Viewing pre-60S maturation at a minute's timescale

Supplemental information

Gertrude Zisser¹, Uli Ohmayer², Christina Mauerhofer³, Valentin Mitterer¹, Isabella Klein¹, Gerald N. Rechberger^{1,4}, Heimo Wolinsky^{1,5}, Michael Prattes¹, Brigitte Pertschy^{1,5}, Philipp Milkereit⁶ and Helmut Bergler^{*1,5}

¹Institute of Molecular Biosciences, Humboldtstrasse 50, University of Graz, A-8010 Graz, Austria

²Polyquant GmbH, Industriestr. 1, 93077 Bad Abbach, Germany

³Current affiliation: Institute of Pharmaceutical Sciences, Humboldtstrasse 46, University of Graz, A-8010 Graz, Austria

⁴Omics Center Graz, BioTechMed-Graz, A-8010 Graz, Austria

⁵BioTechMed-Graz, A-8010 Graz, Austria

⁶Lehrstuhl Biochemie III, University Regensburg, Universitätsstr.31, 93053 Regensburg, Germany

*Corresponding author; Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria. Tel.: +43316380-5629; Fax: +43316380-898; e-mail: helmut.bergler@uni-graz.at.

Fig. S1: Processing scheme of pre-rRNA to the mature 25S, 5.8S and 18S rRNA. Only the major steps are indicated. The 5S rRNA maturation occurs separately and is not shown.

Fig. S2: Incorporation of de novo synthesized Nog1-TAP is responsible for copurification of 27SA₂ pre-rRNA and early pre-60S particles after longer diazaborine treatment. Pre-60S particles were purified from cells treated with diazaborine (dia), diazaborine and cycloheximide (dia/cyh) or cycloheximide (cyh) alone for 30 minutes using Nog1-TAP as bait protein. Particles were analyzed for co-purified pre-rRNA and proteins using Northern blotting (**A**) and Western blotting (**B**), respectively.

Fig. S3: **Analysis of selected proteins for their joining and leaving behavior on pre-60S particles.** (**A**) pre-60S particles were purified from cells after different time periods of treatment with diazaborine using Nog1-TAP as bait protein and analyzed by Western blotting for Ytm1/Erb1/Nop7 protein complex members and Nop2, Nog2 and Nsa2 proteins. Samples represent a different biological replicate as shown in Figure 2. To facilitate analysis of the Ytm1/Erb1/Nop7 complex, an antiserum simultaneously recognizing Ytm1 and Nop7 was used [1]. Western blots against the bait protein and the export factor Nmd3 are shown as controls. (**B**) Structural detail of the pre-60S particle around nucleotide C2870. Nucleotide C2870 methylated at C5 by the RNA:m5C-methyltranferase Nop2 is shown in the spheres mode and C5 highlighted by an arrowhead. Proteins associated with this region are Nog1 (blue), Nog2 (red) and Nsa2 (orange) and are shown as surface representation. 25S rRNA is shown in green. Based on data from [2].

Fig. S4: Scheme showing joining and release of individual pre-60S maturation factors. Binding characteristics of bait proteins used in this study are symbolized by green bars. The approximate association period of selected maturation factors as inferred by western blotting and iTRAQ data is indicated by purple bars, while the co-purifying pre-rRNAs are symbolized by blue bars. The two brown vertical bars indicate the nuclear membrane.

S.cerevisiae strain	Genotype	Source			
Nog1-GFP	MATa leu2 ura3 his3 met15 NOG1-	this study			
Hho1-mCherry	GFP::HIS3MX6 HHO1-mCherry::hphNT1				
Nog1-GFP	this study				
Nop58- mCherry	GFP::HIS3MX6 NOP58-mCherry::hphNT1	this study			
Nog1-GFP Nic96-mCherry	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ NOG1-	this study			
	GFP::HIS3MX6				
	NIC96-mCherry::hphNT1				
Rix1-GFP Nic96-mCherry	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ RIX1-				
	GFP::HIS3MX6	this study			
	NIC96-mCherry::hphNT1				
Bud20-GFP	D-GFP MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ BUD20-				
Nic96-mCherry	mCherry GFP::HIS3MX6 NIC96-mCherry::hphNT1				
Noc2-TAP	MATa his3 leu2 ura3 lys2 Noc2-TAP::URA3	[3]			
Nsa1-TAP	MATα his3 leu2 ura3 trp1 Nsa1-TAP::TRP				
Rix1-TAP	Rix1-TAPMATα his3 leu2 ura3 trp1 Rix1-TAP::TRP				
Arx1-TAP	MATa his3 leu2 ura3 trp1 Arx1-TAP::TRP	[6]			
Nog1-TAP	MATα his3 leu2 ura3 trp1 ade2 Nog1-TAP::TRP	[6]			

Supplemental Table 1: Saccharomyces cerevisiae strains used in this study

Oligo designation	Sequence	Recognized pre-rRNAs
Probe A2/A3	5'-TGTTACCTCTGGGCCC-3'	27SA ₂ , 35S
Probe E/C2	5'-GGCCAGCAATTTCAAGTTA-3'	27S, 7S, 35S
Probe 5.8S	5'-GCGTTCTTCATCGATGC-3'	5,8S, 7S, 27S, 35S
Probe 25S	5'-CTCCGCTTATTGATATGC-3'	25S, 27S, 35S
Probe 18S	5'-GCATGGCTTAATCTTTGAGAC-3'	18S, 20S, 35S
Probe 5S	5'-GGTCACCCACTACACTACTCGG-3'	5S

Supplemental Table 2: Oligonucleotides used for Northern blotting

Supplemental Table 3: Proteomic analysis of Nog1-TAP after 15 minutes of diazaborine treatment

		Replicate 1		Replicate 2				
function/localization	protein [§]	labeling 1	labeling 2	labeling 1	labeling 2	mean	sd*	%sd*
shuttling	Tif6	1,35	1,49	0,85	0,81	1,12	0,30	26,39
shuttling	Nog1	1,00	1,00	1,00	1,00	1,00	0,00	0,00
	Rrp12		0,76	1,03	0,92	0,90	0,11	12,51
shuttling	Arx1	0,83	1,00	0,82	0,83	0,87	0,07	8,49
	Mak5	0,85	0,88	0,86	0,87	0,86	0,01	0,99
	Nop13	0,91	0,90	0,87	0,74	0,86	0,07	7,75
late nucleoplasmic	Nog2	0,79	1,06	0,75	0,79	0,85	0,12	14,48
shuttling	Rlp24	1,10		0,72	0,70	0,84	0,18	21,81
shuttling	Mrt4	1,00	1,01	0,66	0,68	0,84	0,17	19,76
	Nop12	0,88	1,06	0,55		0,83	0,21	25,48
late nucleoplasmic	Rsa4	0,88	1,04	0,65	0,52	0,77	0,20	26,24
•	Jip5	0,58	0,59	0,90	0,82	0,72	0,14	19,67
	Puf6	0,81	0,75	0,65	0,65	0,72	0,07	9,46
	Pwp1	0,81	0,80	0,62	0,61	0,71	0,09	13,23
	Ssf1	0,59	0,48	0,83	0,66	0,64	0,13	19,75
	Nsr1	0,88		0,54	0,49	0,64	0,17	27,05
late nucleoplasmic	Rix1	0,34	0,81	0,57	0,76	0,62	0,18	29,62
5S binding	Rpf2	0,51	0,56	0,66	0,63	0,59	0,06	10,07
5S binding	Rrs1	0,63	0,61	0,50	0,53	0,57	0,05	9,38
late nucleoplasmic	Nug1	0,57	0,65	0,47	0,54	0,56	0,06	11,41
late nucleoplasmic	Rea1	0,52	0,75	0,53	0,42	0,56	0,12	21,84
	Noc2	0,66		0,44	0,46	0,52	0,10	19,12
	Brx1	0,58	0,59	0,46	0,43	0,52	0,07	13,44
	Nip7	0,58	0,65	0,36	0,34	0,48	0,13	27,78
	Rrp15	0,55		0,37	0,51	0,47	0,08	16,48
	Drs1	0,40	0,51	0,45	0,54	0,47	0,06	11,70
	Rrp5	0,47		0,49	0,45	0,47	0,02	3,39
	Nop4	0,53		0,40	0,45	0,46	0,05	11,54
	Has1	0,35	0,53	0,43	0,48	0,45	0,07	14,76
	Nop2	0,54	0,50	0,42	0,32	0,44	0,08	18,78
	Fpr3	0,58	0,56	0,29	0,34	0,44	0,13	29,50
	Spb4	0,45	0,43	0,34	0,46	0,42	0,05	11,25
ITS2 binding	Nop53	0,35	0,36	0,47	0,47	0,41	0,06	14,65
	Rpf1	0,47		0,31	0,38	0,38	0,07	17,01
Nop7 loading	Ytm1	0,40	0,40	0,33	0,40	0,38	0,03	8,41
ITS2 binding	Nsa3	0,35	0,41	0,34	0,41	0,38	0,03	8,71
ITS2 binding	Nop7	0,37	0,52	0,34	0,26	0,37	0,09	24,77
	Rrp1	0,48	0,44	0,30	0,26	0,37	0,09	25,03
	Ebp2	0,42	0,42	0,29	0,31	0,36	0,06	16,82
ITS2 binding	Rlp7	0,40	0,39	0,33	0,28	0,35	0,05	14,24
Nop7 loading	Erb1	0,39	0,47	0,26	0,25	0,34	0,09	27,00
ITS2 binding	Nop15	0,31	0,37	0,34	0,30	0,33	0,02	7,51
	Nop16	0,40	0,32	0,25	0,26	0,31	0,06	20,50
	Nsa1	0,36	0,29	0,24	0,27	0,29	0,04	15,38

sd*: standard deviation

§ only factors identified in at least 3 independent labeling experiments and exhibiting less than 30% standard deviation were considered

SUPPLEMENTAL REFERENCES

1. Wegrecki M, Rodríguez-Galán O, de la Cruz J, Bravo J. The structure of Erb1-Ytm1 complex reveals the functional importance of a high-affinity binding between two β -propellers during the assembly of large ribosomal subunits in eukaryotes. *Nucleic Acids Res* 2015;**43**:11017–30.

2. Wu S, Tutuncuoglu B, Yan K, Brown H, Zhang Y, Tan D, Gamalinda M, Yuan Y, Li Z, Jakovljevic J *et al.* Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. *Nature* 2016;**534**:133–7.

3. Hierlmeier T, Merl J, Sauert M, Perez-Fernandez J, Schultz P, Bruckmann A, Hamperl S, Ohmayer U, Rachel R, Jacob A *et al.* Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. *Nucleic Acids Res* 2013;**41**:1191–210.

4. Kressler D, Roser D, Pertschy B, Hurt E. The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. *J Cell Biol* 2008;**181**:935–44.

5. Nissan TA, Galani K, Maco B, Tollervey D, Aebi U, Hurt E. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. *Mol Cell* 2004;**15**:295–301.

6. Kappel L, Loibl M, Zisser G, Klein I, Fruhmann G, Gruber C, Unterweger S, Rechberger G, Pertschy B, Bergler H. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. *J Cell Biol* 2012;**199**:771–82.