

**Figure S1: Characterization of the** *mGRN* **knockout mice.** (A) Schematic representation of the genetic modifications that led to a constitutive *progranulin* knockout, before and after crossing with a PGK-1 Cre line. (B - E) mGRN mRNA and protein level were analyzed by qPCR and ELISA, in brains and spinal cords of constitutive mGRN<sup>-/-</sup> mice.



**Figure S2: Analysis of cell bodies in the facial motor nucleus at 28 days post injury in 7 week old mice.** The number (A), area (B) and circularity (C) of facial motor neuron cell bodies in the facial motor nucleus, normalized to the contralateral side.



**Figure S3: Whisker movement recovery in mGRN**<sup>+/-</sup>, **hGRN**<sup>+/-</sup> **and CTSD**<sup>+/-</sup> **mice.** (A) Whisker movement recovery was unchanged in heterozygous mGRN knockout mice. (B) Quantification of the transcriptional mGRN upregulation in the facial nerve, at 5 days post crush. (C) Genetic overexpression of human GRN has no effect on whisker movement recovery. (D) Heterozygous CTSD knockout mice show no delay in whisker movement recovery.



**Figure S4: RNA and protein expression of hGRN(418X).** (A) Relative levels of hGRN mRNA expression in the brain and spinal cord of hGRN(418X) overexpressing mice. (B) Western blot showing expression of the 418X truncated as well as the wild-type hGRN protein in a mGRN knockout background, *asterisk* indicates a non-specific band.