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1 Supplementary Data
The input data that we used to build the sketch-maps and per-
form the property predictions is provided in the Electronic Supple-
mentary materials. Each systems has its structural information in
extended xyz format (.xyz file) and its corresponding properties
(.prop file). Interactive sketch-map visualizers for all the systems
considered are available on http://interactive.sketchmap.org/ and
as offline versions in an included zip file (see the README file for
more details).
Most of our analysis where performed with the glosim python
package1 which relies on the QUIP code2 to compute the SOAP
vectors. To compute a SOAP-REMatch kernel, a typical command
line is:

~/git/glosim/glosim.py traj-pentacene.xyz
-n 9 -l 9 -g 0.3 -c 3 --kernel rematch
--gamma 2 --periodic --nonorm

Note that for the cutoff radius of 3Å and 5Å, the parameters for the
radial and angular expansion are respectively chosen as -n 9 -l
9 and -n 12 -l 12.

2 Crystal Structure Prediction

CSP were performed with Global Lattice Energy Explorer (GLEE)3

for possible crystal packings of a given molecules in the 23 most
commonly adopted space groups for organic molecules in Z′ = 1,
and 12 common space groups for molecules that crystallise in
Z′ = 2.4 This led to a total of 212,000 trial crystal structures, which
were subsequently energy minimised in DMACRYS5 using the W99
atom–atom intermolecular potentials6–9, and multipolar electro-
statics described by the distributed multipole model10. Duplicated
crystal structures were removed using COMPACK11 to consolidate
a final list of structures for subsequent analysis.

3 Density Functional Calculation
Single point energy calculations for the discussed set of molecu-
lar crystals have been carried out within Density functional theory
(DFT) with quantum espresso code12. Plane wave basis set with
wavefuction cutoff of 100Ry and charge density cutoff of 400Ry
has been used, together with projector augmented wave (PAW)
type pseudo potentials (non-linear core correction and scalar rel-
ativistic) and Perdew-Burke-Ernzerhof (PBE)13 exchange correla-
tion functional. To account for vanderwals interaction, Grimme’s
vanderwals dispersion correction14 has been used with a cutoff ra-
dius of 80 bohr. The energy has been converged within an accuracy
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Figure 1 First 200 largest eigenvalues corresponding to the kernel matri-
ces of pentacene, 5A and 5B datasets with cutoff radius of 5Å, gaussian
width of 0.3Å and γ = 2.

of 10−6 Hartree. The correlation between W99 and DFT energies
are shown in Fig. 4

4 Kernels and Sketch-maps
Fig. 1 shows the first 200 eigenvalues sorted by deacreasing order
of the centered kernel matrices (see Ref. 15 for more details on the
kernel matrix centering) of the pentacene, 5A and 5B datasets. As
described in the main text, the 5B dataset has larger eigenvalues
compared to the other two datasets which indicates that the 5B
dataset is sparser in terms of structural diversity.
Figs. 2 and 3 show the sketch-map representation of the kernel
matrices of the 5A and 5B dataset used for the lattice energy pre-
diction (cutoff radius of 5Å). The visual correlation between the
sketch-maps and the lattice energy seems quite good. Moreover,
cluster found with HDBSCAN* match the sheet and γ heuristic
class. However, these cluster do not appear to define clear cut
structural motifs.

5 Error Analysis for Energy Calculations
We built a regression model to predict the energies of differ-
ent polymorphs of pentacene, 5A and 5B molecular crystals, us-
ing as inputs the geometries optimized using the W99 empirical
potential. Using this same set of inputs, and the kernels dis-
cussed in the main text, we performed regressions for (1) W99
energies (an insightful but rather academic benchmark exercise
for the model); (2) dispersion-corrected DFT energies computed
on the W99 geometries; (3) DFT+D energies computed by tak-
ing W99 energies as the baseline, that is energies predicted as
E∆ = EW99 +ML(EDFT−EW99). Fig. 4 shows the correlation be-
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Figure 2 Representation of the 5A’s similarity matrix with a cutoff radius of 5Å (projection parameters shown follow the scheme σmap-A_B-a_b). The
atomic configurations, i.e. disks, on the three sketchamps are color-coded according to their lattice energy (bottom right), class following the heuristic
classification (top right) and cluster index (gray structure do not belong to a cluster) found using HDBSCAN* on the similarity matrix (left). The structural
pattern of each cluster is represented using the front view of the pentacene molecules.

Figure 3 Representation of the 5B’s similarity matrix with a cutoff radius of 5Å (projection parameters shown follow the scheme σmap-A_B-a_b). The
atomic configurations, i.e. disks, on the three sketchamps are color-coded according to their lattice energy (bottom right), class following the heuristic
classification (top right) and cluster index (gray structure do not belong to a cluster) found using HDBSCAN* on the similarity matrix (left). The structural
pattern of each cluster is represented using the front view of the pentacene molecules.
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Figure 4 The correlation between the W99 and DFT relative lattice energy of pentacene, 5A and 5B crystals, for W99-optimized geometries.

Table 1 Summary of the lattice energy prediction scores for pentacene, 5A and 5B (respectively 564, 594 and 936 structures). Our best accuracies
on these datasets are estimated from average scores from a 4-fold cross validation (75% of the dataset is used for training). ∆-learning refers to the
learning of the difference between W99 and DFT energies.

Training set Dataset SD[kJ/mol] MAE [kJ/mol] RMSE [kJ/mol] R2 Spearman Coefficient

Pentacene(W99) 3.38 0.29 ± 0.03 0.49 ± 0.08 0.98 0.99
Pentacene(DFT) 5.49 0.48 ± 0.04 0.68 ± 0.04 0.98 0.99
Pentacene(∆) 3.42 0.51 ± 0.04 0.70 ± 0.06 0.96 0.98
5A(W99) 3.31 0.41 ± 0.02 0.59 ± 0.04 0.97 0.98

75% 5A(DFT) 3.56 0.64 ± 0.03 0.91 ± 0.07 0.93 0.95
5A(∆) 2.37 0.59 ± 0.03 0.85 ± 0.06 0.85 0.94
5B(W99) 3.86 0.98 ± 0.03 1.31 ± 0.03 0.88 0.93
5B(DFT) 4.23 1.09 ± 0.03 1.44 ± 0.04 0.87 0.93
5B(∆) 2.66 0.74 ± 0.04 1.00 ± 0.05 0.83 0.92

Pentacene(W99) 3.38 0.63 ± 0.04 0.89 ± 0.08 0.92 0.94
Pentacene(DFT) 5.49 1.04 ± 0.01 1.42 ± 0.04 0.93 0.95
Pentacene(∆) 3.42 0.89 ± 0.05 1.20 ± 0.10 0.85 0.94
5A(W99) 3.31 1.10 ± 0.02 1.46 ± 0.04 0.76 0.88

10% 5A(DFT) 3.56 1.44 ± 0.04 1.88 ± 0.06 0.62 0.81
5A(∆) 2.37 1.02 ± 0.04 1.36 ± 0.05 0.54 0.84
5B(W99) 3.86 1.90 ± 0.10 2.40 ± 0.10 0.36 0.72
5B(DFT) 4.23 2.15 ± 0.06 2.77 ± 0.09 0.29 0.74
5B(∆) 2.66 1.25 ± 0.02 1.67 ± 0.05 0.36 0.78

tween W99 and DFT+D energies.

Table 1 reports the test errors using 75% and 10% train points
for the different systems and learning strategies. As well as the
MAE and RMSE error we report the R2 and Spearman rank cor-
relation coefficients, that characterize the learning efficiency for
the correlations, and how well predictions preserve the ranking of
different phases.

Figure 5 reports a thorough analysis of test and train error learn-
ing curves, and error distributions at different levels of training. It
should be stressed that the automatic determination of the regu-
larization parameter leads to train error curves that are not linear
on a log-log scale, as a tighter fit is beneficial when the train set
becomes denser. Judging from the very regular behavior of the
test set errors, this does not lead to overfitting artifacts. The violin
plots (Figs. 5 (c-e)) are consistent with a near-Gaussian distribu-
tion of errors for all but the smallest train set sizes, with a few
outliers but no siginificant skewness or multi-modality apparent in
the distributions.

6 Mobility Calculation
We outline the theories that underpin the calculations of charge
mobilities in our work. To gather enough data for machine learn-
ing purposes, an extended list of predicted crystal structures (up
to 15 kJ/mol above the predicted global minimum for 5A) were
subjected to mobility calculations. For each crystal structure, the
charge mobility was estimated using Einstein relationship:

µ =
e

kBT
D, (1)

where e is the charge of electrons, kB is the Boltzmann constant, T
is the temperature and was set to 300 K. The electron diffusivity
(D) was evaluated as:

D =
1

2nM

M

∑
n=1

Ni

∑
j=1

r2
i jki jPi j, (2)

in which M is the total number of symmetrically independent
molecules in a crystal that can be related to the Z′ number for a
crystal. For the i–th symmetrically independent molecule, Ni num-
ber of nearest–neighbouring molecules will be extracted, which
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(a) Training error trends while learning lattice energies. Left: W99 energies; middle: DFT energies; right: ∆W99−DFT
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(b) Test error trends while predicting lattice energies. Left: W99 energies; middle: DFT energies; right: ∆W99−DFT
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(c) Training and Test Error distribution for W99 lattice energy
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(d) Training and Test Error distribution for DFT lattice energy
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(e) Training and Test Error distribution for ∆DFT−W99 lattice energy
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Figure 5 The figures report extensive analytics for the prediction of lattice energies of pentacene, 5A and 5B polymorphs.
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Table 2 Prediction accuracy of TI while training on different fraction of the full dataset of 6697 pentacene dimers, selected with Farthest point sampling
method on similarity kernel data as well as randomly. All the MAE, RMSE and SUP values noted in the table are in eV and averaged over values
obtained by randomly choosing 10 different training and test set.

ntrain FPS Selection Random Selection
(σ = 0.025) MAE RMSE SUP R2 MAE RMSE SUP R2

670 0.0101 0.0190 0.1720 0.45 0.0095 0.0202 0.2608 0.51
1674 0.0060 0.0121 0.1009 0.77 0.0071 0.0168 0.2563 0.66
3348 0.0030 0.0059 0.0489 0.94 0.0054 0.0130 0.2102 0.78
5023 0.0023 0.0048 0.0319 0.96 0.0049 0.0121 0.1577 0.80
5358 0.0021 0.0045 0.0287 0.96 0.0045 0.0105 0.1110 0.85

Table 3 Prediction accuracy of TI while training on different fraction of the full dataset of 7305 5A dimers, selected with Farthest point sampling method
on similarity kernel data as well as randomly. All the MAE, RMSE and SUP values noted in the table are in eV and averaged over values obtained by
randomly choosing 10 different training and test set.

ntrain FPS Selection Random Selection
(σ = 0.052) MAE RMSE SUP R2 MAE RMSE SUP R2

730 0.0134 0.0294 0.20 0.69 0.0053 0.0118 0.17 0.95
1826 0.0028 0.0050 0.06 0.99 0.0035 0.0081 0.10 0.97
3652 0.0017 0.0033 0.03 0.99 0.0027 0.0064 0.09 0.98
5479 0.0008 0.0020 0.02 0.99 0.0023 0.0054 0.07 0.99
5844 0.0005 0.0017 0.02 0.99 0.0022 0.0053 0.07 0.99

gives rise to a total of MNi dimer pairs in the crystal structure. Sym-
metrically equivalent dimers based on an RMSD< 0.1 criteria was
filtered out from explicit transfer integral calculations with DFT to
descrease the overall computational cost. For each dimer, ri j de-
notes its inter–centroid distance, ki j is the corresponding charge
hopping rate, derived from Marcus theory:

ki j =
t2
i j

h̄

√
π

λkBT
exp
[
− λ

4kBT

]
, (3)

where ti j, the transfer integral, describes the intermolecular elec-
tronic coupling which depends on the relative positions and ori-
entations of the molecules in the crystal structure and λ is the in-
tramolecular reorganisation energy, and was calculated here using
the conventional four–point models at B3LYP/6-311G** level of
theory with GAUSSIAN09. Pi j is the probability for charge to hop
between molecule i and j and it is related to the transfer integral
as:

Pi j =
ki j

∑
Ni
j=1 ki j

=
t2
i j

∑
Ni
j=1 t2

i j

. (4)

It should be clear from the above discussions that the key quan-
tity that varies across crystal structures is ti j, which is explicitly cal-
culated with frozen–density embedding (FDE) DFT scheme. The
calculations were performed at PW91/DZ level of theory with the
non–additive kinetic energy modelled with PW91k functional. A
threshold of S < 10−2, below which the Penrose pesudoinverse was
applied in the final calculations of TI, was applied globally for all
dimers considered, in order to avoid numerical instabilities when
the orbital overlap between two monomers, S, is less than 10−2.
Hence our key effort here in accelerating mobility calculations will
be focusing on direct prediction of ti j ’s for all dimers extracted from
predicted crystal structures. The origins of non pairwise additivi-
ties in the ti j values can be partially understood from the theory
of FDE applied to calculate ti j ’s which will be briefly discussed as
following.

FDE was built on the basis that the total electron densities of two
interacting systems can be exactly partitioned into the sum of elec-
tron densities of two interacting systems as ρ(r) = ρI(r)+ ρII(r).

In a Kohn–Sham scheme, where the total energy of the system is a
functional of the total charge densities E[ρ(r)], the same partition
scheme for density does not apply for the total energy, in which a
interacting non–additive component must be included as

E[ρ(r)] = EI [ρI(r)]+EII [ρII(r)]+Eint [ρI(r),ρII(r)]. (5)

In FDE, this is achieved by including a embedding potential vemb(r)
in the Kohn–Sham equation, which takes into account contribu-
tions from non–additive kinetic and exchange–correlation ener-
gies. Furthermore, the embedding potential vI(II)

emb (r) acting on sub-
system I (II) contains a Coulomb interaction between ρ I(r) and
ρ II(r), and this was solved iteratively via ‘freeze–and–thaw’ cycles
by updating the electron densities of one subsystem while keep-
ing the other one frozen. For the evaluation of ti j, one needs to
introduce an additional electron/hole into the charge densities of
the subsystems, thus Eint [ρI(r),ρII(r)] in Eq. (5) would also involve
energetic contributions from polarised electron densities, which is
also non–pairwise additive.

7 TI prediction protocol
The protocol we propose to evaluate the TI for dimer configura-
tions found in the low-lying crystalline polymorphs is the follow-
ing:

1. Extract all possible dimers from the molecular crystals whose
charge carrier mobilities are to be screened, in the same way
as one would have done for the mobility calculations.

2. Select a training subset from all the dimers such that maxi-
mum structural diversity is captured. Farthest point sampling
based on the same kernel used for predictions would be one
of the recommended paths to achieve robust, systematically-
improvable accuracy.

3. Calculate the TI with an appropriate method capable of pro-
viding the desired accuracy, only for the training set dimers.

4. Combine the weight vector for the training set with the kernel
computed between training configurations and the remainder
of the dimers to predict their TI values.

5



Table 4 Prediction accuracy of TI while training on different fraction of the full dataset of 11581 5B dimers, selected with Farthest point sampling method
on similarity kernel data as well as randomly. All the MAE, RMSE and SUP values noted in the table are in eV and averaged over values obtained by
randomly choosing 10 different training and test set.

ntrain FPS Selection Random Selection
(σ = 0.046) MAE RMSE SUP R2 MAE RMSE SUP R2

1158 0.0118 0.0260 0.2080 0.70 0.0061 0.0114 0.1419 0.94
2895 0.0059 0.0133 0.1458 0.93 0.0041 0.0082 0.1271 0.97
5790 0.0021 0.0046 0.0533 0.99 0.0031 0.0065 0.0911 0.98
8686 0.0011 0.0029 0.0282 0.99 0.0027 0.0055 0.0704 0.98
9265 0.0009 0.0026 0.0252 0.99 0.0026 0.0055 0.0655 0.98

5. Combine the predicted TI values following the standard
method described in supplementary information to obtain the
charge carrier mobility in each crystal structure.

The TI prediction accuracy and performance data for pentacene,
5A and 5B dimers, using the kernel parameters discussed in the
main text, are reported for reference in Tables 2 to 4.
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