Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds

Qingying Zeng[†]‡, Arijit Mukherjee[†]‡, Peter Muller[^], Robin D. Rogers[≠], Allan S. Myerson[†]*

* Novartis-MIT Center for Continuous Manufacturing and Department of Chemical Engineering Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (USA)

² Department of Chemistry, McGill University 801 Sherbrooke St. W., Montreal, QC H3A 0B8 (Canada)

[^]Department of Chemistry, Massachusetts Institute of Technology, 6-331, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

[‡] These authors contributed equally to the manuscript.

*Corresponding author email: myerson@mit.edu

Supporting Information

Index	Title	Page
		number
S1	Comparison of Tetrolic acid polymorphs with	2
	other similar systems	
S2	Crystallographic information table for	2
	[Emim][H(TA) ₂]	
S3	ORTEP diagram for [Emim][H(TA) ₂]	3
S4	Attachment energy calculations on α -dimer of TA	3
\$5	Raman spectra of Isonicotinamide (INA) catemer	4
	(peak at 1003cm ⁻¹) form and dimer form (peak at	
	995cm ⁻¹)	
<u>\$6</u>	Simultaneous examination of Solid and IL Raman	4
	spectra (IL in the example: [Emim][BF ₄])	
S7	NMR spectra showing INA monomers in	
	[Emim][NTf ₂], [Emim][BF ₄]	
S8	Water content calculation in the used ILs	6

Contents

S1. Crystal structures of two tetrolic acid polymorphs

Figure S1. (a) Possible synthons in the polymorphs of tetrolic acid, (b) α form shows the presence of carboxyl acid dimer whereas the β form sustains through the catemer synthon.

S2. Crystallographic details for [Emim][H(TA)₂]

Name	1-Ehtyl-3-methylimidazolium tetrolate
Formula	C ₁₄ H ₁₈ N ₂ O ₄
Molecular weight	278.30
Crystal system	triclinic
Space group	P -1
a(Å)	6.746(3)
b(Å)	7.246(3)
c(Å)	7.434(3)
$\alpha(^{\circ})$	77.801(7)
β (°)	83.650(8)
$\gamma(^{\circ})$	88.409(7)
Volume (Å ³)	353.0(2)
Ζ	1
$\rho_{\text{calc}}(g/\text{cm}^3)$	1.309
F(000)	148
Crystal size (mm)	0.11 x 0.22 x 0.41
μ (Mo K α) (mm ⁻¹)	0.097
Temp (K)	100(2)
θ range for data collection	2.8, 33.6
R ₁	0.0624
wR ₂	0.2064
Goodness of fit	1.08

Reflns collected	2771
Unique reflns	2771
Observed reflns	2101
CCDC no.	1577981

S3. ORTEP diagram of [Emim][H(TA)₂]

S4. Attachment energy calculations on α-dimer of TA

Attachment energies were calculated in the Morphology module of the Materials Studio. The attachment energies for the seven unique faces of the α -dimer of TA are given in the following table.

Faces	E _{att} (Kcal/mol)	Eatt (vdW)	Eatt(electrostatic)
(100)	-18.18	-14.29	-3.89
(010)	-14.76	-13.19	-1.57
(01-1)	-25.76	-10.36	-15.41
(001)	-8.99	-8.5	-0.49
(1-11)	-29.35	-13.92	-15.42
(110)	-16.94	-16.44	-0.50
(1-1-1)	-24.30	-9.40	-14.90

S5. Raman spectra of Isonicotinamide (INA) catemer (peak at 1003cm⁻¹) form and dimer form (peak at 995cm⁻¹)

S6. Simultaneous examination of Solid and IL Raman spectra (IL in the example: [Emim][BF₄])

S7. NMR spectra showing INA monomers in [Emim][NTf₂], [Emim][BF₄]

2H chemical shifts of [Emim] in ppm

Sample	2H	4H	5H	N-CH ₃	N-CH ₂	Et-CH ₃
[Emim][NTf ₂]	7.49	6.43	6.35	3.19	2.85	0.45
Low	7.49	6.43	6.35	3.19	2.85	0.45
high	7.49	6.43	6.35	3.18	2.85	0.45
Saturated	7.49	6.42	6.35	3.18	2.84	0.44
[Emim][BF ₄]	7.43	6.36	6.29	3.04	2.72	0.25
low	7.43	6.36	6.29	3.04	2.72	0.25
high	7.43	6.36	6.29	3.03	2.72	0.25
Saturated	7.43	6.36	6.29	3.03	2.72	0.25

Ionic Liquid Name	Measurement 1 (ppm)	Measurement 2 (ppm)	Measurement 3 (ppm)	Water Content (ppm)	Water Content (%)
[Emim][NTf ₂]	260	262	282	268±12	0.03
[Emim][OAc]	4524	4405	4261	4397±132	0.44
[Emim][N(CN) ₂	1595	1711	1793	1700±99	0.17
[OHEmim][BF ₄]	1740	1732	1853	1775±68	0.18
[OHEmim][NTf 2]	268	293	284	282±13	0.03
[Emim][BF ₄]	1030	1014	1011	1018±10	0.1

S8. Water content calculation in the used ILs