,4,*}
- ⁸ ¹ Department of Pediatric Oncology, Erasmus Medical Center Sophia Children's Hospital,
- 9 Rotterdam, the Netherlands
- ¹⁰ ² Center for Personalized Cancer Treatment, University Medical Center Utrecht, the
- 11 Netherlands
- ¹² ³ Center for Molecular Medicine, Cancer Genomics Netherlands, Division Biomedical Genetics,
- 13 University Medical Center Utrecht, the Netherlands
- ⁴ Dutch Childhood Oncology Group (DCOG), The Hague, the Netherlands
- ¹⁵ ⁵ Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf,
- 16 Hamburg, Germany
- ⁶ On behalf of the Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia
 (COALL)
- ¹⁹ ⁷ Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- 20 *Corresponding author: Prof. M.L. den Boer, m.l.denboer@erasmusmc.nl
- 21

22 Full online Material and Methods

23 Patient material, patient-derived xenografts (PDX), cell lines, and subtype classification

24 This study comprised children with newly diagnosed BCP-ALL enrolled in consecutive Dutch Childhood Oncology 25 Group trials (DCOG ALL-8, ALL-9 and ALL-10) and German Cooperative ALL trials (COALL 06-97 and 07-03). Written 26 informed consent was obtained from parents or guardians and institutional review boards approved the use of 27 excess of diagnostic material for research purposes. These studies were conducted in accordance with the 28 Declaration of Helsinki. Mononuclear cells were isolated using density gradient centrifugation with Lymphoprep 29 (Axis Shield, Norway) as described previously¹. If not indicated otherwise, samples contained at least 90% leukemic 30 blasts evaluated by morphological examination. In some cases this was achieved by negative selection using 31 immunomagnetic beads. Animal experiments were approved by the animal ethics committee (EMC 2863 (103-12-32 08)). Xenografts of primary patient material were established in three 7-12 week-old female NOD.Cg-33 Prkdcscidll2rgtm1Wjl/SzJ (NSG) mice (Charles River, France) per patient, using intra-femoral injection. Animals were 34 randomly assigned to receive leukemia cell injections. Mice were sacrificed upon signs of overt leukemia or 180 days 35 after transplantation. Leukemic cells were isolated from bone marrow and spleen, and subsequently used for 36 sequencing, western blot, and trametinib cytotoxicity assays. Blast percentage was above >90% by morphological 37 evaluation in all samples, in one case achieved by positive selection using immunomagnetic beads directed to human 38 CD19 (Miltenyi Biotec, Germany). The leukemic cell line 697 was obtained from the German Collection of 39 Microorganisms and Cell Cultures, regularly checked for mycoplasma contamination, and its identity verified using 40 DNA fingerprinting (DSMZ, Germany).

Subtypes were determined by karyotype, fluorescence *in-situ* hybridization (FISH) and/or fusion-gene specific PCR, subdividing patients into *ETV6-RUNX1*-rearranged, *BCR-ABL1*-rearranged, high hyperdiploid karyotype (51-65 chromosomes and/or DNA index \geq 1.16 and <1.5), *MLL*-rearranged (t(4;11)), *TCF3-PBX1*-rearranged, and B-lineage other (B-other). *BCR-ABL1*-like cases were identified using microarray gene expression profiling by the means of a 110 probeset classifier with proven independent prognostic relevance.^{2, 3} In 11 cases all subtypes have been excluded, except the extremely rare *TCF3-HLF* fusion. As this is extremely rare, we consider it safe to allocate these cases to the B-other group.

48 Cell culture

49 Primary cells were cultured in RPMI-1640 Dutch modified supplemented with 20% FCS, Penicillin, Streptomycin,

50 Fungizone, gentamicin, insulin, selenite, transferrine, and L-Glutamine (all Life Technologies Europe BV, the

51 Netherlands). Cell line 697 was cultured in RPMI-1640 +GlutaMAX, supplemented with 10% FCS, Penicillin,

52 Streptomycin, and Fungizone.

53 *Ex vivo* drug cytotoxicity assays

54 Cell-intrinsic resistance towards common chemotherapeutics was evaluated as previously described.⁴ In brief, 55 freshly isolated primary leukemic cells were incubated with a range of concentrations of prednisolone (0.076 -56 250μg/mL), vincristine (0.05 – 50μg/mL), daunorubicin (0.002 – 1.2μg/mL), L-asparaginase (0.003 – 10IU/mL), 6-57 mercaptopurine ($0.002 - 0.05\mu g/mL$) and 6-thioguanine ($0.02 - 0.5\mu g/mL$). After four days, cell viability was 58 evaluated by adding 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and measuring formazan-59 conversion with optical density measurement. LC50-values were calculated (concentration at which 50% conversion 60 activity was measured relative to untreated control) and compared between groups using a Mann-Whitney U test. Ex vivo sensitivity towards trametinib was measured similarly (range 5µM to 0.6nM and four days incubation). Both 61

62 primary material and patient-derived xenograft samples were used to evaluate trametinib sensitivity.

63 Protein isolation and western blot

Leukemic cells were lysed either using radioimmunoprecipitation buffer (Thermo Fisher Scientific) with fresh phosphatase and protease inhibitors (Sigma Aldrich) or in protein lysis buffer pH 7.4 containing 25mM Tris base, 150mM NaCl, 5mM EDTA pH 8.0, 1% Triton X-100, 10% glycerol, 10mM sodium pyrophosphate, 1mM sodium orthovanadate, 10mM glycerolphosphate, dithiothreitol, phenylmethylsulfonyl fluoride, Aprotinin, and Sodium-Fluoride (all Sigma Aldrich). Samples were blotted on nitrocellulose membranes using the BioRad Trans-blot Turbo system and membranes probed with anti-MEK1/2 (#4694), anti-phospho-MEK1/2 S217/221 (#9154), anti-ERK1/2 (#9107), anti-phospho-ERK1/2 T202/Y204 (#4370), and anti-alpha-tubulin (#2144) according to manufacturer's

71 instructions (all Cell Signaling Technologies).

72 DNA isolation and sequencing

73 Genomic DNA and RNA were isolated using Trizol reagent according to manufacturer's protocol (Life Technologies),

- or in some cases using the DNeasy blood and tissue kit (Qiagen). Genomic DNA concentration was determined using
- 75 the Qubit dsDNA Broad Range Assay Kit (Life Technologies). For TruSeq Custom Amplicon sequencing (Illumina, USA),
- 76 100-250ng genomic DNA was used to prepare sequencing libraries according to manufacturer's instructions.
- 77 Successful library preparation, correct amplicon length, and concentration was assessed using the Labchip GX
- 78 genomic analyzer (Caliper Life Sciences Benelux N.V., the Netherlands) with the HT DNA 12K Reagent Kit, Version 2.
- 79 Samples were then pooled equimolarly sequenced on an Illumina MiSeq in paired-end reads of 250bp each. In total,
- 49 amplicons of mutational hotspot regions in 13 RAS pathway genes were sequenced (Supplemental Table S1).
- 81 Detailed information on the design and analysis script will be provided upon request.

82 Sequence reads were exported in fastq format and aligned to the standard 1000 genomes human reference 83 sequences (version b37, from the GATK resource bundle, the Broad institute, USA) using BWA version 0.7.10⁵. We 84 applied the GATK indel realigner version 3.3-0 to remove artefacts caused by indels. Reads mapping outside targeted 85 regions (e.g. due to false priming or poor quality) were excluded. Single nucleotide variants were called with Freebayes version 0.9.18-24⁶, Varscan version 2.3.7⁷, Bcftools version 1.0⁸, and GATK version 3.3-0⁹. The resulting 86 variant call format files were annotated using snpEff and snpSift version 4.1a¹⁰ and dbNSFP version 2.7 database¹¹. 87 88 All variants were combined into a single table and filtered based on several criteria using an in-house developed 89 pipeline: For each sample, variants were excluded if they were reported by only one caller, had coverage of less than 90 100 reads, or had less than 20 reads supporting the variant allele. Overall, variants were excluded if they did not 91 occur at least once with a variant allele frequency (VAF) >2% or were not distributed equally between runs according 92 to a chi-square test. Furthermore only variants were taken into account that were reported in the COSMIC V73 93 GRCh37 database (cancer.sanger.ac.uk)¹², lead to an amino acid change, were unlikely to be a germline variant (see 94 below), and not a known SNP. A variant was considered to be a SNP if it had a mean population frequency of 5% or 95 higher across the 1000Gp1 complete human population, 1000Gp1 population of European decent, and the ESP-6500 96 population of European decent allele frequency database. Variants were labelled as a possible germline variant if 97 they were found in more than 10 samples with a mean and median VAF of more than 40%.

98 Clonal and subclonal mutations were distinguished based on VAF: assuming heterozygosity, a mutation was 99 considered to be clonal if VAF exceeded 25% (representing 50% of the cells) and subclonal if VAF was <25%. Since a 100 minimum number of 20 variant reads was required for variant calling, sufficient coverage was crucial to detect 101 subclonal mutations. In the 7 most frequently mutated amplicons, coverage allowed detection of clonal mutations 102 in on average 99% of the samples (Supplemental Tables S1 and S2). Subclonal mutations could be reliably detected 103 up to 3% VAF in most cases and amplicons (average 87% of cases). Because detection of variants with a frequency 104 of 1% was limited to a smaller group, the frequency of subclonal mutations is a conservative estimate. However, 105 based on the observed frequencies we calculated that only a small number of 9 subclonal mutations might be missed

- in our study (Supplemental Table S2B). In a comparison with 25 samples that were sequenced previously (Ariës et al.¹³), all variants could be identified by both platforms, indicating a low false-positive rate.
- 108 Exon 3 of NRAS was sequenced using Sanger sequencing in 253 ALL10 samples, which were part of the clinical
- 109 outcome analyses. 248 yielded good quality chromatograms. Samples were analyzed by visual inspection of codons
- 110 59 to 63 as well as the R package sangerseqR in combination with the tools above to call and annotate detected
- 111 variants. Primer sequences are available upon request.

112 Clinical characteristics and statistics

113 Clinical characteristics were compared using Fisher's exact test in R (version 3.2.1). We analyzed cases from the 114 DCOG and COALL diagnosed between 1992 and 2013 with diagnostic data available (n=432). We restricted the RAS 115 pathway mutated group to those carrying a verified activating mutation in amino acid positions 12, 13, and 146 of 116 NRAS or KRAS or carrying a variant in FLT3 or PTPN11. Event-free survival (EFS) and cumulative incidence of relapse 117 and non-response after induction therapy (CIR) were evaluated in 244 eligible cases treated within one protocol 118 (DCOG ALL10), and analyses were stratified for risk group. Non-eligible were cases who had resided less than 3 119 months in the Netherlands or who were not treated in a childhood oncology center. Since induction death precludes 120 risk-group allocation these cases (n=5) were excluded. The COALL97/03 cohort consisted of patients treated in the 121 consecutive COALL 06-97 and the COALL 07-03 protocols (n=131). For details see Escherich et al.¹⁴ Treatment 122 intensity in arms LR-R and LR-S was considered comparable to DCOG ALL10 standard risk treatment; LR-I, HR-R, and 123 HR-S treatment is comparable to the DCOG ALL10 medium risk treatment. In the COALL97/03 study, no high risk 124 treatment is given that is comparable to the intensity given in the DCOG ALL10 high risk arm. Mean follow-up for 125 patients at risk was 7.7 years (±1.86 years) in ALL10 and 8.6 years (±2.63 years) for COALL97/03. CIR was estimated 126 using a competing risks model and compared using Gray's test. EFS probabilities were estimated using the actuarial 127 Kaplan-Meier method and compared using the log-rank test. Hazard ratios were calculated in SPSS v21 using Cox's proportional hazard model. All reported tests are two-sided, adjustments for multiple testing were deemed 128 expendable due to low numbers of comparisons. Outcome analyses were performed in R 3.2.1, using the packages 129 cmprsk¹⁵ version 2.2-7, mstate version 0.2.7¹⁶, and survival version 2.38-3¹⁷. 130

132 List of supplemental tables and figures

133 Tables

- 134 Table S1: Median coverage per sample itemized by amplicon.
- 135 Table S2: Estimate of false negative cases missed due to low coverage in the 8 most frequently mutated regions.
- 136 Table S3: Frequency and total number of clonal and subclonal RAS pathway mutations per subtype and gene.
- 137 Table S4: Frequencies of RAS pathway mutations among cytogenetic subtypes of BCP-ALL.
- Table S5: Frequency of common secondary aberrations in RAS pathway wildtype, clonal and subclonal mutationcases.
- 140 Table S6: Distribution of clonal and subclonal RAS pathway mutations among the treatment arms of DCOG ALL10
- 141 Table S7: Clinical characteristics of BCP-ALL patients with subclonal RAS pathway mutations.
- 142 Table S8: Baseline characteristics of the ALL10 and COALL97/03 cohorts
- Table S9: Univariate and multivariate analysis of Cox's proportional hazard ratio in Standard-risk treated DCOG
 ALL10 cases.
- 145 Table S10: Median ex vivo LC50-values per RAS pathway mutations.
- 146

147 Figures

- 148 Figure S1: Diagram with detailed information about the patient cohorts.
- 149 Figure S2: Amplicon coverage across samples.
- 150 Figure S3: Relative frequency of NRAS, KRAS, PTPN11, FLT3 and other RAS pathway mutations.
- 151 Figure S4: Histogram of observed variant allele-frequencies.
- 152 Figure S5: Frequency of clonal and subclonal RAS pathway mutations among tyrosine kinase fusion negative and
- 153 tyrosine kinase fusion positive BCR-ABL1-like cases.
- 154 Figure S6: Detailed analysis of mutations affecting the most frequently mutated RAS pathway genes.
- 155 Figure S7: Event-free survival and cumulative incidence of relapse in the COALL97/03 cohort.
- 156 Figure S8: Ex vivo sensitivity to prednisolone and vincristine in BCP-ALL cases carrying subclonal or clonal RAS
- 157 pathway mutations including FLT3 and PTPN11.
- Figure S11: Ex vivo chemotherapeutic sensitivity of RAS mutated BCP-ALL cases distinguished by the amino acid
 variant in the NRAS or KRAS gene.

- 160 Figure S10: RAS pathway mutations and ex vivo cytotoxicity of chemotherapeutic agents.
- 161 Figure S11: Efficacy of the MEK-inhibitor trametinib in RAS pathway mutant BCP-ALL.

- 162 Supplemental Table S1: Median coverage per sample itemized by amplicon. Amplicons are indicated by
- 163 chromosome and start/end coordinates according to GRCh37. Amplicon ID consists of gene name and a
- 164 consecutive number, + or indicate targeted strand. ULSO: Upstream Locus-Specific Oligo, DLSO: Downstream
- 165 Locus-Specific Oligo

Chromo -some	Start	End	Amplicon ID	Target exon	Median read depth per sample	ULSO	DLSO
1	115258677	115259080	NRAS_1_ +	2	1912	GAGGTAGAATTGCGTAACAGCTCTCT	AACTTCCGGTCTGGACGCGCAGTGC
2	39249582	39249982	SOS1_1_ +	11	3405	GAGTCCTGAGACCAGAAAGTTACAAGA	CTTCAATTATATACCCGAAAAGTCTGC
2	39249854	39250256	SOS1_2_ +	11	4303	GTCAGCTGAAGAGAAAAAACAATTGGAT G	CAACCAAAGACCTCTTTTCTTTGACTAA A
2	39250176	39250579	SOS1_3_ +	11	3126	CACTAGGCAGCCTCATCTGCTCCTCTTT	CTTCCATTATAAATTCATTACAACACTG TC
2	39278250	39278665	SOS1_4_ +	7	908	AACATTAGCACAATCAGACTGGAAGAA	CAAATCACAAGTGTGACTTAAAACAGG
3	12625886	12626290	RAF1_1_ +	17	3037	CTCTAGAGGAAGCAGGAGACAGGG	CAAACCCACAGCGGTCCCTGGG
3	12626160	12626560	RAF1_2_ +	16	3993	GCAATATAAGGTGGGAGTGTTTTGTTT TGT	AGAAGCTGCTGCTAAGGACCTTCTAG
3	12626432	12626835	RAF1_3_ +	15+16	5824	AACAAAGCCCAAGAATGCTCTCATTAG	ACAAGTCCTAACCCTCTAGCTGCTTA
3	12626708	12627112	RAF1_4_ +	15	8246	AAAGGGACAGCCTGGCCCCTAGATGTC	GGATATGCCTCCCCAGATCTTAGTAAG
3	12627036	12627437	RAF1_5_ +	14	5165	AAACTGAATGGGTTGTTATCCTGCATTC	GAAATGTACAGAAACGCTTTAAGTTTG C
3	12629037	12629445	RAF1_6_ +	13	628	TGAACTGATGGCCCAGTGAACTAATG	GACCCAGGCATCAAATTTGTCCCTAA
3	12632242	12632688	RAF1_7_ +	12	1282	CAGAGGGACTGGACCGCCAGCTTTCTA	AGGTTAACTGCTATCGCTACAGTTAGG
3	12633174	12633623	RAF1_8_ +	11	54	AGAAAAACCTCGTTGGAAATTAGAATA C	TTGGGGCCCTCCCTTTACTAACTGCA
3	12641157	12641607	RAF1_9_ +	10	604	CTGCATGATCACAGGTCCTCTAAACAT	ATCTAAGAGGCCTGCCCACATCCCTCAT
7	140453074	140453511	BRAF_1_ +	16	2800	GGAGGAAAGAAGAAATTACCAGAGGT C	CCATTACCATCTTGGACCTGGAAGAAG
11	533746	534150	HRAS_1_ +	3	636	CAAGAGAATATCTGGGCCTACATTGCT	CAGTTGTCTGGATCCATTTTGTGGATG
11	534080	534480	HRAS_2_ +	2	343	AGGATAGGGCTGGCTGCAGCCCCTGG	AGTACAGGTGAACCCCGTGAGGCTGG
11	119148789	119149238	CBL_1_+	8	1529	TTCTGAGTGGAATCCCTGCCACAAATCC	GAGGCACTCCGCTCAATCTTGG
11	119149169	119149569	CBL_2_+	9	597	AGCCCTGACCTTCTGATTCCTGC	GTTAACAGAAAAAGTGAAGACTTGTTT CC
12	25378499	25378910	KRAS_1_ +	4	1413	GAAACCTTAGGAAGTTCAGTGCAGAGA	TAGTGACAGCCAGCCTCAGGGCAATTG T
12	25380234	25380683	KRAS_2_ +	3	926	CCTGAGAACATCAGAACCTTTCTGCAT	TCTGGATGGTTTTGGGAACGTCAATAT
12	25398208	25398635	KRAS_3_ +	2	2064	CCAGCAATGCACAAAGATTTCAGTGTC	AATGAGGGACCAGTACATGAGGACTG
12	112888116	112888551	PTPN11_ 1_+	3	2576	TAGAGCTGAGAAGCCTTCGGGGAGTA A	CCACTTTGTAGATGAATATGATCCCAC
12	112926839	112927258	PTPN11_ 2_+	13	1053	ATGCAACCCCTATAGGATGAGTGTAAG	GTGGGTGACAGCTCCATTTCTTCTAAA
13	28592577	28593002	2_+ FLT3_1_+	20	1381	GCAGAACAGCAGTCTGGCTATTTAGAT	TGTGGACGAATATGATCCAACAATAGA
13	28608193	28608596	FLT3_2_+	13+14	1051	CTTTTGCTCGGAATCTGCAAAAGATCT	TGTGAGGCTGCTATTTCCTACTTATTT
13	28610091	28610494	FLT3_3_+	11	172	AATGTCACACAGGAATTCTGTTTCATC	TGGTAAGAATGGAATGTGCCAAATGTT

15	38545247	38545694	SPRED1_ 1 +	1	529	GCAATCATTGTGCTTTTTAGAACACTGA A	GCCAAACATGAGAGACACATATTTCTC TTT
15	38591535	38591950	SPRED1_ 2_+	2	1906	CTTCCATCCATCCACATTATTCCCTCT	ACAGGGGCCTCACCATGGTGGATGC
15	38614381	38614826	SPRED1_ 3_+	3	293	CCCATCCCCCAACAAATGTGTATCAAT	GCAAAGATCAGGAATTAGCTTTTCCAT
15	38643086	38643489	SPRED1_ 4_+	7	3114	CATGCAATTGACATAGACTATGATGTG	ACATATATCAAATGCATCTAATGTAGCT C
15	38643358	38643759	SPRED1_ 5_+	7	3957	ATTTTTAATGAGGAAGGCTGCGTCTTA	TTCTGGACATTTCTATGATATGTTTTTG G
15	38643684	38644084	SPRED1_ 6_+	7	1655	GATTCCAGTATTCAGTTTTCTAAACCAG AC	CTTGCGATGGTTAGCCCTGGTAGCTTT
15	66727334	66727751	MAP2K1_ 1_+	2	434	CTGCAAATACTCTACAACCTGTAACAAA AC	GTCACACGAACAGGGATCAGAAAAATC T
15	66729037	66729486	MAP2K1_ 2_+	3	529	TATTGACTTGTGCTCCCCACTTTGGA	TTGCCCAGGCTGGTGTGCAACCTCCAT
17	29528006	29528443	NF1_1_+	10	1085	TTCCCTAAATTTAGAACCGAGCAGTCA	CTCCCAGTAGCCGGGACCACAGGCAT
17	29652753	29653190	NF1_2_+	37	2647	CTGAGCCAGGCAGATCTATAGAAAAAG	ACAAAAGCCTTTAAATACCCATGCAGT
17	29654472	29654917	NF1_3_+	38	4061	CATAAAATAAAATTGATTAGTGGCATC TGT	GAACAACAGAAACTACCTGCTGCCA
17	29677138	29677547	NF1_4_+	50	2071	GGTCTCATTTTAAAAGCAACAAACCCC	CGGGGTGAAGTGGAGAAGAATTAAAC T
19	4099156	4099558	MAP2K2_ 1_+	7	179	TGAGCACTTGGGACACGTTTCTGTGTG	AACAGAGCATGTTGGGGAGAAGGAAG
19	4110438	4110845	MAP2K2_ 2_+	3	775	GGATCCTTTCCTTCTACACCATGAACC	AGTGGTGGGGAAGGTCCCCCTGGAAA
19	4117360	4117773	MAP2K2_ 3_+	2	1255	AACTATGAGAGGTGCTCTAGGTACACC	AGAGAGGTTTTATGAAAGAAAGAGGG A
Х	47426580	47427029	ARAF_1_ +	10	454	CTGCATGATCACAGGTCCTCTAAACAT	ATCTAAGAGGCCTGCCCACATCCCTCAT
Х	47428072	47428517	ARAF_2_ +	11+12	61	CTTTTGAGAGAGAGATACAAGGTTTCTGT	ACAGATCTGTTTTCTGCAAAATCATAA
Х	47428811	47429228	ARAF_3_ +	13	420	TTGTAATTCCCAGAACCCCCACAAGAG	AGTGTCAGAGGTGGGGAGGAAAAATA G
Х	47429159	47429559	ARAF_4_ +	14	287	AGATCCCACTGGCCACACAGGGTAC	ATCCTGACCAGGAGCCCCTTAATATCA
х	47430152	47430552	ARAF_5_ +	15	220	GTCTGGACTCCTCATGTCCCACCT	AACCTAAAATTTTCTAGGATAAGGACT CCC
Х	47430424	47430824	ARAF_6_ +	16	527	CTCATGGTGAAACACACACACACACACA	AGCTGGGGTACTGTCAGTATCAAGG
Х	47430758	47431158	ARAF_7_ +	16	360	GGGGCTGGACACCTTGGGTGGGTGAC T	CCCAGGCCGATGAGTTGCCTGCCT

167 Supplemental Table S2: Estimate of false negative cases missed due to low coverage in the 8 most frequently

- 168 mutated regions. The frequency of 1-3%VAF mutations, 3-5% VAF mutations, and 5-10%VAF mutations was
- 169 calculated in a set of samples with sufficient coverage (>2000rds). This frequency was used to estimate the number
- 170 of cases that would be expected in the group of cases where coverage was below the required minimum. All
- 171 missed cases in these three groups were summed up. WT: Wildtype for RAS pathway mutations.

Estimated number of <3%VAF mutations missed in cases with a coverage <666, based on the frequency of 1-3%VAF mutations observed in a group that did reach the coverage of >2000

amplicon	cases with enough	mutation frequency VAF 1-3%	WT cases with	Estimate missed
	coverage		coverage <666	cases
NRAS_1_+	210	10.5	20	2
KRAS_1_+	118	2.5	57	1
KRAS_2_+	10	0.0	59	0
KRAS_3_+	248	4.8	20	1
PTPN11_1_+	327	2.4	9	0
PTPN11_2_+	32	0.0	41	0
FLT3_1_+	95	4.2	24	1
FLT3_2_+	40	0.0	46	0
ΣMissed cases				6

172

Estimated number of 5-10%VAF mutations missed in cases with a coverage <200, based on the frequency of 5-10%VAF mutations observed in a group that did reach the coverage of >2000

	cases with enough		WT cases with	Estimate missed
amplicon	coverage	mutation frequency VAF 5-10%	coverage < 200	cases
NRAS_1_+	446	4.7	8	0
KRAS_1_+	396	0.3	28	0
KRAS_2_+	437	0.0	5	0
KRAS_3_+	448	4.5	7	0
PTPN11_1_+	454	0.4	2	0
PTPN11_2_+	427	0.0	3	0
FLT3_1_+	443	0.5	11	0
FLT3_2_+	432	0.5	16	0
Missed cases				1

173

Estimated number of 3-5%VAF mutations missed in cases with a coverage < 400, based on the frequency of 3-5%VAF mutations observed in a group that did reach the coverage of >2000

	cases with enough	mutation frequency of VAF 3-	WT cases with	Estimate missed
amplicon	COV	5%	coverage <400	cases
NRAS_1_+	210	3.8	12	0
KRAS_1_+	118	1.7	35	1
KRAS_2_+	10	0.0	16	0
KRAS_3_+	248	2.0	10	0
PTPN11_1_+	327	0.6	6	0
PTPN11_2_+	32	0.0	18	0
FLT3_1_+	95	0.0	13	0
FLT3_2_+	40	0.0	21	0
Missed cases				2

176 Supplemental Table S3: Frequency and total number of clonal and subclonal RAS pathway mutations per subtype and gene. WT: Wildtype, n: number of

177 cases, 1-10: mutations with 1 to 10% VAF, 50+: 50 to 100% VAF, all: all mutations summed up. ER: ETV6-RUNX1-rearranged; MLL: t(4;11)-rearranged, HD: high

178 hyperdiploid, BO: B-other, TCF3: TCF3-rearranged, BA: BCR-ABL1-rearranged, BAL: BCR-ABL1-like.

		total n tested	Wildty	/pe	1-10%	6	10-20	%	20-30	%	30-40	%	40-50	%	>50%		all	
			n	% of total	n	% of total	n	% of total	n	% of total	n	% of total	n	% of total	n	% of total	n	% of total
ER	KRAS	124	107	86.3	6	4.8	3	2.4	1	0.8	5	4.0	2	1.6	0	0.0	17	13.7
	NRAS	124	110	88.7	10	8.1	0	0.0	1	0.8	2	1.6	0	0.0	1	0.8	13	10.5
	FLT3	124	119	96.0	4	3.2	0	0.0	0	0.0	0	0.0	1	0.8	0	0.0	5	4.0
	PTPN11	124	120	96.8	3	2.4	0	0.0	0	0.0	1	0.8	0	0.0	0	0.0	4	3.2
	other	124	122	98.4	2	1.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	1.6
t(4;11)	KRAS	15	9	60.0	3	20.0	1	6.7	0	0.0	2	13.3	0	0.0	0	0.0	6	40.0
	NRAS	15	9	60.0	2	13.3	3	20.0	1	6.7	0	0.0	0	0.0	0	0.0	6	40.0
	FLT3	15	13	86.7	1	6.7	0	0.0	1	6.7	0	0.0	0	0.0	0	0.0	2	13.3
	PTPN11	15	13	86.7	2	13.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	13.3
	other	15	15	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
HD	KRAS	124	69	55.6	19	15.3	7	5.6	10	8.1	7	5.6	12	9.7	0	0.0	55	44.4
	NRAS	124	82	66.1	18	14.5	5	4.0	8	6.5	4	3.2	6	4.8	1	0.8	41	33.1
	FLT3	124	110	88.7	5	4.0	4	3.2	1	0.8	0	0.0	2	1.6	2	1.6	12	9.7
	PTPN11	124	110	88.7	4	3.2	4	3.2	1	0.8	1	0.8	4	3.2	0	0.0	14	11.3
	other	124	122	98.4	0	0.0	0	0.0	1	0.8	0	0.0	0	0.0	1	0.8	1	0.8
BO	KRAS	67	52	77.6	6	9.0	2	3.0	1	1.5	2	3.0	3	4.5	1	1.5	14	20.9
	NRAS	67	48	71.6	7	10.4	3	4.5	1	1.5	4	6.0	3	4.5	1	1.5	18	26.9
	FLT3	67	62	92.5	4	6.0	0	0.0	0	0.0	1	1.5	0	0.0	0	0.0	5	7.5
	PTPN11	67	65	97.0	2	3.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	2	3.0
	other	67	66	98.5	1	1.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	1.5
TCF3	KRAS	26	25	96.2	0	0.0	1	3.8	0	0.0	0	0.0	0	0.0	0	0.0	1	3.8
	NRAS	26	25	96.2	1	3.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	3.8
	FLT3	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	PTPN11	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	other	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
BA	KRAS	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	NRAS	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	FLT3	26	25	96.2	0	0.0	0	0.0	0	0.0	0	0.0	1	3.8	0	0.0	1	3.8
	PTPN11	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	other	26	26	100.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
BAL	KRAS	79	61	77.2	7	8.9	1	1.3	3	3.8	3	3.8	3	3.8	1	1.3	17	21.5
	NRAS	79	58	73.4	9	11.4	2	2.5	0	0.0	2	2.5	7	8.9	1	1.3	20	25.3
	FLT3	79	72	91.1	2	2.5	1	1.3	2	2.5	0	0.0	1	1.3	1	1.3	6	7.6
	PTPN11	79	72	91.1	3	3.8	0	0.0	1	1.3	0	0.0	3	3.8	0	0.0	7	8.9
	other	79	78	98.7	1	1.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	1	1.3

- 180 **Table S4: Frequencies of RAS pathway mutations among cytogenetic subtypes of BCP-ALL.** Fisher's Exact test
- 181 comparing the frequency of each cytogenetic subtype to the remaining BCP-ALL subtypes. ER: ETV6-RUNX1-
- rearranged, MLL: t(4;11)-rearranged, HD: high hyperdiploid karyotype, BO: B-other, TCF3: TCF3-rearranged, BA:
- 183 BCR-ABL1-rearranged, BAL: BCR-ABL1-like gene expression profile. OR: Odds ratio. P-values < 0.05 are printed in
- bold. CI: confidence interval. Values for p < 0.05 are printed in bold.

	Wildtype	Mutated	Total	Frequency	Fisher's Exact p-value	OR	95%	CI of OR	
ER	96	28	124	22.6%	8.2E-08	0.3	0.2	0.5	
MLL	4	11	15	73.3%	1.8E-02	3.8	1.1	16.8	
HD	34	90	124	72.6%	4.7E-15	5.7	3.5	9.3	
BO	39	28	67	41.8%	0. 90	1.0	0.5	1.7	
TCF3	26	0	26	0.0%	3.6E-07	0.0	0.0	0.2	
BA	25	1	26	4.0%	7.5E-06	0.0	0.0	0.3	
BAL	40	39	79	49.4%	0.21	1.4	0.8	2.3	
total	264	197	461						

185

187 Supplemental Table S5: Frequency of common secondary aberrations in RAS pathway wildtype, clonal and subclonal mutation cases. Genomic data

188 obtained by MLPA and array comparative genomic hybridization (aCGH) were available for a subset of patients analysed in this study. The overlap with RAS

189 pathway mutations is shown. total: Total number of cases in the analysis and per group. Cases: Cases positive for the respective feature OR: Odds ratio. p: p-

190 value. Values for p < 0.05 are printed in bold.

	Total RAS pa		RAS pat	hway wi	dtype		clo	nal RAS p	athway m	nutation				sut	oclonal RA	AS pathwa	y mutatic	on		
Feature	total	freq.	cases	total	freq.	cases	total	freq.	cases	p =	OR	CI (9	95%)	total	freq.	cases	p =	OR	CI (9	5%)
ERG deletion or		•			•			•							•					
break	272	3%	8	156	3%	5	70	1%	1	0.669	0.44	0.01	4.03	46	4%	2	0.659	1.37	0.13	8.73
JAK2 mutation	419	4%	15	239	4%	9	103	1%	1	0.293	0.25	0.01	1.85	77	6%	5	0.341	1.77	0.45	6.11
high CRLF2																				
expression	407	11%	45	231	9%	20	102	9%	9	1.000	1.02	0.39	2.45	75	21%	16	0.006	2.85	1.29	6.20
chromosome 21																				
abnormality	392	42%	164	224	32%	72	99	56%	55	0.000	2.63	1.58	4.42	69	54%	37	0.002	2.43	1.36	4.39
Morbus Down	392	4%	14	224	5%	11	99	2%	2	0.358	0.40	0.04	1.89	69	1%	1	0.306	0.29	0.01	2.03
iAMP21	390	4%	15	222	4%	8	99	1%	1	0.284	0.27	0.01	2.09	69	9%	6	0.106	2.54	0.70	8.70
dic(9;20)	390	5%	19	222	2%	5	99	11%	11	0.002	5.39	1.67	20.39	69	4%	3	0.399	1.97	0.30	10.42
9p deletion	390	9%	34	222	4%	9	99	21%	21	0.000	6.33	2.64	16.40	69	6%	4	0.515	1.45	0.32	5.42
PAX5 amplification	401	1%	6	231	0%	1	95	4%	4	0.027	10.03	0.98	499	75	1%	1	0.431	3.09	0.04	244
PAX5 del	401	26%	105	231	31%	71	95	27%	26	0.595	0.85	0.48	1.48	75	11%	8	0.000	0.27	0.11	0.60
CDKN2A deletion	404	33%	134	232	29%	68	97	46%	45	0.003	2.08	1.24	3.50	75	28%	21	0.884	0.94	0.50	1.72
CDKN2B deletion	403	32%	127	231	27%	63	97	44%	43	0.003	2.12	1.25	3.58	75	28%	21	0.883	1.04	0.55	1.91
CDKN2A and CDKN2B wildtype	403	65%	260	231	69%	159	97	52%	50	0.004	0.48	0.29	0.81	75	68%	51	0.887	0.96	0.53	1.77
IKZF1 deletion	400	21%	84	230	25%	57	95	19%	18	0.311	0.71	0.37	1.32	75	12%	9	0.023	0.41	0.17	0.91
BTG1 deletion	400	10%	38	229	14%	32	96	1%	1	0.000	0.07	0.00	0.40	75	7%	5	0.106	0.44	0.13	1.20
EBF1 deletion	402	7%	28	231	8%	19	96	4%	4	0.240	0.49	0.12	1.52	75	7%	5	0.807	0.80	0.22	2.32
ETV6 deletion	399	25%	101	227	30%	68	97	14%	14	0.003	0.40	0.19	0.76	75	25%	19	0.467	0.79	0.41	1.48
TCF3 deletion	121	26%	32	63	29%	18	37	24%	9	0.816	0.81	0.28	2.21	21	24%	5	0.782	0.78	0.19	2.69

Supplemental Table S6: Distribution of clonal and subclonal RAS pathway mutations among the treatment arms of DCOG ALL10.

SR: Standard risk treatment arm; MR: medium risk treatment arm; HR: high risk treatment arm. Values for p < 0.05 are printed in bold.

Fisher test, p=	0.024	0.047
ALL10 HR	9/22 (41%)	2/22 (9%)
ALL10 MR	33/151 (22%)	46/151 (30%)
ALL10 SR	10/75 (13%)	15/75 (20%)
Within	Mutated, clonal	Mutated, subclonal

194 Supplemental Table S7: Clinical characteristics of BCP-ALL patients with subclonal RAS pathway mutations. WBC:

- 195 White blood cell count; CNS+: non-traumatic puncture and >5 WBC/µl CSF with identifiable leukemic cells; patients
- 196 with a traumatic lumbar puncture were not included; PPR: Prednisone poor responder, i.e. ≥1000 leukemic
- 197 blasts/ μ l in peripheral blood on day 8 of induction therapy; MRD high: Minimal residual disease $\geq 10^{-3}$; d33: at the
- end of induction therapy (day 33); d79: at the end of consolidation therapy (day 79); ^aFisher's Exact test p-values
- 199 <0.05 are printed in bold font; ^bOdds ratios are only given if p-values in Fisher's Exact test were <0.2.

	Incidence of subo amo		Statistics					
Risk parameter	Risk parameter: Yes	Risk parameter: No	Fisher's p=ª	Odds ratio ^b	95%	6-CI		
Age ≥10	8/75 (15%)	80/357 (30%)	0.04	0.43	0.17	0.97		
Male	49/227 (28%)	39/205 (38%)	0.53					
High WBC (>50/nL)	10/99 (15%)	77/331 (30%)	0.02	0.42	0.18	0.88		
Down Syndrome	1/16 (7%)	86/391 (28%)	0.12	0.18	0	1.26		
CNS+	0/1 (0%)	38/248 (15%)	1					
PPR	2/17 (20%)	63/244 (32%)	0.73					
MRD high d33 ALL10	15/48 (45%)	44/191 (23%)	0.06	2.24	0.95	5.23		
MRD high d79 ALL10	0/8 (0%)	60/231 (32%)	0.18	0	0	1.82		

200

202 Supplemental Table S8: Baseline characteristics of the ALL10 and COALL97/03 cohorts. WBC: white blood cell

203 count; MRD: Minimal residual disease, MRD positive: $MRD \ge 10^{-3}$; PPR: poor prednisone window response. Color

204 intensities are used to indicate the treatment intensity. Treatment intensity: COALL treatment arms LR-R and LR-S

are comparable to ALL10 standard risk treatment (labeled standard); LR-I, HR-R and HR-R are comparable to ALL10

206 medium risk treatment (labeled medium, see method section for details).

	AL	L10					COALL	97/03			
	n	%	Median	25th	75th		n	%	Median	25th	75th
Total	244	100%				Total	131	100%			
Treatment intensity											
Standard	22	9%				Stanard	31	24%			
Medium	148	61%				Medium	100	76%			
High	74	30%						-			
Risk characteristics											
Age			5	3	8	Age			4	2	9
WBC			11	4.925	32.15	WBC			24.1	9.47	55
MRD positive d33	48/239	20%				MRD positive d29	20/61	33%			
MRD positive d79	8/239	3%				MRD positived79	N/A				
PPR	15	6%				PPR	N/A				
Down S.	8	3%				Down S.	3/110	3%			
Events	32	13%				Events	29	22%			
Relapse	28	11%				Relapse	26	20%			

208 Supplemental Table S9: Univariate and multivariate analysis of Cox's proportional hazard ratio in Standard-risk

209 treated DCOG ALL10 cases. WBC: White blood cell count; Clonal mutation: VAF>25%; subclonal VAF<25%; 95% CI:

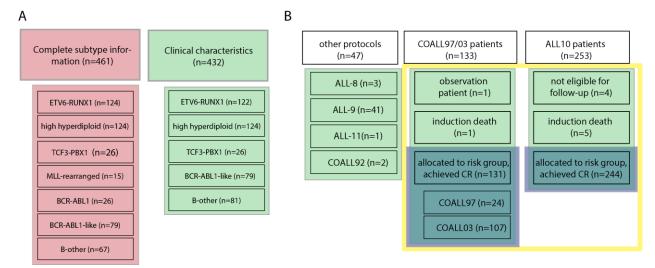
210 95% confidence interval. Values for p < 0.05 are printed in bold.

	Univaria	te	Multiva	riate
Variable	HR (95% CI)	p-value	HR (95% CI)	p-value
Age (≥10 years)	0.05 (0 - >1000)	0.66	0 (0-∞)	0.99
WBC (≥ 50/nL)	1.1 (0.1-9.2)	0.91	0.7 (0.08 – 5.9)	0.73
RAS pathway status		0.11		0.074
Clonal	4.6 (1.0 – 21)	0.047	5.4 (1.2 - 25)	0.032
subclonal	0.9 (0.1 – 7.8)	0.9	0.9 (0.1 – 7.7)	0.9

212 Supplemental Table S10: Median ex vivo LC50-values per RAS pathway mutations. The allocated group is determined by the

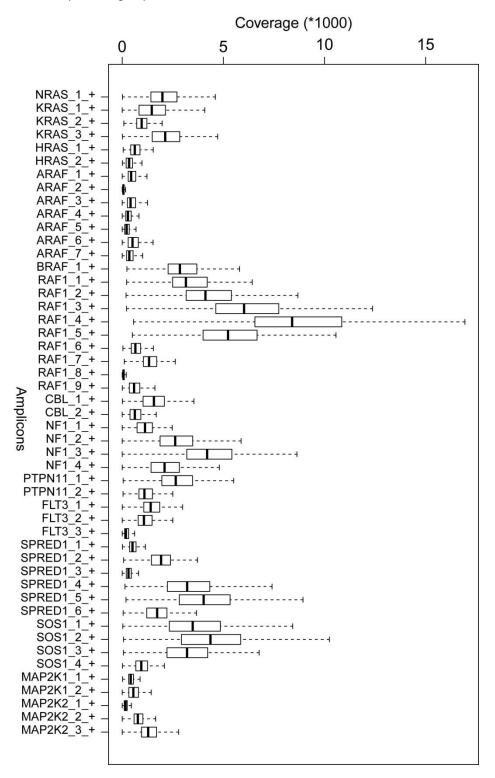
213 largest clone. LC50-values are given in IU/mL for L-asparaginase and in µg/mL for all other chemotherapeutic agents. p-value is

214 determined with a Mann-Whitney U test. Significant p-values are depicted in red. wt: wildtype, Combined: all RAS pathway

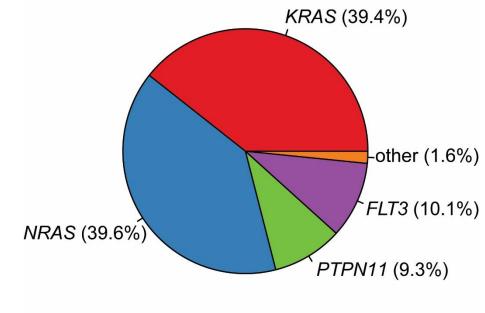

215 mutations taken together. PRED: Prednisolone, VCR: Vincristine, ASP: L-asparaginase, DNR: Daunorubicine, 6TG: 6-Thioguanine,

 $6 MP: 6-Mercaptopurine. Values containing \geq or \leq represent the highest or lowest concentration in the range, which was used as$

217 IC50 if limits were exceeded.

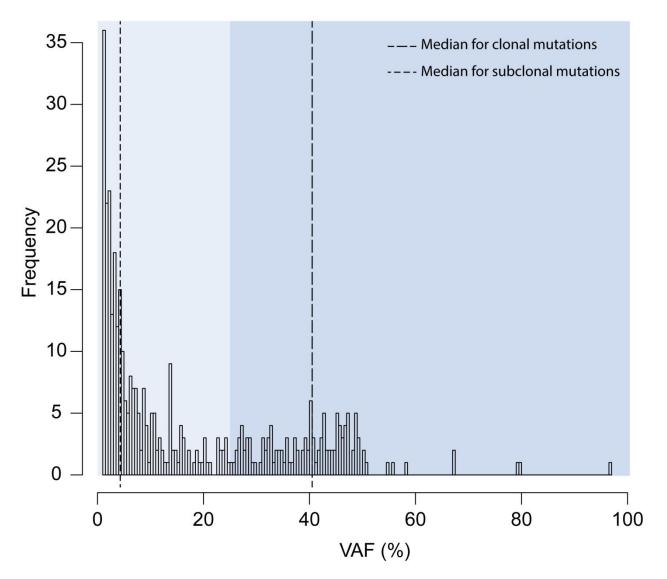

	Clonal						Subclonal						
	n =	Median	Min.	Max.	Fold	p-	n =	Median	Min.	Max.	Fold	p-	
		LC50	(µg/mL)	(µg/mL)	change	Value		LC50	(µg/mL)	(µg/mL)	change	Value	
PRED wildtype	111	0.10	≤0.0076	≥250			111	0.10	≤0.0076	≥250			
PRED combined	49	0.32	≤0.0076	≥250	3.2	0.02	34	0.17	≤0.0076	≥250	1.7	0.34	
PRED KRAS G13	8	>250	0.280	≥250	>2000	0.00	7	>250	0.06	≥250	>2000	0.01	
PRED KRAS G12	15	0.25	0.025	≥250	2.5	0.19	6	0.35	0.04	≥250	3.4	0.37	
PRED NRAS G13	6	1.47	0.041	≥250	14.4	0.18	0	NA					
PRED NRAS G12	11	0.23	≤0.0076	154.89	2.2	0.37	13	0.06	0.01	≥250	0.6	0.98	
PRED FLT3	3	0.10	0.028	14.84	1	1	5	0.55	0.16	≥250	5.4	0.06	
PRED PTPN11	4	0.10	≤0.0076	≥250	1	0.66	2	159.24	68.48	≥250	1565.8	0.06	
PRED KRAS other	2	0.03	0.015	0.05	0.3	0.22	1	0.36	0.36	0.36	3.5	0.54	
VCR wildtype	110	0.49	≤0.049	44.68			110	0.49	≤0.049	44.68			
VCR combined	49	0.73	≤0.049	≥50	1.5	0.15	35	0.50	≤0.049	>50	1	0.91	
VCR KRAS G13	8	7.09	0.397	43.95	14.6	0.01	7	0.67	0.12	>50	1.4	0.33	
VCR KRAS G12	15	0.77	≤0.049	≥50	1.6	0.21	6	0.51	≤0.049	2.26	1.1	0.77	
VCR NRAS G13	6	1.44	0.191	36.50	3	0.07	0	NA	_0.0.0		-	0.77	
VCR NRAS G12	11	0.09	≤0.049	3.03	0.2	0.06	14	0.45	≤0.049	2.66	0.9	. 0.86	
VCR FLT3	3	0.05	≤0.049	2.03	0.2	0.00	5	0.43	≤0.049 ≤0.049	1.65	0.9	0.80	
VCR PTPN11	4	2.48	0.488	43.38	5.1	0.04	2	3.41	0.10	6.72		0.94	
VCR KRAS other	2	0.32	0.488	0.48	0.7	0.50	1	1.51	1.51	1.51	3.1	0.94	
ASP wildtype	109	0.32	≤0.003	0.48 ≥10	0.7	0.50	109	0.22	≤0.003	≥10	5.1	0.37	
					. 0.2	. 0.19						. 0.49	
ASP combined	49	0.04	≤0.003	≥10	0.2	0.18	35	0.07	≤0.003	≥10	0.3	0.48	
ASP KRAS G13	8	0.06	≤0.003	1.58	0.3	0.55	7	0.13	≤0.003	≥10	0.6	0.86	
ASP KRAS G12	15	0.03	≤0.003	≥10	0.1	0.56	6	0.05	≤0.003	1.68	0.2	0.51	
ASP NRAS G13	6	0.87	0.009	1.98	3.9	0.52	0	NA	10.000				
ASP NRAS G12	11	0.02	≤0.003	1.58	0.1	0.21	14	0.01	≤0.003	≥10	0.1	0.09	
ASP FLT3	3	0.10	≤0.003	0.13	0.4	0.36	5	0.03	0.01	0.27	0.1	0.33	
ASP PTPN11	4	0.56	≤0.003	1.31	2.5	0.72	2	0.01	0.01	0.02	0.1	0.23	
ASP KRAS other	2	0.01	0.010	0.01	0.1	0.14	1	0.01	0.01	0.01	0.1	0.31	
DNR wildtype	109	0.05	≤0.002	0.32	•	•	109	0.05	≤0.002	0.32	•	•	
DNR combined	48	0.03	≤0.002	1.13	0.5	0.64	34	0.05	≤0.002	1.18	1	0.79	
DNR KRAS G13	8	0.09	0.018	0.25	1.7	0.15	7	0.03	0.02	0.42	0.6	0.66	
DNR KRAS G12	15	0.03	≤0.002	1.13	0.6	0.87	6	0.05	0.01	0.15	0.9	0.82	
DNR NRAS G13	6	0.03	0.020	0.10	0.5	0.36	0	NA				•	
DNR NRAS G12	11	0.02	0.007	0.12	0.4	0.14	14	0.04	≤0.002	0.22	0.8	0.67	
DNR FLT3	3	0.02	0.006	0.27	0.4	0.59	5	0.05	0.02	0.08	1	0.84	
DNR PTPN11	3	0.19	≤0.002	0.23	3.7	0.44	1	1.18	1.18	1.18	22.9	0.09	
DNR KRAS other	2	0.02	0.022	0.02	0.4	0.23	1	0.12	0.12	0.12	2.4	0.21	
6TG wildtype	83	0.00	≤0.002	0.02			83	0.00	≤0.002	0.02			
6TG combined	37	0.00	≤0.002	≥0.05	1.1	0.89	25	0.00	≤0.002	0.02	0.9	0.73	
6TG KRAS G13	5	0.00	≤0.002	0.02	1.4	0.31	4	0.00	0.00	0.02	0.8	0.58	
6TG KRAS G12	9	0.00	≤0.002	≥0.05	1.3	0.40	5	0.00	0.00	0.00	0.8	0.08	
6TG NRAS G13	5	0.01	≤0.002	0.01	1.8	0.80	0	NA			•		
6TG NRAS G12	11	0.00	≤0.002	0.01	0.7	0.25	12	0.00	≤0.002	0.01	0.9	0.45	
6TG <i>FLT3</i>	3	0.01	≤0.002	0.01	1.5	0.85	2	0.01	0.01	0.01	2.8	0.03	
6TG PTPN11	2	0.00	0.003	0.00	1	0.81	1	0.01	0.01	0.01	2.3	0.25	
6TG KRAS other	2	0.00	≤0.002	0.00	0.6	0.08	1	0.00	≤0.002	0.00	0.4	0.11	
6MP wildtype	82	0.09	≤0.016	≥0.5			82	0.09	≤0.016	≥0.5		1.	
6MP combined	32	0.06	≤0.016	≥0.5	0.7	0.07	25	0.08	≤0.016	≥0.5	0.9	0.39	
6MP KRAS G13	4	0.14	0.044	≥0.5	1.6	0.43	4	0.04	0.02	0.09	0.4	0.07	
6MP KRAS G12	8	0.05	≤0.016	≥0.5 ≥0.5	0.5	0.45	5	0.10	0.02	0.10	1.1	0.41	
6MP NRAS G13	5	0.03	≤0.010 ≤0.016	≥0.5 ≥0.5	0.5	0.10	0	NA	0.02	5.10	1.1	0.41	
6MP NRAS G12	10	0.07	≤0.016	0.36	0.8	0.70	12	0.03	≤0.016	0.27	0.3	. 0.01	
6MP FLT3	10	0.09	0.038	0.36	0.4	0.57	2	0.03	<u>≤0.018</u> 0.27	0.27 ≥0.5	4.3	0.01	
UNIL I LIJ	1					0.22			0.27				
6MP PTPN11	2	0.02	≤0.016	0.03	0.2		1	0.12		0.12	1.4	0.52	

- 219 Supplemental Figure S1: Diagram with detailed information about the patient cohorts. A Subtype distribution
- among patients with complete subtype information, used to determine RAS pathway mutation frequency among
- 221 genetic subtypes of BCP-ALL (red) and subtype distribution among cases used to compare clinical characteristics in
- 222 wildtype or RAS pathway mutated patients (green). **B** Treatment protocols of cases used for analysis of clinical
- characteristics (green) and those used for analysis of event-free survival and cumulative incidence of relapse (blue).
- 224 Cases with *ex vivo* drug sensitivity (yellow frame) data were treated in the COALL97/03 and DCOG ALL10 cohorts,
- but only a subset of these cases had data available (n=211). Observation patient: not eligible for follow-up, only
- baseline characteristics analyzed.



Supplemental Figure S2: Amplicon coverage across samples. Coverage was calculated from the number of reads mapped for each sample. Amplicons are identified by their amplicon ID (see also Supplemental Table S1). Boxes represent first and third quartile, whiskers represent outer two quartiles (max. 1.5-times the inner quartile range),

and bar represents group median.

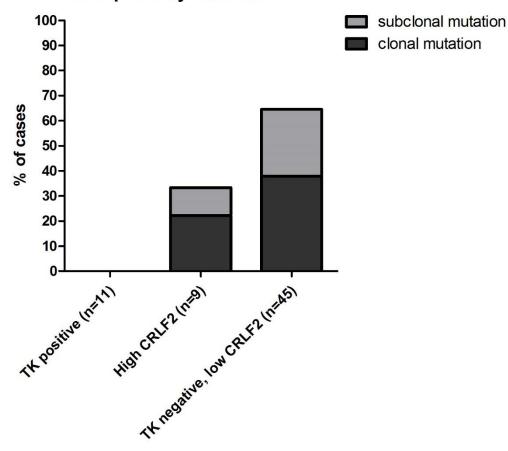


235 Supplemental Figure S4: Histogram of observed variant allele-frequencies. Histogram of the VAF of all mutations

in RAS pathway genes identified in our dataset. Dashed lines depict median VAF of all clonal or subclonal

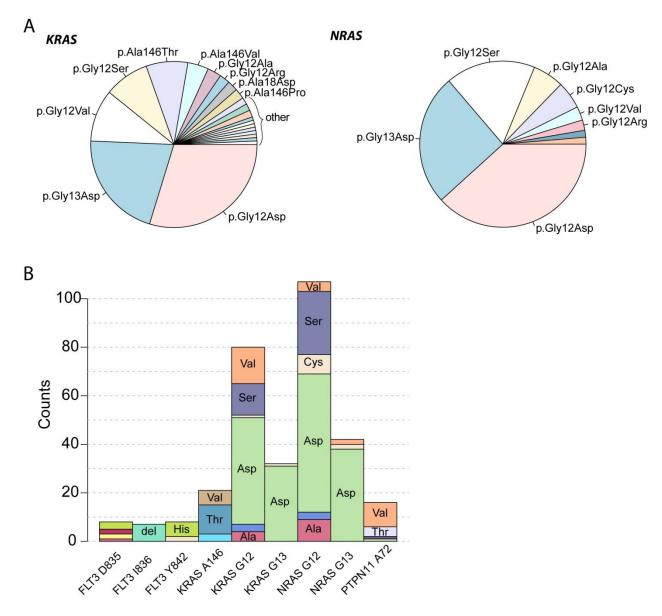
237 mutations. Background shading represents subclonal (light) and (dark) clonal mutations.

239 Supplemental Figure S5: Frequency of clonal and subclonal RAS pathway mutations among tyrosine kinase (TK)

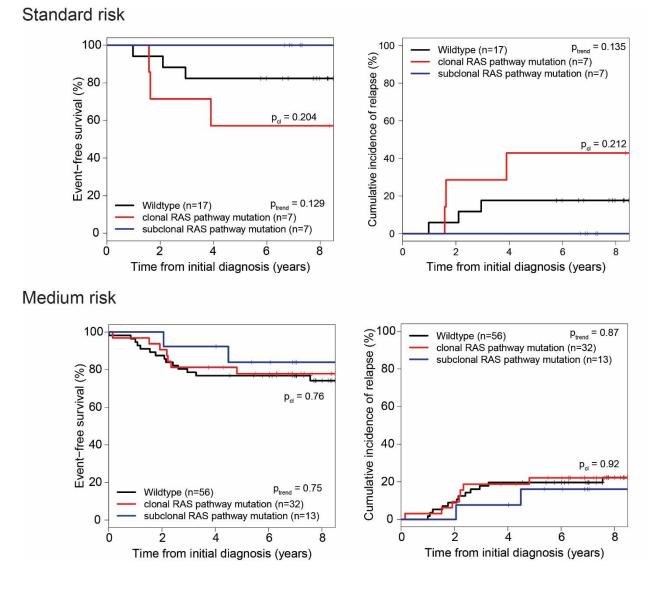

fusion positive BCR-ABL1-like cases, CRLF2-high BCR-ABL1-like cases, and TK fusion negative BCR-ABL1-like cases

with low *CRLF2* expression. TK fusions were identified as described by Boer et al. (manuscript submitted) and

included the following fusions: EBF1-PDGFRB (3 cases), PAX5-JAK2 (3), BCR-JAK2 (1), FOXP1-ABL1 (1), SSBP-CSFR (1),

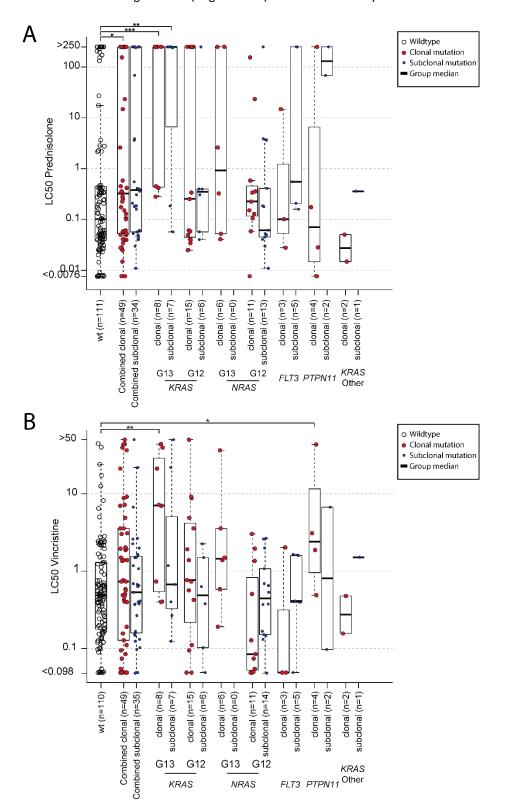

TERF2-JAK2 (1), and ZMIZ1-ABL1 (1). High *CRLF2* expression was, as previously, defined as the 90th percentile of the

244 entire BCP-ALL cohort.

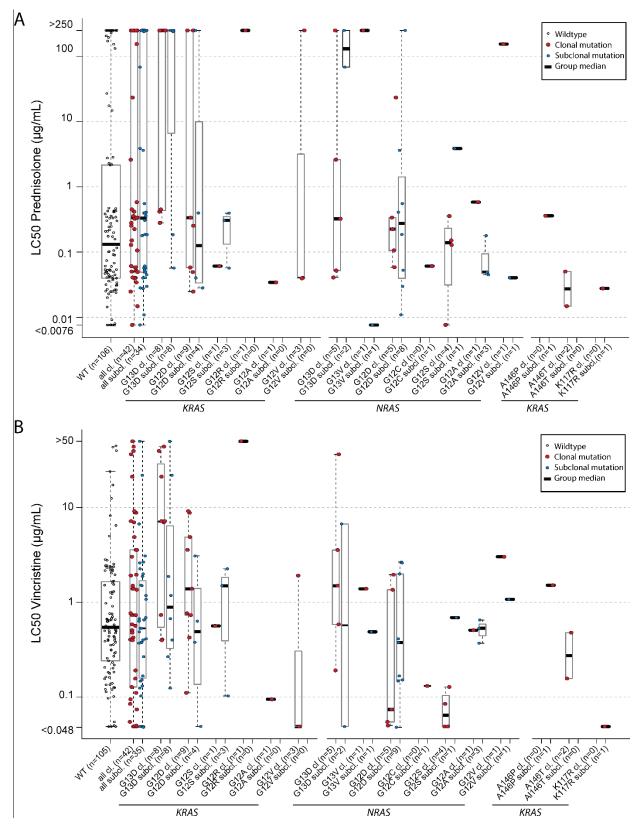

RAS pathway mutations

- 246 Supplemental Figure S6: Overview of amino acid changes in RAS mutated cases. A Relative frequency of different
- 247 KRAS and NRAS variants observed in pediatric BCP-ALL. B Histogram of amino acid substitutions in KRAS, NRAS, FLT3
- and *PTPN11* variants.

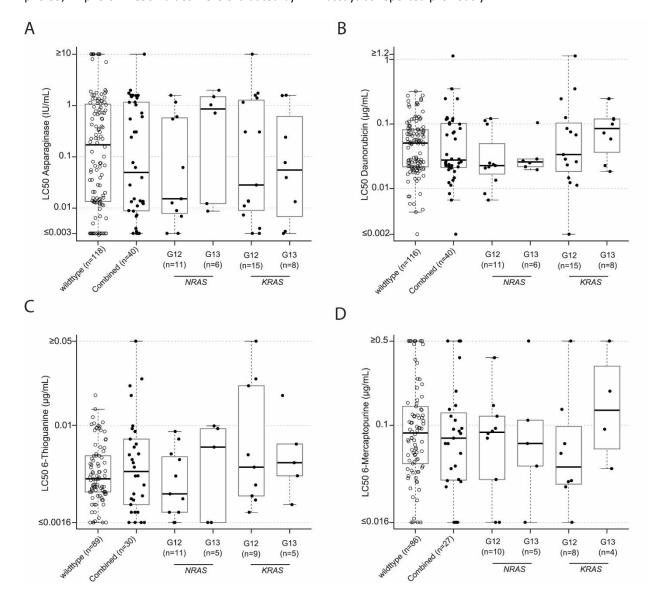
250 Supplemental Figure S7: Event-free survival and cumulative incidence of relapse in the COALL97/03 cohort.


- 251 ptrend = p-value for the analysis comparing wildtype, subclonal, and clonal mutation cases; pcl = p-value for the
- analysis comparing wildtype to cases with clonal RAS pathway mutations.

253

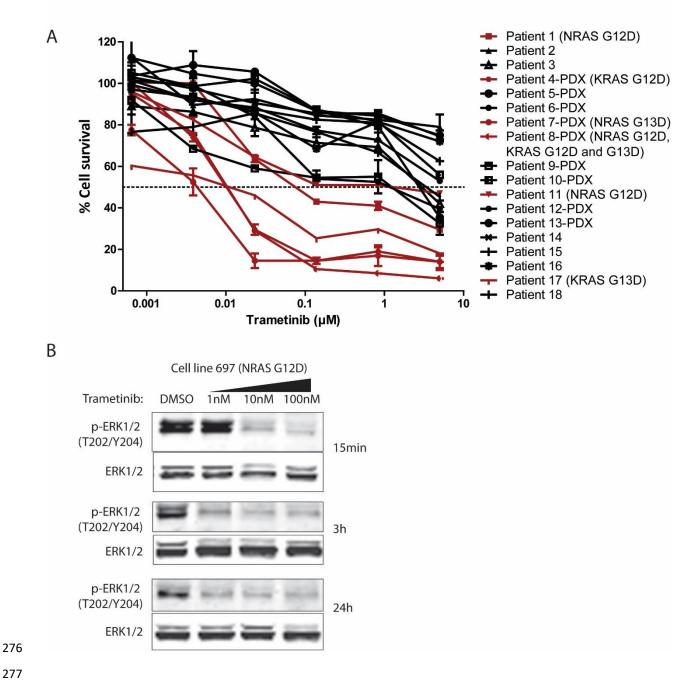

255 Supplemental Figure S8: Ex vivo sensitivity to prednisolone and vincristine in BCP-ALL cases carrying subclonal or

clonal RAS pathway mutations including *FLT3* and *PTPN11*. Sensitivity of primary patient cells towards prednisolone
 and vincristine, distinguished by RAS mutation status. LC50-values of cases with clonal and subclonal mutations are
 depicted. "All": All cases with a mutation in *NRAS, KRAS, PTPN11*, or *FLT3*. In cases with multiple mutations, the
 mutation with the highest VAF (largest clone) was used to classify cases.



261 Supplemental Figure S9: *Ex vivo* chemotherapeutic sensitivity of RAS mutated BCP-ALL cases distinguished by the

amino acid variant in the NRAS or KRAS gene. In cases with multiple mutations, the mutation with the highest VAF
 (largest clone) was used to classify cases. A Prednisolone sensitivity. B Vincristine sensitivity.



Supplemental Figure S10: RAS pathway mutations and *ex vivo* cytotoxicity of chemotherapeutic agents. *Ex vivo* sensitivity of 211 primary patient samples towards (A) L-asparaginase, (B) daunorubicin, (C) 6-thioguanine, and (D)
 6-mercaptopurinol, distinguished by RAS mutation status. Only clonally mutated cases are depicted. Only *KRAS* and
 NRAS mutated groups are shown due to low recurrence of other mutations (see also supplement). Combined: All
 cases with a clonal mutation in *NRAS*, *KRAS*, *PTPN11*, *FLT3*. Groups were compared by Mann-Whitney U test, *
 p<0.05, ** p<0.01. LC50-values were evaluated by MTT assays as reported previously.

272 Supplemental Figure S11: Efficacy of the MEK-inhibitor trametinib in RAS pathway mutant BCP-ALL. A Ex vivo 273 sensitivity of primary BCP-ALL cases towards trametinib. Red lines represent RAS pathway mutated cases, black lines 274 represent RAS pathway wildtype cases. B Western blot of phosphorylated ERK1/2 to confirm effective MEK-inhibition

275 by a range of trametinib concentrations.

278 References

297

300

303

306

310

317

- 279 1. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D, et al. Patient stratification based on 280 prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J 281 Clin Oncol 2003 Sep 1; 21(17): 3262-3268. 282 Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A 283 2. 284 subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide 285 classification study. Lancet Oncol 2009 Feb; 10(2): 125-134. 286 287 3. van der Veer A, Waanders E, Pieters R, Willemse ME, Van Reijmersdal SV, Russell LJ, et al. Independent 288 prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children 289 with B-cell precursor ALL. Blood 2013 Oct 10; 122(15): 2622-2629. 290 291 4. Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER, et al. In vitro cellular drug 292 resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997 Oct 1; 293 **90**(7): 2723-2729. 294
- 2955.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv preprint*296*arXiv:13033997* 2013.
- 2986.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint299arXiv:12073907 2012.
- 3017.Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy302number alteration discovery in cancer by exome sequencing. Genome Res 2012 Mar; 22(3): 568-576.
- 3048.Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population305genetical parameter estimation from sequencing data. *Bioinformatics* 2011 Nov 1; **27**(21): 2987-2993.
- DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, *et al.* A framework for variation
 discovery and genotyping using next-generation DNA sequencing data. *Nature genetics* 2011 May; 43(5):
 491-498.
- Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, *et al.* A program for annotating and predicting
 the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster
 strain w1118; iso-2; iso-3. *Fly* 2012 Apr-Jun; 6(2): 80-92.
- 31511.Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and316Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat 2016 Mar; **37**(3): 235-241.
- Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world's
 knowledge of somatic mutations in human cancer. *Nucleic Acids Res* 2015 Jan; 43(Database issue): D805 811.
- Aries IM, van den Dungen RE, Koudijs MJ, Cuppen E, Voest E, Molenaar JJ, *et al.* Towards personalized
 therapy in pediatric acute lymphoblastic leukemia: RAS mutations and prednisolone resistance.
 Haematologica 2015 Apr; **100**(4): e132-136.
- 325
 326 14. Escherich G, Troger A, Gobel U, Graubner U, Pekrun A, Jorch N, *et al.* The long-term impact of in vitro drug
 327 sensitivity on risk stratification and treatment outcome in acute lymphoblastic leukemia of childhood
 328 (CoALL 06-97). *Haematologica* 2011 Jun; **96**(6): 854-862.
 329

330	15.	Gray RJ. cmprsk: Subdistribution Analysis of Competing Risks. 2013; R package version 2.2-7
331		http://CRAN.R-project.org/package=cmprsk.
332		
333	16.	de Wreede LC, Fiocco M, Putter H. mstate: An R Package for the Analysis of Competing Risks and Multi-
334		State Models. <i>J Stat Softw</i> 2011 Jan; 38 (7): 1-30.
335		
336	17.	Therneau T. A Package for Survival Analysis in S. 2012; R Package version 2.38-3.
337		