

Supplementary Fig. 1. Total levels of DJ-1 complexes in human post mortem brain tissue. Soluble HMW complexes were extracted from putamen, substantia nigra and amygdala from frozen human post mortem brain tissue of controls and PD patients and analysed by BN PAGE and western blotting for total DJ-1. The same amount of each sample was also analysed by SDS PAGE to measure total DJ-1 levels and  $\beta$ -actin. Total levels of DJ-1 complexes were quantified by measuring density of all complexes and normalised to total levels of DJ-1 detected by SDS PAGE. A) Respective western blots and quantification of human putamen samples (\*\*p = 0.007). B) Respective western blots and quantification of substantia nigra samples (p = 0.41, not significant). For amygdala SDS-PAGE analysis, all samples analysed on one blot. Sample order: PD 1-5, Ctrl 1-5.



Supplementary Fig. 2. Characterisation of the scrambled control cell line SC1 and the DJ-1 knock down cell lines KD2 and KD1. A) DJ-1 protein levels were analysed by SDS PAGE and western blotting analysis using the monoclonal DJ-1 antibody. β-actin was used as loading control. A representative western blot is shown (n = 3). B) Quantification of the DJ-1 protein levels in the different cell lines as percentage of SH-SY5Y cells. DJ-1 levels were unaffected in SC1 cells, whereas they were decreased by 79.3% and 82.8% in KD2 and KD1 cells, respectively (n=3). C) Upper panel: Crude subcellular fractionation was performed on SH-SY5Y cells. Total lysates, mitochondrial and cytosolic fractions were separated by BN PAGE and western blot analysis for DJ-1 was performed. The HMW complex was detectable in the total lysates and cytosolic fractions, but not mitochondrial fractions. Lower panel: The same fractions were also analysed by SDS PAGE and subsequent western blotting to measure total DJ-1 levels in the different fractions. DJ-1 was detected in both mitochondrial and cytosolic fractions. The membranes were also probed with antibodies against the mitochondrial marker prohibitin and β-actin as a cytosolic marker, to check the purity of the fractions.



Supplementary Fig. 3. DJ-1 complexes are the predominant species in SH SY5Y cells. A) Soluble protein complexes were extracted from SH-SY5Y cells, KD1 cells and KD1 cells transiently transfected with DJ-1 WT or C106DD 72 h after transfection, separated on 8-16% gradient BisTris gels and western blot analysis was performed. With longer exposure times more than two DJ-1 positive complexes were detected and potentially dimeric DJ-1 (arrow). B) Soluble protein complexes were extracted from KD1 and KD1 cells transiently transfected with DJ-1 WT, C106A or C106DD 72 h after transfection, separated on 7.5% BisTris gels and western blot analysis was performed. Reintroduction of all three DJ-1 variants rescued complex formation in the knock down cell line. However, while expression of DJ-1 WT and C106A resulted in the formation of a HMW complex with similar size as observed before (SH-SY5Y and SC1 cells; Fig. 3), the DJ-1 complex was shifted to a lower molecular weight upon expression of oxidation mimic DJ-1 C106DD. C) The same volume of each sample was also analysed by SDS PAGE and western blotting, probing for DJ-1 and actin in order to confirm equal protein expression levels. **D)** SDS page and western blotting for DJ-1 in SH, KD1, KD2 and KD1 cells with stable expression of WT and C106DD DJ-1. DJ-1 protein expression was normalised against  $\beta$ -actin and expressed as percent of SH-SY5Y cells in the bar graph (n=3). DJ-1 protein levels in KD1 and KD2 cells are 21% and 19%, respectively. DJ-1 levels are 406% in WT cells and 558% in DD cells.



#### **Supplementary Figure 4**

Supplementary Fig. 4. Immunoprecipitation of DJ-1 from SH-SY5Y cells and confirmation of equal DJ-1 expression levels prior to mass spectrometry analysis. A) SH-SY5Y (SH) or DJ-1 KD1 cells were lysed and DJ-1 immunoprecipitated with polyclonal goat antibody against DJ-1. Following release from beads, pulled down protein was separated by SDS-PAGE and a western blot performed using mouse monoclonal DJ-1 antibody. DJ-1 was present in SH and no antibody (no ab) lysates (input). DJ-1 was immunoprecipitated from SH-SY5Y cells, but as expected very little in DJ-1 KD1 cells and absent in the no ab control. B) An aliquot of the cell lysates used to immunoprecipitate HMW DJ-1 complexes from KD1 cells transfected with DJ-1 C106A or C106DD and then analysed by LC-MS/MS was reserved to measure DJ-1 protein levels by western blot. Beta actin was used as a loading control. DJ-1 expression levels were similar in both samples.



Supplementary Fig. 5. Confirmation of DJ-1 complex components as identified by mass **spectrometry.** A) BN PAGE and subsequent western blotting probing for DJ-1 and hnRNPA1 suggest that both DJ-1 and hnRNPA1 are components of the same HMW complex. Both proteins are detectable in SC1 cells, but not in KD1 cells and the signals appear at the same molecular weight. B) Immunoprecipitation experiments confirmed the interaction of DJ-1 and hnRNPA1. hnRNPA1 antibody pulled down DJ-1 from normal SH cells. Both DJ-1 (arrow head) and hnRNPA1 (arrow) were detected after immunoprecipitation at the expected molecular weight, but not in no antibody control (no AB). C) Two dimensional BN/SDS PAGE and western blotting detected both DJ-1 and hnRNPA1 (white arrow) at the correct molecular weight. Their similar positions in 2D gels suggest they are components of the same HMW complex. D) BN PAGE and western blotting probing for DJ-1 and PABP1 suggest the two proteins are components of the same HMW complex in WT cells and DD cells. As expected PABP1 expression has a lower molecular weight in DD cells since DJ-1 complexes have a lower apparent molecular weight in these cells. E) Two dimensional BN/SDS PAGE of WT cells yielded two spots of the expected size for PABP1 (arrows) that co-migrated with DJ-1. One of these dots was absent in C106DD DJ-1 HMW complexes. This suggests that DJ-1 and PABP1 are components of the same complex in WT cells, but that there is a different composition in DD cells. **F)** Two dimensional BN/SDS PAGE also confirmed Hsc70 and GAPDH as potential DJ-1 complex components.



### Supplementary Figure 6

**Supplementary Fig. 6.** Adrenaline levels increased in KD1 cells and cells expressing WT or C106DD. Intracellular levels of adrenaline (AD) were measured by ELISA and calculated as pg AD/mg protein. Results are expressed as percent of SH-SY5Y cells (n = 3; measured three times in three biological replicates). AD levels in KD1 cells were significantly increased 3.7 fold, 9.8 fold and 8.1 fold when compared to normal SH-SY5Y cells (median = 7.2 fold). AD levels in cells expressing DJ-1 WT were increased (0.3 fold, 1.9 fold, 5.7 fold) when compared to normal SH-SY5Y cells (median = 2.6 fold). AD levels in cells expressing DJ-1 DD were increased (1.5 fold, 8.9 fold, 7.4 fold) when compared to normal SH-SY5Y cells (median = 5.9 fold). Fold changes in bold are from representative experiment shown in the graph. \*\*\* P < 0.001 versus SH.



Supplementary Fig. 7 Catecholamine ELISA to measure intracellular levels of dopamine (DA), noradrenaline (NOR), and adrenaline (AD) under oxidizing conditions SH-SY5Y cells were treated with (1mM BSO for 24 h followed by 1 mM  $H_2O_2$  for 30 min) and catecholamine levels were calculated (pg/mg protein). Results are expressed as percent of untreated cells (black bars; measured once in three biological replicates). A) In SH-SY5Y cells levels of NOR and AD were not affected by stress treatment, whereas levels of DA were significantly increased after treatment (p = 0.0005). B) In KD1 cells levels, NOR and AD were significantly increased after stress treatment (p-value for NOR = 0.005; p-value for DA = 0.001).

#### Supplementary Fig. 8. RNA Seq: Data assessment for GO terms

#### A) Downregulated mRNA targets in WT versus DD

p-value  $\leq 0.05$  and log2 fold change > 0.5



#### B) Upregulated mRNA targets in WT versus DD

p-value  $\leq$  0.05 and log2 fold change > 0.5



**Supplementary Table 1. Mass spectrometric analysis of HMW DJ-1 complexes in SH-SY5Y cells.** No = Number; Accession and Entry codes for Uniprot; Description of the identified protein; theoretical values for molecular weight (mW) in Daltons (Da) and isoelectric point (pl) in pH units; mean amount in femtomoles (fmol) based on MS Label-free quantification.

| No | Accession   | Entry  | Description                                       | mW<br>(Da) | pl (pH) | Mean<br>(fmol) |
|----|-------------|--------|---------------------------------------------------|------------|---------|----------------|
| 1  | ACTG_HUMAN  | P63261 | Actin cytoplasmic 2                               | 41765      | 5.1606  | 183.9541       |
| 2  | PARK7_HUMAN | Q99497 | Protein DJ 1                                      | 19878      | 6.3721  | 157.2935       |
| 3  | ENO1_YEAST  | P00924 | Enolase 1                                         | 46787      | 6.1538  | 100            |
| 4  | TRYP_PIG    | P00761 | Trypsin                                           | 24393      | 6.9141  | 77.49935       |
| 5  | VIME_HUMAN  | P08670 | Vimentin                                          | 53619      | 4.8633  | 44.6505        |
| 6  | CH60_HUMAN  | P10809 | 60 kDa heat shock protein<br>mitochondrial        | 61016      | 5.5503  | 42.9664        |
| 7  | ACTB_HUMAN  | P60709 | Actin cytoplasmic 1                               | 41709      | 5.1431  | 32.5744        |
| 8  | EF1A3_HUMAN | Q5VTE0 | Putative elongation factor 1<br>alpha like 3      | 50153      | 9.4131  | 32.2976        |
| 9  | K2C1_HUMAN  | P04264 | Keratin type II cytoskeletal 1                    | 65998      | 8.2661  | 24.9905        |
| 10 | G3P_HUMAN   | P04406 | Glyceraldehyde 3 phosphate<br>dehydrogenase       | 36030      | 8.6968  | 23.8184        |
| 11 | ALBU_HUMAN  | P02768 | Serum albumin                                     | 69321      | 5.8608  | 22.70233       |
| 12 | CG025_HUMAN | Q9BPX7 | UPF0415 protein C7orf25                           | 46422      | 5.9766  | 21.3645        |
| 13 | K1C9_HUMAN  | P35527 | Keratin type I cytoskeletal 9                     | 62026      | 4.9585  | 19.01508       |
| 14 | K1C10_HUMAN | P13645 | Keratin type I cytoskeletal 10                    | 58791      | 4.9556  | 15.68173       |
| 15 | TBA1A_HUMAN | Q71U36 | Tubulin alpha 1A chain                            | 50103      | 4.7622  | 14.2412        |
| 16 | ZA2G_HUMAN  | P25311 | Zinc alpha 2 glycoprotein                         | 34237      | 5.6367  | 10.965         |
| 17 | SERPH_HUMAN | P50454 | Serpin H1                                         | 46411      | 9.0439  | 10.07058       |
| 18 | ROA1_HUMAN  | P09651 | Heterogeneous nuclear<br>ribonucleoprotein A1     | 38723      | 9.3677  | 9.6231         |
| 19 | HNRPC_HUMAN | P07910 | Heterogeneous nuclear<br>ribonucleoproteins C1 C2 | 33649      | 4.7593  | 8.910425       |

| 20 | TBB5_HUMAN  | P07437 | Tubulin beta chain                                     | 49638 | 4.5908  | 8.746125 |
|----|-------------|--------|--------------------------------------------------------|-------|---------|----------|
| 21 | ERH_HUMAN   | P84090 | Enhancer of rudimentary<br>homolog                     | 12251 | 5.5342  | 6.123533 |
| 22 | PHB_HUMAN   | P35232 | Prohibitin                                             | 29785 | 5.4302  | 5.8317   |
| 23 | HBD_HUMAN   | P02042 | Hemoglobin subunit delta                               | 16045 | 8.2397  | 5.6682   |
| 24 | HBA_HUMAN   | P69905 | Hemoglobin subunit alpha                               | 15247 | 9.1787  | 5.5543   |
| 25 | SODC_HUMAN  | P00441 | Superoxide dismutase Cu Zn                             | 15925 | 5.666   | 5.402    |
| 26 | ROA2_HUMAN  | P22626 | Heterogeneous nuclear<br>ribonucleoproteins A2 B1      | 37406 | 9.1948  | 5.3118   |
| 27 | SREK1_HUMAN | Q8WXA9 | Splicing regulatory glutamine<br>lysine rich protein 1 | 59345 | 10.8721 | 5.2472   |
| 28 | ACY2_HUMAN  | P45381 | Aspartoacylase                                         | 35712 | 6.0542  | 4.4187   |
| 29 | K1C25_HUMAN | Q7Z3Z0 | Keratin type I cytoskeletal 25                         | 49287 | 4.812   | 2.4863   |
| 30 | EF1A1_HUMAN | P68104 | Elongation factor 1 alpha 1                            | 50109 | 9.3428  | 2.2642   |
| 31 | TBB2B_HUMAN | Q9BVA1 | Tubulin beta 2B chain                                  | 49920 | 4.5908  | 1.968    |
| 32 | OSTP_HUMAN  | P10451 | Osteopontin                                            | 35401 | 4.1777  | 1.3      |
| 33 | TBB4B_HUMAN | P68371 | Tubulin beta 4B chain                                  | 49799 | 4.6025  | 1.2753   |

Supplementary Table 2. Differences in HMW DJ-1 complex composition between cells expressing DJ-1 C106A and C106DD. No = Number; Accession and Entry codes for Uniprot; Description of the identified protein; theoretical values for molecular weight (mW) in Daltons (Da); mean amount in femtomoles (fmol) based on MS Label-free quantification; fold change based on alterations in mean amount between samples C106A and C106DD.

| No | Accession      | Entry  | Description                                                | mW<br>(kDa) | Mean<br>(fmol)<br>in<br>C106A | Mean<br>(fmol)<br>in<br>C106DD | Fold change<br>(C106DD/C106A) |
|----|----------------|--------|------------------------------------------------------------|-------------|-------------------------------|--------------------------------|-------------------------------|
| 1  | RA1L2<br>HUMAN | Q32P51 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>A1 like 2 | 34.20       | 76.06                         | 15.13                          | 0.199                         |
| 2  | HSP72<br>HUMAN | P54652 | Heat shock related<br>70 kDa protein 2                     | 69.98       | 7.69                          | 2.77                           | 0.360                         |
| 3  | PABP1<br>HUMAN | P11940 | Polyadenylate<br>binding protein 1                         | 70.63       | 5.65                          | 2.59                           | 0.459                         |
| 4  | ACTG<br>HUMAN  | P63261 | Actin cytoplasmic 2                                        | 41.77       | 690.95                        | 317.55                         | 0.460                         |
| 5  | MYH10<br>HUMAN | P35580 | Myosin 10                                                  | 228.86      | 6.41                          | 3.30                           | 0.515                         |
| 6  | H2B1N<br>HUMAN | Q99877 | Histone H2B type 1<br>N                                    | 13.91       | 33.49                         | 17.39                          | 0.519                         |
| 7  | MYO1B<br>HUMAN | O43795 | Unconventional<br>myosin Ib                                | 131.90      | 18.27                         | 9.53                           | 0.522                         |
| 8  | ERH<br>HUMAN   | P84090 | Enhancer of<br>rudimentary<br>homolog                      | 12.25       | 9.50                          | 4.99                           | 0.526                         |
| 9  | RLAO<br>HUMAN  | P05388 | 60S acidic<br>ribosomal protein<br>P0                      | 34.25       | 7.13                          | 3.75                           | 0.526                         |
| 10 | DREB<br>HUMAN  | Q16643 | Drebrin                                                    | 71.39       | 38.28                         | 20.18                          | 0.527                         |
| 11 | CALM<br>HUMAN  | P62158 | Calmodulin                                                 | 16.83       | 62.83                         | 33.62                          | 0.535                         |
| 12 | MYH9<br>HUMAN  | P35579 | Myosin 9                                                   | 226.39      | 16.35                         | 8.98                           | 0.549                         |
| 13 | ENOA<br>HUMAN  | P06733 | Alpha enolase                                              | 47.14       | 9.81                          | 5.40                           | 0.550                         |
| 14 | H2B1M<br>HUMAN | Q99879 | Histone H2B type 1<br>M                                    | 13.98       | 33.32                         | 18.47                          | 0.554                         |
| 15 | HNRPL<br>HUMAN | P14866 | Heterogeneous<br>nuclear<br>ribonucleoprotein L            | 64.09       | 12.85                         | 7.31                           | 0.569                         |
| 16 | ROA1<br>HUMAN  | P09651 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>A1        | 38.72       | 56.33                         | 32.67                          | 0.580                         |
| 17 | THOC4<br>HUMAN | Q86V81 | THO complex<br>subunit 4                                   | 26.87       | 7.19                          | 4.18                           | 0.581                         |

| 18 | H2A1<br>HUMAN  | POCOS8 | Histone H2A type 1                                      | 14.08  | 46.66 | 27.47 | 0.589 |
|----|----------------|--------|---------------------------------------------------------|--------|-------|-------|-------|
| 19 | MYL6<br>HUMAN  | P60660 | Myosin light<br>polypeptide 6                           | 16.92  | 11.91 | 7.07  | 0.594 |
| 20 | ELAV4<br>HUMAN | P26378 | ELAV like protein 4                                     | 41.74  | 9.24  | 5.56  | 0.601 |
| 21 | SERPH<br>HUMAN | P50454 | Serpin H1                                               | 46.41  | 31.09 | 19.10 | 0.614 |
| 22 | HNRPD<br>HUMAN | Q14103 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>D0     | 38.41  | 15.10 | 9.42  | 0.624 |
| 23 | BAF<br>HUMAN   | 075531 | Barrier to<br>autointegration<br>factor                 | 10.05  | 13.97 | 8.73  | 0.625 |
| 24 | HNRPQ<br>HUMAN | O60506 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>Q      | 69.56  | 12.95 | 8.18  | 0.631 |
| 25 | PTBP1<br>HUMAN | P26599 | Polypyrimidine<br>tract binding<br>protein 1            | 57.19  | 19.24 | 12.66 | 0.658 |
| 26 | EF1A3<br>HUMAN | Q5VTE0 | Putative elongation factor 1 alpha like 3               | 50.15  | 20.73 | 13.71 | 0.661 |
| 27 | ROA3<br>HUMAN  | P51991 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>A3     | 39.57  | 17.64 | 11.69 | 0.663 |
| 28 | ROA2<br>HUMAN  | P22626 | Heterogeneous<br>nuclear<br>ribonucleoproteins<br>A2 B1 | 37.41  | 72.50 | 48.23 | 0.665 |
| 29 | H4<br>HUMAN    | P62805 | Histone H4                                              | 11.36  | 41.02 | 27.58 | 0.672 |
| 30 | HNRPM<br>HUMAN | P52272 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>M      | 77.46  | 8.90  | 6.00  | 0.675 |
| 31 | PERI<br>HUMAN  | P41219 | Peripherin                                              | 53.62  | 4.12  | 2.90  | 0.704 |
| 32 | DHX9<br>HUMAN  | Q08211 | ATP dependent<br>RNA helicase A                         | 140.87 | 16.40 | 11.68 | 0.712 |
| 33 | ILF2<br>HUMAN  | Q12905 | Interleukin<br>enhancer binding<br>factor 2             | 43.04  | 13.76 | 9.86  | 0.716 |
| 34 | CAZA1<br>HUMAN | P52907 | F actin capping<br>protein subunit<br>alpha 1           | 32.90  | 17.26 | 12.40 | 0.718 |
| 35 | HNRPU<br>HUMAN | Q00839 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>U      | 90.53  | 48.54 | 35.23 | 0.726 |

| 36 | AINX<br>HUMAN  | Q16352 | Alpha internexin                                        | 55.36  | 20.53  | 14.97  | 0.729 |
|----|----------------|--------|---------------------------------------------------------|--------|--------|--------|-------|
| 37 | HNRH1<br>HUMAN | P31943 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>H      | 49.20  | 16.93  | 12.34  | 0.729 |
| 38 | RLA1<br>HUMAN  | P05386 | 60S acidic<br>ribosomal protein<br>P1                   | 11.51  | 7.04   | 5.18   | 0.736 |
| 39 | EF1A1<br>HUMAN | P68104 | Elongation factor 1<br>alpha 1                          | 50.11  | 18.99  | 14.05  | 0.740 |
| 40 | HNRPK<br>HUMAN | P61978 | Heterogeneous<br>nuclear<br>ribonucleoprotein K         | 50.94  | 31.90  | 23.61  | 0.740 |
| 41 | ROA0<br>HUMAN  | Q13151 | Heterogeneous<br>nuclear<br>ribonucleoprotein<br>A0     | 30.82  | 14.77  | 11.04  | 0.748 |
| 42 | HNRPR<br>HUMAN | O43390 | Heterogeneous<br>nuclear<br>ribonucleoprotein R         | 70.90  | 12.01  | 9.20   | 0.766 |
| 43 | HNRPC<br>HUMAN | P07910 | Heterogeneous<br>nuclear<br>ribonucleoproteins<br>C1 C2 | 33.65  | 68.73  | 52.93  | 0.770 |
| 44 | TBB5<br>HUMAN  | P07437 | Tubulin beta chain                                      | 49.64  | 40.37  | 31.44  | 0.779 |
| 45 | TBA1B<br>HUMAN | P68363 | Tubulin alpha 1B<br>chain                               | 50.12  | 52.71  | 41.18  | 0.781 |
| 46 | NEST<br>HUMAN  | P48681 | Nestin                                                  | 177.33 | 14.42  | 11.28  | 0.782 |
| 47 | HS90A<br>HUMAN | P07900 | Heat shock protein<br>HSP 90 alpha                      | 84.61  | 5.83   | 4.64   | 0.795 |
| 48 | HSP7C<br>HUMAN | P11142 | Heat shock cognate<br>71 kDa protein                    | 70.85  | 17.22  | 13.77  | 0.799 |
| 49 | ILF3<br>HUMAN  | Q12906 | Interleukin<br>enhancer binding<br>factor 3             | 95.28  | 9.39   | 7.74   | 0.824 |
| 50 | G3P<br>HUMAN   | P04406 | Glyceraldehyde 3<br>phosphate<br>dehydrogenase          | 36.03  | 16.66  | 13.85  | 0.831 |
| 51 | MATR3<br>HUMAN | P43243 | Matrin 3                                                | 94.56  | 10.88  | 9.46   | 0.869 |
| 52 | VIME<br>HUMAN  | P08670 | Vimentin                                                | 53.62  | 216.71 | 190.38 | 0.879 |
| 53 | ENO1<br>YEAST  | P00924 | Enolase 1                                               | 46.79  | 100.00 | 100.00 | 1.000 |
| 54 | TPIS<br>HUMAN  | P60174 | Triosephosphate<br>isomerase                            | 30.77  | 5.83   | 5.92   | 1.015 |
| 55 | RBMX<br>HUMAN  | P38159 | RNA binding motif<br>protein X<br>chromosome            | 42.31  | 15.28  | 16.97  | 1.111 |

| 56 | PROF1<br>HUMAN | P07737 | Profilin 1                                      | 15.04 | 11.26  | 12.62  | 1.121 |
|----|----------------|--------|-------------------------------------------------|-------|--------|--------|-------|
| 57 | COF1<br>HUMAN  | P23528 | Cofilin 1                                       | 18.49 | 12.05  | 13.79  | 1.144 |
| 58 | DESM<br>HUMAN  | P17661 | Desmin                                          | 53.50 | 1.29   | 1.52   | 1.179 |
| 59 | HS90B<br>HUMAN | P08238 | Heat shock protein<br>HSP 90 beta               | 83.21 | 6.27   | 7.44   | 1.187 |
| 60 | HNRPF<br>HUMAN | P52597 | Heterogeneous<br>nuclear<br>ribonucleoprotein F | 45.64 | 4.32   | 6.01   | 1.392 |
| 61 | ACTB<br>HUMAN  | P60709 | Actin cytoplasmic 1                             | 41.71 | 185.98 | 312.75 | 1.682 |
| 62 | TBB2A<br>HUMAN | Q13885 | Tubulin beta 2A<br>chain                        | 49.87 | 2.30   | 3.95   | 1.719 |
| 63 | TBB2B<br>HUMAN | Q9BVA1 | Tubulin beta 2B<br>chain                        | 49.92 | 4.43   | 8.74   | 1.972 |
| 64 | ELAV2<br>HUMAN | Q12926 | ELAV like protein 2                             | 39.48 | 0.77   | 4.63   | 5.986 |

**Supplementary Table 3. RNA sequencing analysis mapping statistics.** The analysed samples were DJ-1 WT control versus DJ-1 C106DD oxidation mimic. All samples were analysed in triplicates and number of total reads, uniquely mapped reads and multi mapped reads are shown.

| Sample<br>Name | Condition            | Replicate<br>Number | Total Reads | Uniquely<br>Mapped<br>Reads | Multi-<br>mapped<br>Reads |
|----------------|----------------------|---------------------|-------------|-----------------------------|---------------------------|
| WT1            | DJ-1 WT control      | 1                   | 31,542,116  | 27,084,153                  | 3,807,142                 |
| WT2            | DJ-1 WT control      | 2                   | 27,971,043  | 24,062,256                  | 3,315,992                 |
| WT3            | DJ-1 WT control      | 3                   | 31,306,604  | 26,891,059                  | 3,739,876                 |
|                |                      |                     |             |                             |                           |
| DD1            | DJ-1 oxidation mimic | 1                   | 17,485,020  | 14,830,194                  | 2,128,032                 |
| DD2            | DJ-1 oxidation mimic | 2                   | 25,494,758  | 21,661,059                  | 3,251,840                 |
| DD3            | DJ-1 oxidation mimic | 3                   | 23,834,874  | 19,990,943                  | 3,005,557                 |