Supplementary Material

A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies

Shalabh Srivastava, Simon A. Ramsbottom, Elisa Molinari, Sumaya Alkanderi, Andrew Filby, Kathryn White, Charline Henry, Sophie Saunier, Colin G. Miles & John A. Sayer

Table S1. Common variants identified in the two siblings.

Patient s	Genomic position (GRCh37)	Gene	Gene name	RefSeq accession	Nt change c.	AA change p.	Polyphen 2 (score)	Sift (score)	Hom/he t	Coverage ref/var (II:2; II:1)	HGMD (gene/variant)	Disease	ExAC (freq)
Family JBTS	Chr12:88496758	CEP290	Centrosomal protein 290KD	NM_025114	c.2848dup	p.Q950Pfs* 6	-	-	het	(71/81) ; (64/154)	Yes/No	ciliopathies	-
	Chr12:88500452	CEP290	Centrosomal protein 290KD	NM_025114	c.2817G>T	p.K939N	0.771	0	het	(137/125); (79/202)	Yes/No	ciliopathies	-
	Chr2:12240240E		Nephrocysti	NINA 152240	c.3563A>	n 1/1199D	0.226	0.22	hot	(73/99);	Voc/No	Nephronophthisi	2/121110
	Chr1:220154795	EPRS	Glutamyl- Prolyl-TRNA Synthetase	NM_004446	c.3378G> A	p.M1126l	0.895	0.25	het	(154/107) ; (95/202)	-	-	-
	Chr2:84775496	DNAH6	Dynein Axonemal Heavy Chain 6	NM 001370	c.1271A> G	p.Y424C	0.976	0.01	het	(109/110) ; (76/163)	Yes/No	Heterotaxy	11/12121 2
	Chr3:52424969	DNAH1	Dynein Axonemal Heavy Chain 1	NM_015512	c.9640G> A	p.D3214N	0.999	0	het	(23/32); (14/30)	Yes/No	Primary ciliary dyskinesia	1/22540
	Chr7:111617266	DOCK4	Dedicator Of Cytokinesis 4	NM_014705	c.622A>G	p.S208G	0.599	0.09	het	(191/177) ; (133/130)	-	-	-
	Chr12:11269420 0	HECTD 4	HECT Domain E3 Ubiquitin Protein Ligase 4	NM_00110966 2	c.2819C>T	p.T940M	0.293	0	het	(132/121) ; (106/190)	-	-	-

Genes written in bold letters indicate likely disease-causative variants. Columns from left to right: position of the variant in GRCh37 (genomic position), chromosome (Chr), name of the gene in which the variant is detected (Gene), RefSeq accession, nucleotide (Nt) and amino acid (AA) change, Polyphen 2 (PP2) and SIFT Score (red : predict

disease causing, orange: intermediate, green: predict benign), homozygotes (hom) or heterozygotes (het) variants, number of reads whereby position is covered for reference allele (Ref) and variant allele (var), genes and variants reported in Biobase/HGMD and associated disease, allelic frequency in Exome Aggregation Consortium (ExAC).

Table S2. Variants identified only in individual JBTS II:1

Patie	Genomic position	Gene	Gene name	RefSeq	Nt	AA change	Polyphe n2	Sift (scor	Hom/h	Coverage	HGMD (gene/varia	Disease	ExAC
nt	(GRCh37)			accession	change c.	р.	(score)	e)	et	ret/var (II:1)	nt)		(freq)
IBTS												Primary	
1010	Chr6:389766	DNAH		NM_001206	c.13300C	p.R4434				(91/110)		ciliary	35/1212
	75	8	Dynein Axonemal Heavy Chain 8	927	>T	W	1	0	het	(54%)	Yes/No	dyskinesia	88
	Chr2:108455		RANBP2-Like And GRIP Domain							(20/19)			
	304	RGPD4	Containing 4	NM_182588	c.289G>C	p.V97L	0.952	0	het	(48%)	-	-	-
												Acute	
												necrotizing	
	Chr2:109379	RANBP			c.2798T>	p.M933				(103/91)		encephalopa	1/12074
	793	2	RAN binding protein 2	NM_006267	С	Т	0.321	0	het	(46%)	Yes/No	thy	8
	Chr14:23511	PSMB		NM_001099						(12/10)			22/1198
	928	11	Proteasome Subunit Beta 11	780	c.494G>A	p.S165N	0.452	0.13	het	(45%)	-	-	92
												Arthrogrypos	
												is-renal	
												dysfunction-	
	Chr15:91565	VPS33								(36/38)		cholestasis	
	406	В	Vacuolar protein sorting 13B	NM_018668	c.74A>G	p.Q25R	0.006	0.43	het	(51%)	Yes/No	syndrome	0/23306
												muscle	
												hypotonia,	
												ataxia, and	
	Chr3:513787				c.3816C>	p.D1272						intellectual	47/1104
	17	DOCK3	Dedicator of cyto-kinesis 3	NM_004947	G	E	0.005	0.3	het	(6/8) (57%)	Yes/No	disability	98

Genes written in bold letters indicate likely disease-causative variants. Columns from left to right: position of the variant in GRCh37 (genomic position), chromosome (Chr), name of the gene in which the variant is detected (Gene), RefSeq accession, nucleotide (Nt) and amino acid (AA) change, Polyphen 2 (PP2) and SIFT Score (red : predict disease causing, orange: intermediate, green: predict benign), homozygotes (hom) or heterozygotes (het) variants, number of reads whereby position is covered for reference allele (Ref) and variant allele (var), genes and variants reported in Biobase/HGMD and associated disease, allelic frequency in Exome Aggregation Consortium (ExAC).

Table S3. Variants identified only in individual JBTS II:2

Patie nt	Genomic position (GRCh37)	Gene	Gene name	RefSeq accession	Nt change c.	AA change p.	Polyphe n2 (score)	Sift (scor e)	Hom/h et	Coverage ref/var (II:2)	HGM D (gene /varia nt)	Disease	ExAC (freq)
JBTS	Chr4:741240	ANKRD	Ankyrin Repeat Domain		c.303_314	p.G107_G110				(49/41)			2/12072
II:2	72	17	17	NM_032217	del	del	-	-	het	(45%)	-	-	8
	Chr3:480193 91	MAP4	Microtubule-associated protein 4	NM_002375	c.256A>G	p.N86D	0.703	0.12	het	(56/69) (55%)	Yes/N 0	Seckel syndrome: growth retardation and normocephaly	1/12140 0
	Chr15:86262		A kinase (prka) anchor							(153/152)			51/1213
	432	AKAP13	protein 13	NM_006738	c.6139G>A	p.D2047N	0.998	0	het	(49%)	-	-	76
	Chr16:72229	DU OTO	Ras Homolog Family		10050 -	-	0.000	0.01		(93/98)			89/1191
	3	RHOTZ	Member 12	NM_138769	c.1235C>1	p.1412M	0.998	0.01	het	(51%)	-	-	50
	Chr16:19552	000440	Centriolar Coiled-Coil	NM_001199	. 10070. 1	DEFER	0.020	0.00	h at	(212/191)			81/1194
	027	CCP110	Protein 110	022	C.1967G>A	p.R656Q	0.928	0.08	net	(47%)	-	-	26
	Chr17:72741	04027		NM_001163		DAFOUL	0.074	0.01	h at	(132/177)			33/1212
	040	KAB37		989	C.476G>A	р.к159н	0.871	0.01	net	(5/%)	-	-	98
	Chr6:389415	DNIALIO	Dynein Axonemal Heavy	NM_001206	c.12656G>	D 42400	0.001	0.05	h at	(64/58)	Yes/N	Primary ciliary	20/1203
	6/	DNAH8	Chain 8	927	A	p.R4219Q	0.001	0.05	het	(47%)	0	dyskinesia	48
	Chr/:15/202	-	DnaJ homologue,		704.0	22640	0.050	0.00		(32/14)	Yes/N		
	588	DNAJB6	subfamily B, member 6	NM_058246	c./91G>A	p.R264Q	0.059	0.69	het	(30%)	0	Myopathy	-
	Chr8:124141	TBC1D3	TBC1 Domain Family				0.050	0.01		(135/115)			3/12099
	323	1	Member 31	NM_145647	c.21351>C	p.M/121	0.050	0.01	het	(46%)	-	-	0
	Ch -0 424072									(07/65)	N = = (N)	Familial Amyloidosis	1/12051
	Cnr9:1240/3	CON	Calaalia	NINA 000177	- (570) 0	= D2105	0.075		h a h	(87/65)	res/N	of Finnish type,	1/12051
	114	GSN	Geisolin	NM_000177	C.65/C>G	p.D219E	0.875	0	net	(42%)	0	nephrotic syndrome	4
	Chr15:42158	COTONS	Spectrin, beta, non-				0.010	0.01			Yes/N		2/24602
	038	SPTBN5	erythrocytic 5	NIVI_016642	с.6886С>Т	p.K2296W	0.019	0.01	het	(14/5) (26%)	0	sacral agenesis	2/24600
	Chr22:50969 172	ODF3B	Sperm Tails 3B	NM_001014 440	c.650A>C	p.K217T	0.142	0.03	het	(62/48) (43%)	-	-	18/9893 0

Genes written in bold letters indicate likely disease-causative variants. Columns from left to right: position of the variant in GRCh37 (genomic position), chromosome (Chr), name of the gene in which the variant is detected (Gene), RefSeq accession, nucleotide (Nt) and amino acid (AA) change, Polyphen 2 (PP2) and SIFT Score (red : predict disease causing, orange: intermediate, green: predict benign), homozygotes (hom) or heterozygotes (het) variants, number of reads whereby position is covered for reference allele (Ref) and variant allele (var), genes and variants reported in Biobase/HGMD and associated disease, allelic frequency in Exome Aggregation Consortium (ExAC).

Figure S1: Ciliation rates and FACS analysis of wild type and patient hURECs in response to treatments

(a) Percentage rates of ciliation in serum starved wild type (WT) and JBTS patient II:2 in control conditions and following treatment with Purmorphamine (Pur) and Roscovitine (Ros). There is a significant difference in percentage ciliated cells between WT and II:2 (* p<0.001, Unpaired Student's t-test). Treatment of II:2 with Pur or Ros did not change percentage ciliation rates (n.s. not significant).

(b) FACS analysis, using propidium iodide for DNA staining, of wild type (WT) and II:2 hURECs before and after treatment with Purmorphamine (Pur). II:2 cells are sensitive to Pur treatment with a reduction in percentage cycling cells.

Figure S2: Localisation of transition zone, centrosomal and ciliary proteins in wild type and patient JBTS II:2 hURECs.

Immunofluorescence images showing

(a & b) Wild type and patient JBTS II:2 hURECs with maintained localisation of CEP162 (green), a transition zone protein.

(c & d) Wild type and patient JBTS II:2 hURECs with maintained localisation of pericentrin (green), a centrosomal associated protein.

(e & f) Wild type and patient JBTS II:2 hURECs with localisation of IFT88 (green), an axonemal protein. Cilia are localised with alpha-acetylated tubulin (red). Scale bar 5 μ m.

(g) Quantification of ciliary length measured by immunofluorescence imaging using antibodies towards alphaacetylated tubulin (Acet Tub) and IFT88. There is no significant (n.s. Paired Student's t-test) mismatch in ciliary length between these ciliary axonemal proteins. n numbers: WT cilia = 37, II:2 cilia = 49.

(h) Table showing median cilia length of wild type and JBTS II:2 hURECs when measured by scanning electron microscopy (SEM), and immunofluorescence microscopy using antibodies directed towards alpha-acetylated tubulin (Acet Tub), ARL13B and IFT88.

Figure S3: Pedigree, genetic, biochemical and ciliary phenotype data of family LCA

(a) Pedigree diagram showing one affected male with isolated Leber congenital amaurosis (normal renal function and normal brain development (squares, males; circles females)).

(b) Sequence chromatograms from II:2 showing compound heterozygous changes in *CEP290* c.297+1G>T (predicted to affect splice donor site) and c.4661_4663delAAG; p.Q1554del.

(c) Domain structure of CEP290 protein (2479 amino acids) with predicted coiled coil domains (CC) numbered and shown in yellow; tropomyosin homology domain (TM), RepA/Rep⁺ protein KID (KID); bipartite nuclear localization signal (NLS_BP); ATP/GTP-binding site motif A (P-loop). The extent of homology with SMC proteins is indicated by an orange bar. The predicted defects of CEP290 at amino acid positions 99 and 1554 are shown.

(d) Western blot (cropped image) showing normal expression of full-length wild type CEP290 protein from hURECs derived from II:2 using a C-terminal directed CEP290 antibody.

(e) Low power immunofluorescence images (ARL13B-green; DAPI-blue) of hURECs from unaffected sibling II:1 (scale bar = 20 μm).

(f) Low power immunofluorescence images (ARL13B-green; DAPI-blue) of hURECs from affected sibling II:2 (scale bar = $20 \ \mu$ m).

(g) Percentage ciliated hURECs (3 biological replicates) in unaffected II:1 (58%, n= 107) and affected LCA II:2 sibling (41%, n=61), n.s. not significant, Unpaired Student's t-test.

(h) High power immunofluorescence images (ARL13B-green; alpha-acetylated tubulin-red; DAPI-blue) of hURECs from unaffected sibling II:1 (scale bar = 5 μ m).

(i) Low power immunofluorescence images (ARL13B-green; DAPI-blue) of hURECs from affected sibling LCA II:2 (scale bar = 5 μ m).

(j) Dot plot with means of hUREC cilia length in unaffected sibling (II:1) (n= 54) and affected sibling LCA II:2 (n=39), n.s. not significant, Unpaired Student's t-test.

Figure S4: Hh pathway manipulation of wild-type cilia in hURECs

(a) SEM image of cilia from wild type hURECs (Scale bar 2 μ m).

(b) SEM images of cilia from wild type hURECs treated with Hh antagonist HPI-4 (Scale bar 2 μ m).

(c) Dot plot with means showing quantification of ciliary lengths following EM imaging. * p<0.001, Unpaired Student's t-test.

(d) Immunofluorescence imaging (alpha-acetylated tubulin red; ARL13B green) of cilia from wild type hURECs (scale bar 5 μ m).

(e) Immunofluorescence imaging (alpha-acetylated tubulin, red; ARL13B, green) of cilia from wild type hURECs treated with HPI-4 (Scale bar 5 μ m).

(f) Dot plot with means showing quantification of ciliary lengths following immunofluorescence imaging (Acet Tub, alpha-acetylated tubulin; n.s. not significant, *, p< 0.001, Unpaired Student's t-test).

Fig. S5: Response to treatments in II:2 hURECS and CEP290 depleted wild type hURECS

(a) Dot plot with means to show quantification of cilia length using both alpha-acetylated tubulin (Acet Tub) and ARL13B in wild type (WT, n=48), wild type treated with roscovitine (WT + Ros, n=15), JBTS II:2 hURECs (n=48) and JBTS II:2 treated with roscovitine (Ros, n=34) treatment (n.s. not significant, * p<0.0001, Paired Student's t- test).

(b) Dot plots with means indicated to show the difference in cilia length of each cilia (data from panel a) as determined by the measuring axonemal length under immunofluorescence imaging using antibodies against alpha-acetylated tubulin (Acet Tub) and ARL13B. (n.s, not significant, Unpaired Student's t-test)
(c) Percentage rates of ciliation in serum starved wild type cells treated with control siRNA (siCTRL); siRNA CDK5, (siCDK5); siRNA CEP290 (siCEP290); siRNA CEP290 + Purmorphamine (siCEP290+Pur) and siRNA CEP290 + Roscovitine (siCEP290+Ros). Experiments were performed in triplicate. The difference in percentage ciliation rates for siCTRL, siDCDK5, siCEP290 and following Pur or Ros treatment was not significant (n.s. ANOVA).
(d) Low power images showing ciliation rates in wild type hURECs treated with control siRNA (siCTRL); siRNA CEP290 (siCEP290); siRNA CEP290 + purmorphamine (siCEP290+Pur) and siRNA CEP290 + coscovitine (siCEP290); siRNA CEP290 + purmorphamine (siCEP290+Pur) and siRNA CEP290 + roscovitine (siCEP290); siRNA CEP290 + purmorphamine (siCEP290+Pur) and siRNA CEP290 + roscovitine (siCEP290+Ros). Scale bar 10 µm.