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1 Proof of Lemma 2.1

We have the following assumptions: We assume as follows:

(a) fo NS (t)dt < oo and P{Y;(t) = 1} > Ofort € [0,L],i = 1,...,n,and di/n — 0 as
n — oo.

(b) Z;; is bounded almost surely for all 7, 7 and o7 is bounded almost surely for any Z and
a € B, where B is a neighborhood o.

(¢c) For d = 0,1,2, there exists a neighborhood B of « such that s )(a,t) are continuous
functions and sup,¢ g 1) aes ||S(d (o, t) — S(C?)(a, t)|| — 0 in probability.

(d) The matrix A(ay fo el ao,t)s(G (g, )AS (t)dt is positive definite, where vg(a, t) =
s () /s (e ,t) —eq(a,1)®? and e (e, t) = 55 (@, 1) /s (e, 1).

(e) Forall o S B.t€0,L].S¥ (a,t) = 089 (e, t) /0, and S&) (e, 1) = 92SY (e, 1) / (DD,
where S ( ,t), d =0, 1,2 are continuous functions of a € B uniformly in ¢ € [0, L] and
are bounded on B x [0, L], and s(GO ) is bounded away from zero on B X 0, L].

Define M (t) — [ Yi(u)e*$ ZdAG (u). Then,
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Let var{ME(t)} = [ s (e, u)dAS (u) be o2(cxg,t). Then, by the proof of Lemma 5 of Ni
etal. [1], 71237 | ME(t)/o(cu,t) converges weakly to a tight zero mean Gaussian process
with continuous sample paths. In addition, o(a, t) is bounded and bounded away from 0O due to
Conditions (a), (b) and (e). Similarly to Theorem 1 of Ni et al. [1], using Conditions (a) to (e) we
can show ||& — ayl|| = O,(+/d,/n). Then, by Taylor expansion, Conditions (c¢) and (e), Lemma 1
of Lin [2], the first term of (1) x+/n/d, is
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where a, lies between & and oy, which holds uniformly in ¢. This shows the first term of (1) is

op(1/d,/n) uniformly in ¢. The second term of (1) x+/n/d, converges to

—+/n/d, fot {e(a, u)dAS (u)}T (& — ) in probability by Taylor expansion and Conditions (a),
(c), and (e). Because of ||& — a|| = O,(+/d,,/n) and the boundedness of A§(¢) and e(av, t), the
second term of (1) is O,(+/d,,/n) uniformly in ¢. The third term of (1) x+/n/d,, converges to
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in probability by Condition (c). Because s(GO ) (avo, u) and o (g, t) are bounded, and bounded away

from 0, the third term of (1) x+/n/d, is Oy(1/v/d,) = 0,(1) uniformly in ¢ and thus the third

term of (1) is op(1/d,/n) uniformly in ¢. Therefore, sup, |AS (¢ : &) — AS(t)| = O,(\/d,/n). By
Taylor expansion and the consistency of AG (¢ : &), /n/d{G(t|Z) — G(t|Z)} is asymptotically



equivalent to

— Vn d GZIAG (¢ : &) exp(@”Z) — AT (1) exp(al Z))
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where a, lies between oy and é&. Because of sup, |AS (¢ : &)—AS (1)

0,(1/d,/n), and Conditions (a) & (b), we have sup, |G(t|Z) — G(t|Z)| = O,(\/dn/n).

2 Proofs of Lemma 2.3 and Theorem 2.5

Let S¢(b, 7) = njl/z Z?:1~Z,-[I{Xi < g(XTb)}(6; = 1)/G(X;|Z) — 7). Because of (C1), we
have sup,, |G(t|Z) — G(t|Z)| = 0,(n~"/279d,/*) for any ¢ > 0. Consider
n~ 28, (b, 7) = n 2SS (b, 7)
N X < g(ZIb)} (6 = 1) "L rH{X, < g(ZTb) (5 = 1)
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Because of the boundedness of the d,, elements of Z;, (C1), and Lemma 2.1, for 0 < ¢ < 1/8 we
have

Sup In~28, (b, 7) — =287 (b, 7)|| = 0, (n~2H1d,/2d,) = o0,(1). 2
By Chebyshev’s inequality, (C2), and (C3) for any e,
P(|n="287 (b, 7) — E{n~"/?8,,(b, 7)}[| > €)
< Bl 8G(b,7) — B{n~ /78, (b, 7}
Sy = o(1),

ne?
which holds uniformly in b € B(py). Similarly, by Chebyshev’s inequality, (C3), (C4), (C6), and
(C7), for any e,

= O(

d4

P(|ln""? 7 Su(b,7) = H(b)|| > —) < O(75) = o(1), 3)

€
dn,

which holds uniformly in b € B(pq).



For 0 < ¢ < 1/8, by (2) and (C2) we have
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where 0,(n~1/2t143/*) = 0,(1). Let
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First of all, we show consistency of 3 (7). It is sufficient to show that for any € > 0, there exists a
large constant C' such that

P[”ullf Wo{Bo(7) + Cayu, 7} > Wn{BO(T),T}] >1—¢,

where ||u|| = 1. Let a, = \/d,,/n. We have
LWB0(r) + Conu, ) — Wl Bo(r), 7}
= %[Un{ﬁo(ﬂ + Cayu, 7} — Up{By(7), 7} + D

where
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By Taylor expansion, for 0 < ¢ < 1/4 we have

C[UnABa(7) + Caty, 7} — Un{Bo(r), 7}
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where 3"(7) is between 3,(7) + a,,u and 3,(7). By the Cauchy-Schwartz inequality, (C1), and
(C2),

1 ~ 1 -
Ry = —Cayu’ 7 Un{B(7), 7} = ~Can|ul[[| 7 Un{Bo(7), 7} = COp(az)lull,

By vU,{b,7} = S¢{b,7} = S, {b, 7}+0,(1), (3),and (C4), Ry = C?a2uT/2U{B,(7), T}u{l+
0,(1)}. Therefore, R; is of order Ca?2 and R; is of order C?a2. If we choose sufficiently large C,
Ry > 0 dominates F;, which shows Lemma 2.3.

Next, D,, can be written as:
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Consider I; first. We consider 2 cases: Case i) when §,o(7) # 0 for all j € Aj for all k €
{1,2,..., K1}; and Case ii) there is at least one j3;o(7) such that /3;(7) = 0 for some j € Ay, for
some k € {1,2,..., Ky}

For Case i), we assume that 3;o(7) # 0 for all j € Ay forall £ € {1,2,..., K;}. Since
b —a’ <2(b—a)b’"Lfor0 < a < band |B;0(7)| = O,{(d,/n)"/?} with 0 < v; < 1 asin (C8b)
for j € By and any 7 € |7, 77|, we have that for sufficiently large n such that Cav,, < |B,0(7)| for
all j € Ay and any 7 € [77, Tv/],

_Z (2 I K<Z s
. B0 | 0| o B0
;Z (JEZAk 0 + - > R Z <jeZAk ‘ﬂjo >

(Z |6]0 ‘ + C’“Jlan)7 ! Z C~|u1|a"} 4)

JEAL jeAs |5J (T)ly

<250
< 2%;%{( 3 %) 5 Q|uj|an}

jeAk jeAk |5J(T)|y

< QOéiAn(dnn)ilﬂ ch{( Z 2||gy<07()7|'3|>7—1 Z ~C|uy||y }

k=1 JEAL JEAL 18;(7)

n
n



Using |3;(7)|” =, |Bj0(7)]” # 0 for j € By, (C8b) and (CYb), this term is dominated by Ry > 0,
where —, indicates convergence in probability.

For Case ii), assume that there are (3;(7)’s such that 5;,(7) = 0 for some j € Ay for some
ke {1,2,...,K;}. Consider
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Since j3;(7) converges in probability to non-zero 3,0(7) = 0,{(d,/n)"/*} for j € B, and

maxy |Ay N By| = O{(n/d,)"/?}, |I11] < Op(al™72) = o,(al™") because vv; + 15 < v
as in (C8b). On the other hand, because \/n/d,5;(7) = O,(1) for j € B, |[12| is at least
O,(al™). Thus, I;5 > 0 dominates I;; as n — oo. Therefore, for sufficiently large n,
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Then, due to v6" (b — a) < b7 — a” for 0 < a < b, for sufficiently large n we have
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By similar argument to (5), /14 dominates ;3. Consider [14:

(ZWJO +Canuy|)71 Z 1Bj0(7) + Canuyl

)

JEAk jEALNB, |6j<7)|y
= ( >V/2( Z |Bj0(7 ‘{'CO‘nuﬂ)AY ! Z Ca|uyl
JEA JEALNB2 | \% n/dn/BJ (7—) (6)
A (N2 dy\ 12 |Bj0(7) + Coénuﬂ L Clluy|
fry ’}/— —_— ~
n (dn) ( ) <]€ZAk |B ) ]6;]32 | /n/dnﬂj(T)
= 'yai/\nn(l/—ﬂ/Qd;(V‘*‘l)/?( Z B T~) + Canuﬂ)V—l Z C'“Z'
JEAL |ﬁ]<7—)|y jEALNB2 | V n/dTUBJ(T)
where \/n/d,j3;(1) = . Because \,n@D/2q, 1)/ _y o by (C9b), I;4 > 0 dominates

R; and R,. Hence, by (4) and (6), if there exists at least one (3;(7) equal to 0, /; > 0 dominates

R, and R, for sufficiently large n.



Next, consider [5:
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Because \,n~D/2q; 02 Ly o by (C9b), I, > 0 dominates R, and R,.
Therefore, by (4), (6), and (7), for sufficiently large n,

WolBo(7) + Canu, 7} = W {By(7),7} > 0

which proves (1) of Theorem 2.4.

Next, we show variable selection consistency. Let 3(7) = B,(7) + Ca,u. Then, we have
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It suffices to show that for sufficiently large n,
1 1
~Wa{Bp, ()", 0"} 7] = —WL[{Bp, (7). B, ()"}, 7] < 0.

As in the proof of consistency of the adaptive group bridge estimator, .J; and .J, are of order C?a?2.



Consider Js:
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Because 7071 (b —a) < b7 — a7 for 0 < a < b, similarly to (6) we have
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Because /n/d,f3;() = 1) for j € By and \,n"~ D/2g, D2y o6 by (C9b), Jgy — Jag <
0 dominates J; and Jg Slmllarly to (7), —J33 < 0 also dominates J; and Jy. Therefore, for
sufficiently large n,

%Wn[{ﬂBl (T)Tv OT}T7 T] - %Wn[{ﬁBl (T)T7 /BBQ <T>T}T? T] < 07

which shows individual variable selection consistency. .
To show the asymptotics B (7), we study the asymptotic normality of 3(7), which is the
solution of S,,(b, 7) = 0, when d,, is fixed. Using (5.1) and (5.2) of He et al. [3], we have

1 : . 3 " T -1 —eala
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s (v, u)

)
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Using (9), similarly to Peng and Fine [4], we can show S,,(8,(7), 7) is asymptotically equivalent to
n= 23" mi(r) and nt/2{ By (1) —By (1)} is asymptotically equivalent to n Y23 H{Bo (1)} (7).
Therefore, by the multivariate central limit theorem, n'/2{3,(7) — B,(7)} converges to
N0, H{By(7)} L E{m (7)m (7)T }H{By(7)} ') in distribution for fixed d,,.
Next, we show the asymptotics of BBl (1), where Bp, (1) = {B,0(7) + Covyuy; j € By} Let
b; be the dimension of B; for ¢ = 1, 2. Note that Theorem 2.5 works on restricted 3;’s and Z; ; for
j € Bj. Thus, we have

185, (1) = Bp, o(7)| = Op(n™"), 1B(7) = Bo(r)]| = Op(n).

Consider Vi, = W,,{B,(7) + n=2(a”,0")T 7} — W, {B,(7), 7}, where a = (a1, ..., ay, )" isa
b;—dimensional vector and O is a b,—dimensional zero vector. From the consistency of B (1), we
have B(7) — B(r) = n~'/2(a”, 07)7 with large probability, where & = argmin{V4,,(a)}. Similarly
to Huang et al. [5], V},, can be written as

Vi =n"'2(@",0")7S,{B,(r), 7} + laTHn{ﬁo, Tta+a’oy(l)a
\@ao n=2ag|\v 1Bj.0(T) I\
+An z {02 PR (2 )
JEALNB; JEALNB] J
:Tln(a)—i-Tgn( ).

By Peng and Fine [4], n=Y/2(17,07)7S,.{B,(7), 7} is asymptotically equal to n =1 (17,07)T """ ni(7),
where 1 is a b;—dimensional vector and 0 is a by—dimensional zero vector. Thus, 77,,(a) converges

in distribution to a’ N{0,%,(7)} + a’H,1{B,, 7 }a/2. Similarly to Huang et al. [6], by (C9b)

we have Ty,(a) — 0. Thus, V3, converges in distribution to V;(a). By the argmin continuous
mapping theorem of Kim and Pollard [7], v/n(3 B, — Bp, o) converges to argmin{V;(a)}. This
completes the proof of Theorem 2.5.
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