1 Supplemental Figures

3	Supplemental Figure 1. Verification of Calcr ^{cre} mouse strain. Representative ISH
4	images showing Calcr (green) and Cre (red) signal in the arcuate nucleus of wildtype
5	(A) and Calcr ^{cre} (B) mice. A' and B' are more magnified images of the area indicated by
6	the dotted rectangles in A and B . Blue is DAPI. Scale bar = 50 μ m (A , B) and 10 μ m
7	(A',B'). $3v = 3^{rd}$ ventricle.
8	
9	Supplemental Figure 2. Leptin-stimulated pSTAT3 in DMH, LHA and NTS Calcr
10	neurons from Calcr ^{eGFP-L10a} and LepRb ^{Calcr} KO mice. Representative images showing
11	colocalization of pSTAT3-IR (purple) with GFP-IR (green) in the dorsomedial
12	hypothalamus (DMH), lateral hypothalamic area (LHA) and nucleus of the solitary tract
13	(NTS) of four-week-old Calcr ^{eGFP-L10a} (left panels) and LepRb ^{Calcr} KO (right panels) mice
14	treated with leptin (5mg/kg, i.p.) for 90 minutes. Arrowheads indicate colocalized
15	neurons.
16	
17	Supplemental Figure 3. Leptin action via LepRb ^{Calcr} neurons controls energy balance.
18	Shown are body weight at ages 4-12 weeks (A), body composition at 14-15 weeks of
19	age (B,C), serum leptin concentrations at 10 weeks of age (D), body length from 5-11
20	weeks of age (E), and cumulative food intake from 5-12 weeks of age (F) for female
21	Calcr ^{eGFP-L10a} (Control) and LepRb ^{Calcr} KO mice. *p<0.05; **p<0.01; ***p<0.001;
22	****p<0.0001 by ANOVA (A, F) or t-test (all other panels).

24	Supplemental Figure 4. Relatively preserved glycemic control in LepRb ^{Calcr} KO mice.
25	Shown are blood glucose concentrations (mean +/-SEM) from 4-12 weeks of age (A),
26	serum insulin concentrations at 10 weeks of age (B), glycemic excursions during GTT
27	(2g/kg glucose; i.p.) at 12 weeks of age (C) and ITT (1 U/kg insulin; i.p.) and area under
28	the curve for ITT (D , E) at 13 weeks of age for female Calcr ^{eGFP-L10a} (Control) and
29	LepRb ^{Calcr} KO mice. Mean +/- SEM is shown for B-D. All panels: *p<0.05; **p<0.01; by
30	t-test.
31	
32	Supplemental Figure 5. Colocalization of ARC Calcr neurons with NPY but not POMC
33	neurons. (A) Shown are representative tdTomato (red, left panel, Calcr), GFP (green,
34	middle, NPY), and merged (right panel) images from the ARC of Calcr ^{tdTomato} NPY ^{GFP}
35	mice. (B) Shown are representative GFP (green, left panel, Calcr), dsRed (red, middle,
36	POMC), and merged (right panel) images from the ARC of Calcr ^{GFP} POMC ^{dsRed} mice.
37	
38	Supplemental Figure 6. Medial basal ARC cFos in leptin-deficient and LepRb ^{Calcr} KO
39	mice. Shown are representative images of cFos-IR (black) in the ARC of control (left),
40	LepRb ^{Calcr} KO (middle) and <i>Lep</i> ^{ob/ob} (<i>ob/ob</i> , right) mice. Scale bar=200 μ m.
41	

67 Supplemental Figure 6.

