Supplemental Figures

Figure S1, related to Figure 1. Molecular architecture of the Cas4-Cas1 complex.

(A) Co-expressed and purified Cas4-Cas1 complex on 12% SDS PAGE gel stained with Coomassie blue. His₆-Cas4 with untagged Cas1 or His₆-Cas1 with untagged Cas4 were co-expressed and complex was purified by nickel affinity chromatograph and size-exclusion chromatography. The stoichiometry of the two preparations are different due to incomplete separation of Cas4-His₆-Cas1 complex from free His₆-Cas1 on size-exclusion column. Therefore, His₆-Cas4-Cas1 was used for all biochemistry and structural studies. (B) Coomassie-blue stained SDS/PAGE gel of purified proteins used in this study. (C) Sizeexclusion chromatography (SEC) of co-purified Cas4-Cas1 complex with individually purified Cas1 and Cas4. (D) Representative raw micrograph of negatively stained Cas4-Cas1 complex. Scale bar indicates 100 nm. Several particles are outlined with yellow circles. (E) Representative raw micrograph of negatively stained Cas4-Cas1-Cas2 complex. Scale bar indicates 100 nm. Several particles are outlined with yellow circles. (F) Reference-free 2D class averages of Cas4-Cas1 complex. The width of the boxes is ~230 Å. (G) Reference-free 2D class averages of Cas4-Cas1 complex (first, third, and fifth columns) matched to reprojections of the final reconstruction (second, fourth, and sixth columns). Again, the width of the boxes is ~230 Å. (H) Euler angle distribution of particles for the final C2 3D reconstruction. (I) Fourier shell correlation (FSC) curve for the final reconstruction, showing the resolution to be ~21 Å using the 0.143 gold standard FSC criterion (J) The crystal structure of Cas1 from Archaeoglobus fulgidus (PDB ID: 4N06) is docked into one Cas1 dimer in the final Cas4-Cas1 reconstruction. The models are colored as follows: gold, first Cas4; yellow, second Cas4; blue, first Cas1 dimer; purple, second Cas1 dimer.

Figure S2, related to Figure 2. Single-stranded 3' overhangs are required for processing prespacers.

(A) Substrates used to test processing activity. Star indicates sites of ³²P radiolabel. (B) Processing assay of 3'-overhang DNA (15-nt overhangs with 24-bp duplex) incubating Cas1+Cas2 or Cas4-Cas1+Cas2 at 37 or 65°C, as indicated. (C) Processing assay using blunt end or 5'-overhang DNA as substrates. The concentration of Cas4 was titrated (100, 500 and 1000 nM) in the presence of Cas1+Cas2 complex. (D) Processing assay using 5'-overhang DNA as substrates at 37 or 65°C, as indicated. (E) Cas4 exonuclease assay using blunt end DNA. The concentration of Cas4 was titrated from 2 μ M-20 μ M.

Α

BhaCas4 SsoCas4 PcaCas4 XooCas4 HvoCas4 CjeCas4	MASNEEDRYLMLSGLQHFQFCKRQWALIHIEQQW MITEFLLKKKLEEHLSHVKEENTIYVTDLVRCPRRVRYESEYKELAIS MELLSPKPLCSVVNCEDLEKLDHVSALNELRREQEIFKLLPGIYAHRYDFRRVSPSIINDFEYCPRLLWVQHKLGLKLLS MDDADLIPLSALQHYLYCPRQCALIHVEQQW MNSSLHNIRFTGTQINYFFLCKKKLWYFSHDIQM : * :	34 48 80 31 49 34
BhaCas4 SsoCas4 PcaCas4 XooCas4 HvoCas4 CjeCas4	motf II get a start of the second start of the	111 116 138 98 95 81
BhaCas4 SsoCas4 PcaCas4 XooCas4 HvoCas4 CjeCas4	motif QxxY GKPKKGDEDIVGLVAQAMCLEEMLVCRIDKGYLFYNEIKHRVEVPITDALRDKVVQMAKEMHHYYENRHTPKV-K SRSDKGLPLIHHKMCLQIYLWLFSA-EKGILVYITPDRIAEYEINEPLDEATIVRLAEDTIMLQNSPRFN GHFKVHRADEVGLCAQALCLEHMLGRAVPTGALFYGQTRRKDVAFDAALRALTLDTIADTRAMLHDSDTPAARY SSALEKPARMCLLFYLWYLRE-IHDIDKDGVLAYPTERKRES-VVLDETTTAEVESTVRGVLDVVGRDSPPQLE SDKVEEPHIWCLKYYIWYLKQ-KGADGITGKINYPKLRKTLD-VFLEPEDEEKIQSILKEIQGIINTELPPAVE ** : * : * : * : *	185 185 197 173 167 153
BhaCas4 SsoCas4 PcaCas4 XooCas4 HvoCas4 CjeCas4	TGPFCNNCSLQSICLPKLMNKRSVKRYIEGRLSE 219 WECKYCIFSVICPAKLT 202 -AKCNSCIFKPICKNLL 213 DAKRCDACSLIDVCQPRLDRGSVDQWVRRQLNADED 210 KKPYCGTCLYQDLCWM 183 RMKMCRNCSYGDICWV 169 * *	
в		
BhaCas1 EcoCas1 SpyCas1 XooCas1 PA14_33350	MKKLLNTLYVTQPDTYLSLDGDNVVLLKEQEKLGRLPLHNLEAIVGFGY MAGWRTVVVNTHSKLSYKNNHLIFKDAYKTELIHLSEIDILLLETTGIRTHIPVGSVACIMLEPG MRRQLNTLYATTDGAWLRKDGANIVMEVERQERARLPVHMLESLVCIGR MDDISPSELKTILHSKRANLYYLQHCRVLV-NGGRVEYVTDEGRHSHYWNIPIANTTSLLLGTGTSITQA	49 57 57 49 69
BhaCas1 EcoCas1 SpyCas1 XooCas1 PaeCas1	TGASPALMGYCAERNISITFLTKNGRFLARVVGESRGNVVLRKTQYRISENDQESTKIARNFITGK TRVSHAAVRLAAQVGTLLVWVGEAGVRVYASGQPGGAR-SDKL LVDENVLVIFCDDKRLPTAMLMPFYGRHDSSLQLGK-QMSWSETVKSQVWTTIIAQK VAVSPQLLGFCSEHGISICYLTPQGRFLARVEGPVSGNVLLRRAQYRRSDDPAGCAAIVRHLLAGK AMRELARAGVLVGFCGGGGTPLFSANEVDVEVSWLTPQSEYRPTEYLQRWVGF-WFDEEK-RLVAARHFQRAR : .	115 99 113 115 140
BhaCas1 EcoCas1 SpyCas1 XooCas1 PaeCas1	VYNSKWMLERMTREHPLR-VNVEQFKATSQLLSVMMQEIRNCDSLESLRGWEGQAAINYNKVFDQMILQ LYQAKLALDEDLRLKVVRKMFELRFGEPAPARRSVEQLRGIEGSRVRATYALLA ILNQSCYLGACSYFEKSQSIMDLYHGLENFDPS-NREGHAARIYFNTLF -IHNQRAVLARGWRDHGDCLTDVAAFQHSLKRLKRIPQRVLVETDVDVLRGLEGEAAQSYFGVFGQLVRA LERIRHSWLEDRVLRDAGFAVDATALAVAVEDSARALEQAPNHEHLLTEEARLSKRLFKLAAQA *.	183 153 161 184 204
BhaCasl EcoCasl SpyCasl XooCasl PaeCasl	QKEEFAFHGRSRRPPKDNVNAMLSFAYTLLANDVAAALETVGLDAYVGFMHQ-DRPGRASLALDLMEELRGLYADR KQYGVTWNGRRYDPKDWEKGDTINQCISAATSCLYGVTEAAILAAGYAPAIGFVHT-GKPLSFVYDIADIIKFDTVVPKA GNDFSRDLEHPINAGLDYGYTLLLSMFAREVVVSGCMTQFGLKHA-NQFNQFNFASDIMEPFRPLVDKI DKPLLRFGGRNRPPRDAFNALLSFLYTLLTHDCRSALESVGLDPAVGFLHR-DRPGRPSLALDLAEEFRPLLGER TRYGEFVRAKRGSGGDPANRFLDHGNYLAYGLAATATWVLGIPHGLAVLHGKTRRGGLVFDVADLIKDSLILPQA . * :.	258 232 229 259 279
BhaCas1 EcoCas1 SpyCas1 XooCas1 PaeCas1	FVLSLINRKEMTADG-FYKKENGAVLMTDEARKTF-LKAWQTKKQEKITHPYLGEKMSWGLVPYVQALLLARFLRG FEIARRNPGEPD-REVRLACRDIFRSSKTLAKLIPLIEDVLAAGEIQPPAPP VYENRQPFPKIKRELFTLFSDTFSYNGKEMYLTNIISDYT	332 283 285 333 324
BhaCasl EcoCasl SpyCasl XooCasl PaeCasl	DLDEYPPFLWK 343 EDAQPVAIPLPVSLGDAGHRSS 305 EDLDGYPAFFWK 344 	

Figure S3, related to Figures 2 and 4. Sequence alignments of Cas4 and Cas1.

(A) Sequence alignment of Cas4 orthologs. Cys residues involved in the Fe-S cluster are highlighted in yellow and residues involved in RecB-like motifs are highlighted in Red. Homologs from *Bacillus halodurans* (accession code: Q9KFY0), *Sulfolobus solfataricus* (Q97TX9), *Pyrobaculum calidifontis* (A3MTK6), *Xanthomonas oryzae pv. oryzae* (A0A0K0GPX6), *Haloferax volcanii* (D4GQN9), and *Candidatus Jettenia caeni* (I3IP77) were used for alignments. The conserved residues are labeled with asterisks and similar residues are labeled with dots. (B) Sequence alignment of Cas1 orthologs. Conserved catalytic residues are boxed in red. Homologs from *Bacillus halodurans* (Q9KFX9), *Escherichia coli* (Q46896), *Streptococcus pyogenes serotype* M1 (Q99ZW1), *Xanthomonas oryzae pv. oryzae* (A0A0K0GQ44), *and Pseudomonas aeruginosa* (Q02ML7) were used for alignments. The conserved residues are labeled as asterisks and highly conserved residues are labeled as dots.

Figure S4, related to Figure 2. Cas4-Cas1-Cas2 processes prespacers with varying overhang and duplex length.

(A) Processing assay using different 3'-overhang lengths with constant duplex length (24 bp). (B)

Processing assay using different duplex lengths with constant 3'-overhang length (15 nt).

Figure S5, related to Figure 4. Integration assays using minimal CRISPR.

(A) Schematic view of integration assay using a 5'-radiolabeled minimal CRISPR with the 5-nt

3' overhang prespacer. Red, leader; yellow, repeat; blue, spacer; star is radiolabel at indicated position.

(B) Integration assay using the short linear CRISPRs with different leader lengths. (C) Cleavage assay using the minimal CRISPR (10-bp leader) in the absence of prespacer. (D) Schematic view of integration assay using 3'-radiolabeled minimal CRISPR and prespacers with different 3' overhang length. (E) Integration assay in the absence or presence of Cas4 at 37 or 65°C, as indicated. Red arrow indicates the integrated products of processed prespacers while black arrow indicates the integrated products of unprocessed prespacers.

Figure S6, related to Figure 5. Cas1-Cas2 and Cas4-Cas1-Cas2 integrate prespacers into pCRISPR. (A) Schematic view of integration assay and possible products using a supercoiled plasmid and the preprocessed prespacer. (B) Integration assay using Cas1, Cas2, Cas4 individually or in complex with prespacer at 37 or 65° C. The prespacer is a 24-bp duplex flanked by 5-nt 3′ overhangs. EcoRI digested plasmid was used for a linear standard. (C) PCR products of the half-site integrated (HSI) products of Cas1-Cas2 in the presence of Cas4 using a prespacer with degenerate sequences on 15 nt 3′ overhangs. The numbers indicate the four different events that are depicted in Figure 5A.

Figure S7, related to Figure 5. Integration sites for all conditions and prespacers tested in HSI sequencing experiment. The average fraction of read counts at each start site from three separate replicates are plotted, with error bars representing standard deviation. Red: leader, yellow: repeat.

	tenuteu to STIIIt Methous. Timers used in this study.	
Name	Sequence $(5^{\prime} \rightarrow 3^{\prime})$	Description
1	GTCG GGATCC ATGGCCAGTAATGAAGAAGACCG	Cas4 BamHI forward primer
2	TGTGT CTCGAG TCATTCGCTCAGTCTCCCCTC	Cas4 Xhol reverse primer
3	GTCG GGATCC ATGAAAAAGCTATTAAACACTCTATATGTGAC	Cas1 BamHI forward primer
4	TGTGT CTCGAG CTACTTCCACAGAAATGGCGG	Cas1 Xhol reverse primer
5	GTCG GGATCC ATGCTTGTTTTAATTACGTATGATGTCC	Cas2 BamHI forward primer
6	TGTGT CTCGAG TTAAAAGATAAGAGGGTCCTCTAAATCG	Cas2 Xhol reverse primer
7	TGTGT GAATTC TGGTGCGAACCTCAAGC	pCRISPR EcoRI forward primer
8	GTCG GGATCC GGGTCGGATGATGTCGC	pCRISPR BamH1 reverse primer
9	CGCCATAAAACCGACATAAGCATCAAG	Cas1/Cas4-Cas1 H234A forward primer
10	CAAGACCGTCCTGGCC	Cas1/Cas4-Cas1 H234A reverse primer
11	CGCGTATTCAACAGGAAATGCC	Cas4-Cas1 K110A forward primer
12	CGAGGGAAGCCAAAG	Cas4-Cas1 K110A reverse primer
13ª	CGTAGCTGAGGACCAC	Forward primer against top strand of prespacer for detecting HSI products
14 ^a	CTGTTCTGGTGGTCCTC	Forward primer against bottom strand of prespacer for detecting HSI products
15 ^a	GCCAAGCTTGCATGC	Reverse primer against pCRISPR for detecting HSI products integrated in the plus strand
16ª	ATTCCCTATTTTATCAAAGTGATTTTC	Reverse primer against pCRISPR for detecting HSI products integrated in the minus strand

Table S1. Related to STAR Methods. Primers used in this study.

^aFor HSI product sequencing experiments, restriction enzyme sites (low-throughput sequencing, Figure 5B-C) or barcodes (high-throughput sequencing, Figures 5D and S6C) were added to the 5'-end of primers.

Table S2. Related to STAR Methods. Substrate oligonucleotides used in this study. Bold indicates repeat sequences, RC indicates the complementary strand of the previous strand.

Sequence $(5^{\prime} \rightarrow 3^{\prime})$	Description	Figure
CTGTTCTGGTGGTCCTCAGCTACG TTTTG	5 nt 3'-overhang prespacer	4B, S4A, S5B, S5E, S6B
CGTAGCTGAGGACCACCAGAACAG TTTTG	RC	
AATTCCCTATTTTATCAAAGTGATTTTCTAGAATCTAGGGGATTTTCGCT G	50 bp leader	S5B
TCGCACTCTTCATGGGTGCGTGGATTGAAATATTGA	50	
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATCCCCTAGAT TCTAGAAAATCACTTTGATAAAATAGGGAATT	RC	
TTTATCAAAGTGATTTTCTAGAATCTAGGGGATTTTCGCT GTCGCACTCTTCATGG GTGCGTGGATTGAAATATTGA	40 bp leader	S5B
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATCCCCTAGAT TCTAGAAAATCACTTTGATAAA	RC	
TGATTTTCTAGAATCTAGGGGGATTTTCGCT GTCGCACTCTTCATGGGTGCGTGGA	30 bp leader	S5B
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATCCCCTAGATT CTAGAAAATCA	RC	
GAATCTAGGGGGATTTTCGCTGTCGCACTCTTCATGGGTGCGTGGATTGAAATA	20 bp leader	S5B
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATCCCCTAGATT	RC	
GATTTTCGCTGTCGCACTCTTCATGGGTGCGTGGATTGAAATATTGA	10 bp leader	S5B-C
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATC	RC	002 0
CGTAGCTGAGGACCACCAGAACAG CTCA G	5 nt 3'-overhang prespacer	5C
CTGTTCTGGTGGTCCTCAGCTACG CTCA G	RC	
TTTTTTTAAGTTTT CTGTTCTGGTGGTCCTCAGCTACG	15 nt 5'-	S2C,
	overhang	S2D
	RC	
	Blunt end DNA	S2D.
		S2E
AAAAAAATTCAAAACTGTTCTGGTGGTCCTCAGCTACG	RC	
	15 nt 3' overhang prespacer	2B-C, 2E-F, S2B, 3C, 4B-C,
		54A, S5E
CTGTTCTGGTGGTCCTCAGCTACG TTTTGAATTTTTTT	RC	
CGTAGCTGAGGACCACCAGAACAG TTTTGAATTTTTTTTTT	25 nt overhang prespacer	2E-F, S4A, S5E
CTGTTCTGGTGGTCCTCAGCTACG TTTTGAATTTTTTTTTT	RC	
CTGTTCTGGTGGTCCTCAGCTACG	35 nt overhang	2E-F,
TTTTGAATTTTTTTTTTTTTTTTTTTTTTT	prespacer	S4A
	RC	
	10 nt 3′-	S1A
	overhang	S5E
CGTAGCTGAGGACCACCAGAACAG TTTTGAATTT	RC	
CGTAGCTGAGGACCACCAGAACAG TTTTGAATTTTTTTTTT	20 nt 3'- overhang prespacer	S4A, S5E
CTGTTCTGGTGGTCCTCAGCTACG TTTTGAATTTTTTTTTT	RC	

CGTAGCTGAGGACCACCAGAACAG TTTTGAATTTTTTTTTT	30 nt 3'-	S4A,
	overhang	S5E
	prespacer	
CTGTTCTGGTGGTCCTCAGCTACG TTTTGAATTTTTTTTTT	RC	
CGTAGCTGAGGACCAC CTCA GAA CTGATCGT	16 bp duplex	S4B
	prespacer	
GTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGA CTCA GAA CTGATCGT	20 bp duplex	S4B
	prespacer	
TCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGAAC CTCA GAA CTGATCGT	22 bp duplex	S4B
	prespacer	
GTTCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGAACAG CTCA GAA CTGATCGT	24 bp duplex	S4B
	prespacer	
CTGTTCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGAACAGTA CTCA GAA CTGATCGT	26 bp duplex	S4B
	prespacer	
TACTGTTCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGAACAGTAGTCG CTCA GAA CTGATCGT	30 bp duplex	S4B
	prespacer	
CGACTACTGTTCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
CGTAGCTGAGGACCACCAGAACAGTAGTCGGCTC CTCA GAA CTGATCGT	34 bp duplex	S4B
	prespacer	
GAGCCGACTACTGTTCTGGTGGTCCTCAGCTACG CTCA GAA CTGATCGT	RC	
GATTTTCGCTGTCGCACTCTTCATGGGTGCGTGGATTGAAATA	10 bp leader for	4B-C,
	3'-end labeling	S5E
TCAATATTTCAATCCACGCACCCATGAAGAGTGCGACAGCGAAAATC	RC	
CGTAGCTGAGGACCACCAGAACAG TTTTNNNTTTTTTT	HSI-PS1	5, S7
CTGTTCTGGTGGTCCTCAGCTACG TTTTNNNTTTTTTT	RC	
CGTAGCTGAGGACCACCAGAACAG TTTTCNNNTTTTTT	HSI-PS2	5, S7
CTGTTCTGGTGGTCCTCAGCTACG TTTTCNNNTTTTTT	RC	
CGTAGCTGAGGACCACCAGAACAG TTTTTTCTTTTTTT	15 nt 3'	3C
	overhang	
	prespacer with	
	TTC PAM	
CTGTTCTGGTGGTCCTCAGCTACG TTTTTTCTTTTTTT	RC	