




Supplementary Fig. S1. The PDGFR β inhibitor JNJ blocks tyrosine phosphorylation of PDGFR β at residues 740 and 751. Mesangial cells were treated with 0.1 μ M JNJ prior to incubation with normal glucose (NG) or high glucose (HG) for 24 hours. The cell lysates were immunoblotted with phospho-PDGFR β (Tyr-740), phospho-PDGFR β (Tyr-751) and PDGFR β antibodies as indicated.

Supplementary Fig. S2. High glucose increases the phosphorylation of Akt in a time-dependent manner. Serum-starved mesangial cells were incubated with 25 mM glucose (HG) for indicated periods of time. The cell lysates were immunoblotted with phospho-Akt (Thr-308), phospho-Akt (Ser-473) and Akt antibodies.

Supplementary Fig. S3. Akt inhibitor MK 2206 blocks Akt phosphorylation and high glucoseinduced mesangial cell protein synthesis and hypertrophy. Serum-starved mesangial cells were treated with 0.1 μ M MK 2206 (MK) for one hour prior to incubation with normal glucose (NG) or high glucose (HG). (A) The cell lysates were immunoblotted with phospho-Akt (Thr-308), phospho-Akt (Ser-473) and Akt antibodies. (B and C) Protein synthesis as the incorporation of ³⁵S-Methionine (panel B) and hypertrophy as the ratio of protein to cell number (panel C) were determined. Mean ± SE of 3 – 6 measurements is shown. *p < 0.01 vs NG; **p < 0.01 vs HG.

Supplementary Fig. S4. High glucose increases the expression of Hif1 α in a time-dependent manner. Serum-starved mesangial cells were incubated with 25 mM glucose (HG) for indicated periods of time. The cell lysates were immunoblotted with Hif1 α and actin antibodies.