Supplementary Information

Lipid binding promotes the open conformation and tumor-suppressive activity of neurofibromin 2

Chinthalapudi et al.

Supplementary Figure 1 PIP₂ binding to chain "A" of neurofibromin 2

(a) Cross-eyed stereo view of the final Fo - Fc omit electron density maps (in green) contoured at 2.5 σ of chain "A" of the neurofibromin 2/PIP₂ complex at 2.61 Å resolution. Key neurofibromin 2 binding residues, W60 and R309, are indicated.

(b) Cross-eyed stereo view of the final $2F_0 - F_c$ (blue) and $F_0 - F_c$ (green) electron density maps contoured at 0.85 σ (blue) and 2.8 σ (green and red for positive and negative electron density, respectively).

Supplementary Figure 2 PIP₂ binding to chain "B" of neurofibromin 2

(a) Cross-eyed stereo view of the final Fo - Fc omit electron density maps (in green) contoured at 2.5 σ of chain "B" of the neurofibromin 2/PIP₂ complex at 2.61 Å resolution.

(b) Cross-eyed stereo view of the final 2Fo - Fc (blue) and Fo - Fc (green) electron density maps contoured at 0.75 σ (blue) and 3 σ (green).

(a) Superposition of the two lipid-bound neurofibromin 2 polypeptide chains in the asymmetric unit, shown as a gray (chain "B") and colored (chain "A") cartoon (F1, residues 18-98, orange; F2, 111-213, green; F3, 221-312, blue), respectively. The latter (chain "A") with its bound PIP₂ (shown in sticks) carbons in yellow. The α -helix from the central helical domain, α H, is shown in gray (residues 315-339). Residues 15-339 of one subunit can be superimposed onto the second subunit in the asymmetric unit with *r.m.s.d.* of 0.278 Å for 2,100 atoms.

(b) Close-up view of the PIP₂ binding site in the second molecule in the asymmetric unit. The carbon atoms of PIP₂ are shown in gray, of the neurofibromin 2 F1 subdomain in light orange, and F3 in blue. Hydrogen bonds are indicated and key binding residues are labeled.

Differential HDX mapping of full-length neurofibromin 2 upon binding to PIP₂ micelles

HDX single amino acid consolidation view of full-length neurofibromin 2 upon binding to PIP₂ micelles. Percentages of deuterium differences are color-coded according to the smooth color gradient key. A negative value represents decreased deuterium incorporation or stabilization while a positive value represents increased deuterium incorporation or destabilization in the corresponding region of the protein. Gray, no statistically significant changes between compared conditions; blank, regions that have no sequence coverage or include prolines that have no amide hydrogen exchange activity. The deuterium incorporation data from all overlapping peptides were consolidated to individual amino acid values using a residue averaging approach¹.

Full images of Figure 3 (a, b)

The conformation of neurofibromin 2 dictates its binding

(left) Lipid co-sedimentation analysis of the PIP₂ binding to wild type and our lipid binding deficient mutant neurofibromin 2. Wild type neurofibromin 2 (residues 1-339) is soluble in the absence of PIP₂ and pellets in the presence of PIP₂. Mutant (T59V, W60E, R309Q, R310Q) neurofibromin 2 (residues 1-339) remains soluble in the absence and presence of PIP₂. S, supernatant; P, pellet; WT, wild type; LBD, lipid binding deficient mutant (T59V, W60E, R309Q, R310Q).

(right) Lipid co-sedimentation analysis of the PIP₂ binding to wild type and disease derived mutant neurofibromin 2. Wild type neurofibromin 2 (residues 1-339) is soluble in the absence of PIP₂ and pellets in the presence of PIP₂. Mutant (W60C) neurofibromin 2 (residues 1-339) is soluble in the absence of PIP₂ while a small fraction pellets in the presence of PIP₂. S, supernatant; P, pellet; WT, wild type.

Full images of Figure 4 (a)-(c)

Lipid binding deficient mutants of neurofibromin 2 display impaired inhibition of cell proliferation

(top) SC4, (left bottom) HEK293T, or (right bottom) hSC λ -shNF2 cells were transfected with expression vectors for wild type and lipid binding deficient neurofibromin 2 or empty vector control (pCDNA). Total cell numbers were counted over 72 hours. Means of each data point were calculated from three independent biological replicates conducted in triplicate. Error bars represent ±S.D. Immunoblot analysis was used to verify similar expression levels of the indicated neurofibromin 2 alleles. Tubulin was used as a control. The blots shown are representative of three biological replicates. Unlabeled fourth lanes are samples of a different line of investigation, not part of this study.

Full images of Figure 5 (a, b)

The lipid binding deficient mutant of neurofibromin 2 displays impaired inhibition of Rac1 activation and YAP activity

(top) 293T or (bottom) SC4 cells were transfected with expression vectors for wild type or lipid binding deficient neurofibromin 2 or empty vector control (pCDNA) and levels of active Rac1 (Rac1-GTP) were assessed after 48 hours. Levels of total Rac1, neurofibromin 2, and tubulin were assessed as controls. The blots shown are representative of three biological replicates. Unlabeled lanes are samples of a different line of investigation, not part of this study.

Supplementary Table 1 X-ray data reduction statistics for human neurofibromin 2 (residues 1 to 339) in complex with PIP₂

Isotropic Scaling	
Space group	P 2 ₁
Unit cell dimensions	
a, b, c	42.31 Å, 96.59 Å, 106.45 Å
α, β, γ	90°, 99.33°, 90°
Resolution, overall	48.29 Å - 3.09 Å
Last shell	3.15 Å - 3.09 Å
Total measurements	53,346
Nr. of unique reflections, overall	15,264
Last shell	2,769
Wavelength	1.0 Å
R _{p.i.m} , overall	0.074
Last shell	0.333
I/σ(I), overall	9.5
Last shell	2.2
Completeness, overall	0.985
Last shell	1.000
Multiplicity, overall	3.5
Last shell	3.6
CC _{1/2} , overall	0.993
Last shell	0.826
Aniantronia Capling	
Anisotropic Scaling	RO
Space group	$P Z_1$
	42.31 A, 90.59 A, 100.45 A
α, β, γ	$90^{\circ}, 99.33^{\circ}, 90^{\circ}$
Resolution, overall	48.29 A - 2.62 A
	2.81 A - 2.62 A
lotal measurements	66,489
Nr. of unique reflections, overall	19,196
	1,274
	1.U A
R _{p.i.m} , overall	0.091
	0.688
I/σ(I), overall	7.9
	0.9
Completeness (spherical), overall	0.754
	0.115
Completeness (ellipsoidal), overall	0.903
Last shell	0.396
Multiplicity, overall	3.5
Last shell	2.3
CC _{1/2} , overall	0.991
Last shell	0.338

Supplementary Table 2

Crystallographic refinement statistics for human neurofibromin 2 (residues 1 to 339) in complex with PIP_2

The final model contains two polypeptide chains, two phosphates, and two PIP₂ molecules in the asymmetric unit.

Resolution, overall	48.30 Å – 2.62 Å
Last shell	2.76 Å – 2.62 Å
No. of reflections, working	18,234
Test set	962
<i>R</i> -factor, overall	0.188
Last shell	0.274
<i>R</i> -free, overall	0.237
Last shell	0.404
No. of non-hydrogen atoms:	
Protein	5,395
Ligands	96
Solvent	222
Average B-factor:	
Protein	42.53 Å ²
Ligands	108.36 Å ²
Solvent	30.09 Å ²
<i>R.m.s.d.</i> from ideal values:	
Bond lengths	0.010 Å
Bond angles	1.06°
Ramachandran favored	98.14%
Ramachandran allowed	1.86%
Ramachandran outliers	0

Supplementary Table 3 Neurofibromin 2 residues interacting with PIP_2 as seen in the neurofibromin 2/PIP₂ crystal structure

(a) Hydrophobic interactions		
EFRM residues (chain A)	PIP_{a} atoms (chain A)	Distance [Å]
Arg-309 CD	C6	4 10
Arg-309 CB	C6	4 55
Trp-60 CD2	C1	3 45
Trp-60 CE3	C1	3.61
Trp-60 CE3	C2	3.91
Trp-60 CE3	C3C	3 90
Trp-60 CZ3	C3	3.74
FEDM residues (shein B)	DID. stome (shein B)	Distance [Å]
Ara 200 CD		
Arg 200 CB	C6	3.07 4.97
Alg-309 CB		4.37
Trp 60 CD2		3.74 2.00
Trp 60 CE2		3.90 2.66
Trp 60 CE3	05	3.00
Trp 60 CC	C5	3.00
		3.70
Trp 60 C72		3.00 2.50
Trp 60 CZ3	05	0.09 0.75
	01	3.75
Leu-306 CD2		4.23
(b) Hydrophilic interactions		٥
FERM residues (chain A)	PIP ₂ atoms (chain A)	Distance [A]
Arg-309 NH1	012	2.29
Arg-309 NH1	02	3.60
Arg-309 NH2	012	3.32
Arg-309 NE	012	2.92
Arg-309 O	O51	2.78
Arg-310 N	O51	3.19
Thr-59 OG1	02C	3.82
Thr-59 OG1	O1A	3.90
FERM residues (chain B)	PIP ₂ atoms (chain B)	Distance [Å]
Arg-309 NH1	O11	2.85
Arg-309 NH1	02	3.55
Arg-309 NH2	O11	3.89
Arg-309 NE	01	3.87
Arg-309 O	O51	3.37
Arg-310 N	O51	3.95
Thr-59 OG1	O3C	3.08
Thr-59 OG1	014	2 71
		5.71
Arg-57 O	01A	3.85

Supplementary Table 4 Primer sequences

Construct	pGEX6P1 vector specific	
Forward primer (5' \rightarrow 3')	TGACTGACGATCTGCCTCG	
Reverse primer (5' \rightarrow 3')	GGGCCCCTGGAACAGAAC	
Construct	hNF2-FERM_1-339 gene specific	
Forward primer (5' \rightarrow 3')	CTGTTCCAGGGGCCCATGGCCGGGGCCATCGCTTC	
Reverse primer (5' \rightarrow 3')	GCAGATCGTCAGTCAGAGGCGCTGCCGCTCCATC	
Construct	pCDNA3 vector specific	
Forward primer (5' \rightarrow 3')	CAAATCAAAGAGGTCCTTCCCTTTCC	
Reverse primer (5' \rightarrow 3')	CCAGGGAGGAGAAGGCTAGAAAG	
Construct	hNF2_1-595 gene specific	
Forward primer (5' \rightarrow 3')	GGAAAGGGAAGGACCTCTTTGATTTG	
Reverse primer (5' \rightarrow 3')	CTTTCTAGCCTTCTCCTCCCTGG	
Construct Forward primer (5' \rightarrow 3') Reverse primer (5' \rightarrow 3') GGGCCCCTGGAACAGAA	pET32a vector specific GGTATGAAAGAAACCGCTGCTG CTTCCAGACCAGAAGAATGATGATGATG	
Construct Forward primer (5' \rightarrow 3') CTGGAAGTTCTGTTCCAG Reverse primer (5' \rightarrow 3') CAGCAGCGGTTTCTTTCA	GATG hNF2_1-595 gene specific GGGCCCATGGCCGGGGCCATCGCTTC TACCCTAGAGCTCTTCAAAGAAGGCC	
Construct Forward primer (5' \rightarrow 3') TAAAAAGCTCACCTTGCA(Reverse primer (5' \rightarrow 3') GAGCTCTTCAAAGAAGGC	hNF2_A585W-R586K mutant GAGCTGGAAGTCCAAAGTGGCCTTCTTTGAAGAGCTC CCACTTTGGACTTCCAGCTCTGCAAGGTGAGCTTTTTA	
ConstructhNF2_T59V-W60E mutantForward primer (5' →3')GGACTCTGGGGGCTCCGAGAAGTCGAGTTCTTTGGACTGCAGTACAReverse primer (5' →3')TGTACTGCAGTCCAAAGAACTCGACTTCTCGGAGCCCCAGAGTCC		
Construct Forward primer (5' \rightarrow 3') TCCAGCTATGTATCGGGA Reverse primer (5' \rightarrow 3') CTTCCAAAGAATCGGCTT	hNF2_R309Q-R310Q mutant ACCATGATCTATTTATGCAGCAGAGGAAAGCCGATTCTTTGGAAG TCCTCTGCTGCATAAATAGATCATGGTTCCCGATACATAGCTGGA	
Construct	hNF2-W60C mutant	
Forward primer (5' →3')	GCTCCGAGAAACCTGCTTCTTTGGACTGCAG	

Reverse primer (5' \rightarrow 3') CTGCAGTCCAAAGAAGCAGGTTTCTCGGAGC

Supplementary References

 Keppel TR, Weis DD. Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging. *J Am Soc Mass Spectrom* 26, 547-554 (2015).