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Figure S1. Adipogenesis creates two populations of cells with either low PPARG (undifferentiated cells) or high PPARG 
(differentiated cells) and the rejection of circadian hormonal pulses occurs also in primary SVF preadipocytes, Related to 
Figure 1.
(A-C) The standard 48hr DMI stimulus was applied at t=0 hrs to mouse OP9 cells. At t=96 hours, the cells were fixed and stained with 
Hoescht (blue) to mark nuclei and anti-PPARG (red), plus either (A) BODIPY (green), (B) anti-Adiponectin (white), or 
(C) anti-GLUT4 (turquoise). Images and scatter plots show that the high PPARG correlates closely with lipid accumulation (BODIPY) 
and markers of mature adipocytes (Adiponectin and GLUT4).
(D-E) Primary SVF preadipocytes treated with the same pulse protocols as in Figure 1D and 1E show the same rejection of circadian
hormonal pulses and the same gradual increase in adipogenesis for increasing continuous stimuli with durations greater than 12 hours.
(A,B,C,E) Scale bar represents 20 μm.
(F) Preadipocytes filter both pulses of glucocorticoids (dexamethasone) and cAMP (cellular increase mediated by IBMX). 
Dexamethasone (1 μM) and/or IBMX (250 μM) were added and removed for the indicated durations of time to cell media consisting 
of MEMalpha with Pen-Strep, L-glutamine, and 1.75nM insulin.
(D-F) Pulses of stimuli were applied and differentiation was quantitated as described in Figures 1B-1E.
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Figure S2. Verifying that the concentration of the applied DMI pulses is not saturating and that using corticosterone, a 
physiological glucocorticoids, instead of dexamethasone has the same filtering effect. Also, like OP9 cells, 3T3-L1 cells 
filter out short and circadian glucocorticoid input signals, Related to Figures 1 and 2.
(A) Test of whether the rate of preadipocyte differentiation is controlled by the integrated strength of the stimulus or simply by the stimulus 
duration within a wide-range of stimulus amplitudes. (Left) Schematic showing tested protocols in which DMI stimuli was applied to OP9 
preadipocyte cells for different durations at a single concentration (blue) versus at increasing concentrations that kept the total stimulus 
exposure constant (red). As an example of the latter, if the pulse durations were decreased by two-fold, the pulse amplitudes were 
increased two-fold to compensate. The cells were fixed 96 hours after application of the stimulus. (Right) Bar plots showing percent of 
differentiated cells for each protocol. The results show that the same rejection of differentiation stimuli less than 12 hours in duration and 
graded increase in differentiation rates for stimuli longer than 12 hours is seen whether or not the stimulus amplitude is increased to keep 
the integrated strength of the stimulus constant.
(B) Verification that the DMI stimulus concentration used is not saturating for pulsatile stimuli. The constant amplitude (1X) of the DMI 
stimulus was varied across a 12-fold range. Strikingly, the filtering of short duration stimuli was observed for all dilutions tested for both 
compensated (red bars) and constant 1X (blue bars) amplitude conditions. In contrast, increased differentiation was observed with 
increasing amplitudes for long 48-hour duration stimuli. 
(A-B) In all experiments, the 1X concentration of DMI used was 1 μM dexamethasone, 250 μM IBMX, and 1.76 nM insulin. 
(C) Using a physiological glucocorticoid, corticosterone, shows the same differentiation ability and filtering behavior as when the synthetic 
glucocorticoid, dexamethasone, is used. Stimuli pulses of different durations were applied to OP9 cells to indirectly activate PPARG via 
activation of the glucocorticoid receptor and CEBPB (DMI). For the corticosterone experiments, 1 μM corticosterone was used instead of 
1 μM dexamethesone in the normal DMI stimulus. The results plotted as barplots (left and middle) or in a single scatter plot (right) show 
that pulsing with corticosterone has the same filtering behavior as pulsing with dexamethasone. 
(D) Bar plots showing percent of differentiated cells 96 hours after different durations of stimuli were applied to 3T3-L1 cells to initiate 
adipogenesis by indirectly activating PPARG via activation of the glucocorticoid receptor and CEBPB upstream of PPARG expression 
using DMI. 
(A,B,C,D) Percent of differentiated cells, measured at 96 hours as in Figure 1B, represents mean +/- s.e.m from 3 technical replicates with 
approximately 7000 cells per replicate. All data shown are representative of 3 independent experiments.



Figure S3. Determining the concentration of rosiglitazone that gives comparable PPARG activation as a DMI stimulus and 
measuring CEBPB and PPARG dynamics by western blots, Related to Figure 2.
(A) To estimate a level of rosiglitazone that gives similar PPARG activation as DMI, different amounts of rosiglitazone were added to the 
media of undifferentiated mouse OP9 cells plated in 96-well wells in order to induce the cells to differentiate. Forty-eight hours when the 
cells were maximally differentiated by rosiglitzone, the cells were fixed and stained for Adiponectin, Glut4, and CEBPA protein levels. 
The titration curves show that  ~40 to 100 nM of rosiglitazone for 48 hours matches the expression of the respective genes induced by 
the standard DMI differentiation protocol (marked by the blue vertical lines). Thus, a dose of 100nM rosiglitazone was used in Figure 2A 
in order to compare differentiation effects to those resutling from a DMI stimulus. Shaded regions represent 95% confidence interval, 
and red lines indicate the median value of the duplicate points (grey dots).
(B) Knockdown efficiency of siRNA for PPARG, CEBPA, FABP4, and CEBPB in OP9 cells. Protein levels were assessed by fixing cells
immunohistochemistry Error bars show mean intensity +/- s.e.m. from 3 technical replicates, with approximately 8000 cells per technical 
replicate. 
(C) The average CEBPB concentrations in OP9 cells pulsed with DMI were measured by western blot. The barplots show
a quantification of the western blots measured using ImageJ analysis software. 
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Figure S4.  Workflow for generating and validating single clones with endogenously tagged CEBPB and PPARG
using CRISPR-mediated genome editing, Related to Figures 2 and 3.  
The different steps in the workflow are described in detail in the Methods section. 
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Figure S5. Validation of CEBPB clones, Related to Figure 2. The different steps of the validation are described in detail 
in the Methods section.

 

0 hr 24 hr 48 hr 72 hr 96 hr

IF signal
Citrine Signal

M
ea

n 
N

uc
le

ar
 C

E
B

P
B

 (a
.u

.)

0

40

80

120
140

100

60

20

0 h
r

24
 hr

48
 hr

72
 hr

96
 hr

I

0 1 2 3

Time (hr)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 In
te

ns
ity

Half-life analysis of endogeneous CEBPB protein tagged
with citrine in OP9 cells (citrine-CEBPB cells) measured 
by quantiating average mcitrine fluorescence intensity 
in ~2000 citrine-CEBPB cells per datapoint after the 
addition of cyclohexamide at timepoint 0Half-life = 4.2 (3.3, 5.9)

Half-life analysis of endogeneous 
CEBPB protein tagged with citrine(YFP)



Citrine-PPARG, 85kD
 

Endogenous PPARG,58kDa  

anti-PPARG

-

-

P
PA

R
G

-1

P
PA

R
G

-2

O
P

9

E

O
P

9

Citrine-PPARG

-
-
-
-

P
PA

R
G

-1

P
PA

R
G

-2

P
PA

R
G

-3

-

F G

Citrine-PPARG, 85kDa

1.5 kb

0.5 kb

-

-

O
P

9
P

PA
R

G
-1

P
PA

R
G

-2
P

PA
R

G
-3

1.5 kb

0.5 kb

-

-
1.5 kb

0.5 kb

-

-

O
P

9

P
PA

R
G

-1

P
PA

R
G

-2

P
PA

R
G

-3

~ 0.6 kb

~ 1.4 kb

PPARG

PPARG

~ 0.7 kb

PPARG

~ 0.7 kb

PPARG

C D

0 100 200 300
0

100

200

300

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

Mean IF-PPARG intensity (a.u.)

A B

H

5 kb
4 kb
3 kb

2 kb

1.5 kb

-

40 kDa

-

-

70 kDa

50 kDa

IF-PPARG Citrine-PPARG merged

P
PA

R
G

-3

anti-GFP

-

-

P
PA

R
G

-1

P
PA

R
G

-2

O
P

9

P
PA

R
G

-3

70 kDa

50 kDa

-

-

High density

Low density

32P-mCitrine

0 hr 24 hr 48 hr 72 hr 96 hr

0

50

100

150

0 h
r

24
 hr

48
 hr

72
 hr

96
 hrM

ea
n 

N
uc

le
ar

 P
PA

R
G

 (a
.u

.)

IF signal
Citrine Signal

Figure S6. Validation of PPARG clones, Related to Figure 3.  The different steps of the validation are described in detail in the 
Materials and Methods section.
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Figure S7. Measurements of mRNA half-life of CEBPB, CEBPA, PPARG, and FABP4, Related to Figures 2, 3, 4, and 5.
(A-B) RNA FISH images after the addition of actinomycin D at timepoint 0. The long half-life of FABP4 is apparent by eye, even 
before carrying out quantiative analysis. Scale bars are 50 μm.
(C) RT-PCR measurements of the levels of CEBPA, PPARG, and FABP4 mRNA ratioed over the levels of the mRNA of RPL18
and RPL10, two long-lived ribosomal proteins, after the addition of actinomycin-D at timepoint 0. These RT-PCR measurements
confirm the half-life measurements obtained by RNA FISH. 
(D) 5EU measurements of the levels of CEBPA and FABP4 mRNA.
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Target 

 

 

Strand 

 

Oligonucleotide sequence  
(5¢ to 3¢) 

PPARG_Nterm_1 Top CACCGAGATTTGCTGTAATTCACAC 

PPARG_Nterm_1 Bottom AAACGTGTGAATTACAGCAAATCTC 

PPARG_Nterm_2 Top CACCGCTGTTATGGGTGAAACTCT 

PPARG_Nterm_2 Bottom AAACAGAGTTTCACCCATAACAGC 

CEBPB_Nterm Top CACCGCGCGTTCATGCACCGCCTGC 

CEBPB_Nterm Bottom AAACGCAGGCGGTGCATGAACGCGC 

 

Table S1: Oligonucleotide sequences used to insert sgRNA sequences into the px335 or px330 
expression vector, Related to Figures 2 and 3. Guide sequences are targeted to the PPARG and 
CEBPB N-terminal. The underlined and italicized nucleotides denote the overhang for ligation of the 
oligonucleotide duplex into the px335 or px330 guide sequence insertion site. 

  



 

 

 

Primer Name 

 

 

Template 

 

Primer sequence 

(5¢ to 3¢) 

PPARG_homology_region1_FWD OP9 genomic DNA AACCAATTCAGTCGACTGGATCCA
AGGCCTTAAGCAAGAAGCC 

PPARG_homology_region1_REV OP9 genomic DNA ACAGCTCCTCGCCCTTGCTCACCA
TGGTAAGAACAGCATAAAACAGAG
ATTTGCTGTA 

PPARG_homology_region2_FWD OP9 genomic DNA CGAGCTGTACAAGGGAGGAGGAG
GTGAAACTCTGGGAGATTCTCC 

PPARG_homology_region2_REV OP9 genomic DNA ATCTCGAGTGCGGCCGCGAATTC
GAAATAGAGAATGCAACAT 

PPARG_Citrine_FWD Citrine plasmid TACAGCAAATCTCTGTTTTATGCTG
TTCTTACCATGGTGAGCAAGGGCG
AGGAGCTGT 

PPARG_Citrine_REV Citrine plasmid CTTGTACAGCTCGTCCATGCCGA 

CEBPB_homology_region1_FWD OP9 genomic DNA AACCAATTCAGTCGACTGCGTTTG
TCTCTGATGAC 

CEBPB _homology_region1_REV OP9 genomic DNA ATGGTGGCGAACGCGGGGCC 

CEBPB_homology_region2_FWD OP9 genomic DNA AGGAGGACACCGCCTGCTG 

CEBPB _homology_region2_REV OP9 genomic DNA TCGAGTGCGGCCGCGACCTTCTTC
TGC 

CEBPB _Citrine_FWD Citrine plasmid CGCGTTCGCCACCATGGTGAGCA
AGGGCGA 

CEBPB _Citrine_REV Citrine plasmid AGGCGGTGTCCTCCTCCCTTGTAC
AGCTCGTC 

Table S2: Primers used for PCR amplification of fragments that were joined by Gibson 
assembly to create donor vectors to insert Citrine at the N-terminals of PPARG and CEBPB via 
homologous recombination, Related to Figures 2 and 3. 

 



 

 

 

Assay 

 

Primer sequence (5¢ to 3¢) 

 

Amplicon (bp) 

 

genotyping  
PPARG Citrine clones 
 

 

FWD: CAC AGA ACA GTG AAT GTG TGG GTC 

 

630 (wt allele) 

1347 (knock-in 
allele) 

REV: GGA AAT GGA AGC CAT GAG CAG 

 

genotyping CEBPB 
Citrine clones 
 

 

FWD: CTT ATA AAC CTC CCG CTC GGC 

 

360 (wt allele) 

1077 (knock-in 
allele) 

REV: AAG AGG TCG GAG AGG AAG TCG T 

Table S3: Primers used for genomic PCR analysis of the PPARG and CEBPB CRISPR clones, 
Related to Figures 2 and 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Assay 

 

Primer sequence (5¢ to 3¢) 

 

Amplicon (bp) 

 

seq. 1 

PPARG Citrine clones 
 

 

FWD: CAC AGA ACA GTG AAT GTG TGG 
GTC 

 

- (wt allele) 

717 (knock-in allele) 
REV: CTT CAG CTC GAT GCG GTT CA 

 

seq. 2 

PPARG Citrine clones 
 

 

FWD: CAA GGA GGA CGG CAA CAT C 

 

- (wt allele) 

650 (knock-in allele) REV: GGA AAT GGA AGC CAT GAG CAG 

 

seq. 1 

CEBPB Citrine clones 
 

 

FWD: CTT ATA AAC CTC CCG CTC GGC 

 

- (wt allele)) 

475 (knock-in allele) REV: CTT CAG CTC GAT GCG GTT CA 

 

seq. 2 

CEBPB Citrine clones 
 

 

FWD: CAA GGA GGA CGG CAA CAT C 

 

- (wt allele) 

 603 (knock-in allele) REV: AAG AGG TCG GAG AGG AAG TCG T 

 

Table S4: Primers used for genomic PCR analysis to verify the fluorophore integration sites of 
the PPARG and CEBPB tagged clones, Related to Figures 2 and 3.  

 

  



 

 

Primer Name 

 

 

Primer sequence 

(5¢ to 3¢) 

Citrine_probe_FWD CGACGTAAACGGCCACAAGTT 

 

Citrine_probe_REV ATGGGGGTGTTCTGCTGGTAGT 

 

 

Table S5: Primers used for the PCR amplification of a 504 bp probe directed towards Citrine, 
Related to Figures 2 and 3. 

 

  



 

 

 

Primer Name 

 

Primer sequence (5¢ to 3¢) 

PPARG Fwd TCGCTGATGCACTGCCTATG 

PPARG Rev GAGAGGTCCACAGAGCTGATT 

CEBPA Fwd CAAGAACAGCAACGAGTACCG 

CEBPA Rev GTCACTGGTCAACTCCAGCAC 

CEBPB Fwd CCGGATCAAACGTGGCTGA 

CEBPB Rev GATTACTCAGGGCCCGGCTG 

FABP4 Fwd AAGGTGAAGAGCATCATAACCCT 

FABP4 Rev TCACGCCTTTCATAACACATTCC 

RPL10 Fwd CGTGGTGTCCCTGATGCTAAG 

RPL10 Rev GTTGGCACAAATACGGGCAG 

RPL18 Fwd ATGATGTGCGGATTCTGGAAG 

RPL18 Rev CCTGGGGCCTTGCCAAAAT 

 

Table S6: Primers used for RT-PCR to measure mRNA degradation rates, Related to Figures 2, 
3, 4, and 5. 

 

 



 
 CONTROL 

PELLET 
CORT  

PELLET 
CONTROL 
INJECTION 

CORT  
INJECTION 

 
BODY WEIGHT GAIN (G) 

 
3.32 ±	0.28 

 
4.67 ± 0.56 

 
1.08 ± 0.33 

 
1.62 ± 0.14 

 
BODY WEIGHT GAIN (% 
OF INITIAL BODY 
WEIGHT) 

 
 

14.0 ± 1.2 

 
 

20.1 ± 2.5 

 
 

4.4 ± 1.3 

 
 

6.4 ± 0.6 

 
INGUINAL ADIPOSE 
MASS (MG) 

 
 

251.6 ± 25.0 

 
 

515.3 ± 65.5 

 
 

258.6 ± 18.6 

 
 

271.6 ± 27.7 
 
INGUINAL ADIPOSE 
MASS (% OF FINAL 
BODY WEIGHT) 

 
 

0.93 ± 0.09 

 
 

1.83 ± 0.21 

 
 

1.00 ± 0.07 

 
 

1.01 ± 0.10 

 
EPIDIDYMAL ADIPOSE 
MASS (MG) 

 
 

485.5 ± 37.6 

 
 

1070.2 ± 119.4 

 
 

521.4 ± 43.0 

 
 

538.1 ± 69.3 
 
EPIDIDYMAL ADIPOSE 
MASS (% OF FINAL 
BODY WEIGHT) 

 
 

1.80 ± 0.14 

 
 

3.81 ± 0.38 

 
 

2.02 ± 0.16 

 
 

2.01 ± 0.25 

 
TOTAL FOOD INTAKE  
OVER THE 26-DAY 
EXPERIMENTAL 
TIMECOURSE 
(G/MOUSE) 

 
 

73.9 

 
 

70.9 

 
 

68.2 

 
 

74.0 

 
 
Table S7. Summary of experiments described in Figure 7 in which circulating Corticosterone 
(Cort) levels are manipulated in mice using either implanted Cort pellets or daily Cort 
injections, Related to Figure 7. Values are mean +/- s.e.m. 
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