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1 Proof of Lemma 2.1
We have the following assumptions: We assume as follows:

(a)
∫ L
0
λG0 (t)dt < ∞ and P{Yi(t) = 1} > 0 for t ∈ [0, L] , i = 1, . . . , n, and d4n/n → 0 as

n→∞.

(b) Zij is bounded almost surely for all i, j and αT Z̃ is bounded almost surely for any Z̃ and
α ∈ B, where B is a neighborhood α0.

(c) For d = 0, 1, 2, there exists a neighborhood B of α0 such that s(d)G (α, t) are continuous
functions and supt∈(0,L),α∈B ‖S

(d)
G (α, t)− s(d)G (α, t)‖ → 0 in probability.

(d) The matrix A(α0) =
∫ L
0
vG(α0, t)s

(0)
G (α0, t)λ

G
0 (t)dt is positive definite, where vG(α, t) =

s
(2)
G (α, t)/s

(0)
G (α, t)− eG(α, t)⊗2 and eG(α, t) = s

(1)
G (α, t)/s

(0)
G (α, t).

(e) For all α ∈ B, t ∈ [0, L], S(1)
G (α, t) = ∂S(0)

G (α, t)/∂α, and S(2)
G (α, t) = ∂2S(0)

G (α, t)/(∂α∂αT ),
where S(d)

G (α, t), d = 0, 1, 2 are continuous functions of α ∈ B uniformly in t ∈ [0, L] and
are bounded on B × [0, L], and s(0)G is bounded away from zero on B × [0, L].

Define MG
i (t) = NG

i (t)−
∫ t
0
Yi(u)eα

T
0 Z̃dΛG

0 (u). Then,

Λ̂G
0 (t : α0)− ΛG

0 (t) =

∫ t

0

∑n
i=1 dM

G
i (u)

nS(0)
G (α0, u)

.
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We have

Λ̂G
0 (t : α̂)− ΛG

0 (t) =

∫ t

0

{
1

nS(0)
G (α̂, u)

− 1

nS(0)
G (α0, u)

}
d

n∑
i=1

MG
i (u)

+

∫ t

0

{
1

S(0)
G (α̂, u)

− 1

S(0)
G (α0, u)

}
S(0)
G (α0, u)dΛG

0 (u)

+

∫ t

0

1

nS(0)
G (α0, u)

d
n∑
i=1

MG
i (u).

(1)

Let var{MG
i (t)} =

∫ t
0
s
(0)
G (α0, u)dΛG

0 (u) be σ2(α0, t). Then, by the proof of Lemma 5 of Ni
et al. [1], n−1/2

∑n
i=1M

G
i (t)/σ(α0, t) converges weakly to a tight zero mean Gaussian process

with continuous sample paths. In addition, σ(α0, t) is bounded and bounded away from 0 due to
Conditions (a), (b) and (e). Similarly to Theorem 1 of Ni et al. [1], using Conditions (a) to (e) we
can show ‖α̂−α0‖ = Op(

√
dn/n). Then, by Taylor expansion, Conditions (c) and (e), Lemma 1

of Lin [2], the first term of (1) ×
√
n/dn is

√
n/dn

∫ t

0

{ 1

nS(0)
G (α̂, u)

− 1

nS(0)
G (α0, u)

}
d

n∑
i=1

MG
i (u)

=
1√
dn

∫ t

0

{ 1

S(0)
G (α̂, u)

− 1

S(0)
G (α0, u)

}
σ(α0, t)d

∑n
i=1M

G
i (u)√

nσ(α0, t)

=
1√
dn

∫ t

0

{
− S(1)

G (α∗, u)

S(0)
G (α∗, u)2

(α̂−α0)
}
σ(α0, t)d

∑n
i=1M

G
i (u)√

nσ(α0, t)

= Op(
1√
n

) = op(1),

where α∗ lies between α̂ and α0, which holds uniformly in t. This shows the first term of (1) is
oP (
√
dn/n) uniformly in t. The second term of (1) ×

√
n/dn converges to

−
√
n/dn

∫ t
0
{e(α0, u)dΛG

0 (u)}T (α̂ − α0) in probability by Taylor expansion and Conditions (a),
(c), and (e). Because of ‖α̂−α0‖ = Op(

√
dn/n) and the boundedness of ΛG

0 (t) and e(α0, t), the
second term of (1) is Op(

√
dn/n) uniformly in t. The third term of (1) ×

√
n/dn converges to

1√
dn

∫ t

0

1

s
(0)
G (α0, u)

σ(α0, t)d

∑n
i=1M

G
i (u)√

nσ(α0, t)

in probability by Condition (c). Because s(0)G (α0, u) and σ(α0, t) are bounded, and bounded away
from 0, the third term of (1) ×

√
n/dn is Op(1/

√
dn) = op(1) uniformly in t and thus the third

term of (1) is oP (
√
dn/n) uniformly in t. Therefore, supt |Λ̂G

0 (t : α̂)−ΛG
0 (t)| = Op(

√
dn/n). By

Taylor expansion and the consistency of Λ̂G
0 (t : α̂),

√
n/dn{Ĝ(t|Z̃) − G(t|Z̃)} is asymptotically
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equivalent to

−
√
n/dnG(t|Z̃){Λ̂G

0 (t : α̂) exp(α̂T Z̃)− ΛG
0 (t) exp(αT

0 Z̃)}
= −

√
n/dnG(t|Z̃)[{Λ̂G

0 (t : α̂) exp(α̂T Z̃)− Λ̂G
0 (t : α̂) exp(αT

0 Z̃)}
+ {Λ̂G

0 (t : α̂) exp(αT
0 Z̃)− ΛG

0 (t) exp(αT
0 Z̃)}]

= −
√
n/dnG(t|Z̃)[Λ̂G

0 (t : α̂) exp(αT
∗ Z̃)Z̃T (α̂−α0) + exp(αT

0 Z̃){Λ̂G
0 (t : α̂)− ΛG

0 (t)}],

where α∗ lies between α0 and α̂. Because of supt |Λ̂G
0 (t : α̂)−ΛG

0 (t)| = Op(
√
dn/n), ‖α̂−α0‖ =

Op(
√
dn/n), and Conditions (a) & (b), we have supt |Ĝ(t|Z̃)−G(t|Z̃)| = Op(

√
dn/n).

2 Proofs of Lemma 2.3 and Theorem 2.5
Let SGn (b, τ) = n−1/2

∑n
i=1 Zi[I{Xi ≤ g(XT

i b)}I(δi = 1)/G(Xi|Z̃) − τ ]. Because of (C1), we
have supt<ω |Ĝ(t|Z̃)−G(t|Z̃)| = op(n

−1/2+qd
1/2
n ) for any q > 0. Consider

n−1/2Sn(b, τ)− n−1/2SGn (b, τ)

= n−1
( n∑
i=1

Zi

[I{Xi ≤ g(ZTi b)}I(δi = 1)

Ĝ(Xi|Z̃i)
− τ
]
−

n∑
i=1

Zi

[I{Xi ≤ g(ZTi b)}I(δi = 1)

G(Xi|Z̃i)
− τ
])

= n−1
n∑
i=1

Zi

[I{Xi ≤ g(ZTi b)}I(δi = 1){G(Xi|Z̃i)− Ĝ(Xi|Z̃i)}
Ĝ(Xi|Z̃i)G(Xi|Z̃i)

]
.

Because of the boundedness of the dn elements of Zi, (C1), and Lemma 2.1, for 0 < q ≤ 1/8 we
have

sup
b
‖n−1/2Sn(b, τ)− n−1/2SGn (b, τ)‖ = op(n

−1/2+qd1/2n dn) = op(1). (2)

By Chebyshev’s inequality, (C2), and (C3) for any ε,

P (‖n−1/2SGn (b, τ)− E{n−1/2S̃n(b, τ)}‖ ≥ ε)

≤ 1

ε2
E‖n−1/2SGn (b, τ)− E{n−1/2S̃n(b, τ)}‖2

= O(
dn
nε2

) = o(1),

which holds uniformly in b ∈ B(ρ0). Similarly, by Chebyshev’s inequality, (C3), (C4), (C6), and
(C7), for any ε,

P (‖n−1/25 S̃n(b, τ)−H(b)‖ ≥ ε

dn
) ≤ O(

d4n
nε2

) = o(1), (3)

which holds uniformly in b ∈ B(ρ0).
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For 0 < q ≤ 1/8, by (2) and (C2) we have

1

n
Un(b, τ) =

1

n

{ n∑
i=1

I(δi = 1)
∣∣∣g−1(Xi)− bTZi

Ĝ(Xi|Z̃)

∣∣∣
+
∣∣∣M − bT

n∑
i=1

−ZiI(δi = 1)

Ĝ(Xi|Z̃)

∣∣∣+
∣∣∣M − bT

n∑
i=1

2Ziτ
∣∣∣}

=
1

n

{ n∑
i=1

I(δi = 1)
∣∣∣g−1(Xi)− bTZi

G(Xi|Z̃)

∣∣∣+
∣∣∣M − bT

n∑
i=1

−ZiI(δi = 1)

G(Xi|Z̃)

∣∣∣
+
∣∣∣M − bT

n∑
i=1

2Ziτ
∣∣∣}+ op(n

−1/2+qd3/2n ),

where op(n−1/2+qd
3/2
n ) = op(1). Let

Ũn(b, τ) =
n∑
i=1

I(δi = 1)
∣∣∣g−1(Xi)− bTZi

G(Xi|Z̃)

∣∣∣+
∣∣∣M − bT

n∑
i=1

−ZiI(δi = 1)

G(Xi|Z̃)

∣∣∣
+
∣∣∣M − bT

n∑
i=1

2Ziτ
∣∣∣.

First of all, we show consistency of β̂(τ). It is sufficient to show that for any ε > 0, there exists a
large constant C such that

P
[

inf
‖u‖=1

Wn{β0(τ) + Cαnu, τ} > Wn{β0(τ), τ}
]
> 1− ε,

where ‖u‖ = 1. Let αn =
√
dn/n. We have

1

n
[Wn{β0(τ) + Cαnu, τ} −Wn{β0(τ), τ}]

=
1

n
[Un{β0(τ) + Cαnu, τ} − Un{β0(τ), τ}] +Dn,

where

Dn =
λn
n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ)|
|β̃j(τ)|ν

)γ
.

By Taylor expansion, for 0 < q ≤ 1/4 we have

1

n
[Un{β0(τ) + Cαnu, τ} − Un{β0(τ), τ}]

=
1

n
Cαnu

T 5 Ũn{β0(τ), τ}+
C2

2n
α2
nu

T 52 Ũn{β∗(τ), τ}u + op(n
−1/2+qdn).

= R1 +R2 + op(1),
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where β∗(τ) is between β0(τ) + αnu and β0(τ). By the Cauchy-Schwartz inequality, (C1), and
(C2),

R1 =
1

n
Cαnu

T 5 Ũn{β0(τ), τ} =
1

n
Cαn‖u‖‖ 5 Ũn{β0(τ), τ}‖ = COp(α

2
n)‖u‖.

By5Ũn{b, τ} = SGn {b, τ} = S̃n{b, τ}+op(1), (3), and (C4),R2 = C2α2
nu

T52Ũ{β0(τ), τ}u{1+
op(1)}. Therefore, R1 is of order Cα2

n and R2 is of order C2α2
n. If we choose sufficiently large C,

R2 > 0 dominates R1, which shows Lemma 2.3.
Next, Dn can be written as:

Dn =
λn
n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ)|
|β̃j(τ)|ν

)γ
=
{λn
n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K1∑
k=1

ck

( ∑
j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)γ}
+
λn
n

K∑
k=K1+1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
= I1 + I2.

Consider I1 first. We consider 2 cases: Case i) when βj,0(τ) 6= 0 for all j ∈ Ak for all k ∈
{1, 2, . . . , K1}; and Case ii) there is at least one βj,0(τ) such that βj,0(τ) = 0 for some j ∈ Ak for
some k ∈ {1, 2, . . . , K1}.

For Case i), we assume that βj,0(τ) 6= 0 for all j ∈ Ak for all k ∈ {1, 2, . . . , K1}. Since
bγ−aγ ≤ 2(b−a)bγ−1 for 0 < a ≤ b and |βj,0(τ)| = Op{(dn/n)ν1/2} with 0 < ν1 < 1 as in (C8b)
for j ∈ B1 and any τ ∈ [τL, τU ], we have that for sufficiently large n such that Cαn ≤ |βj,0(τ)| for
all j ∈ Ak and any τ ∈ [τL, τU ],

λn
n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ)|
|β̃j(τ)|ν

)γ
≤ λn

n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ)|+ C|uj|αn
|β̃j(τ)|ν

)γ
− λn

n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ)|
|β̃j(τ)|ν

)γ
≤ 2

λn
n

K1∑
k=1

ck

{(∑
j∈Ak

|βj,0(τ)|+ C|uj|αn
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak

C|uj|αn
|β̃j(τ)|ν

}
≤ 2

λn
n

K1∑
k=1

ck

{(∑
j∈Ak

2|βj,0(τ)|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak

C|uj|αn
|β̃j(τ)|ν

}
≤ 2α2

nλn(dnn)−1/2
K1∑
k=1

ck

{(∑
j∈Ak

2|βj,0(τ)|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak

C|uj|
|β̃j(τ)|ν

}
.

(4)

5



Using |β̃j(τ)|ν →p |βj,0(τ)|ν 6= 0 for j ∈ B1, (C8b) and (C9b), this term is dominated by R2 > 0,
where→p indicates convergence in probability.

For Case ii), assume that there are βj,0(τ)’s such that βj,0(τ) = 0 for some j ∈ Ak for some
k ∈ {1, 2, . . . , K1}. Consider∑

j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

−
∑

j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

=
( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

−
∑

j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)
+

∑
j∈Ak∩B2

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

=
( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

−
∑

j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)
+

∑
j∈Ak∩B2

Cαn|uj|
|β̃j(τ)|ν

= I11 + I12.

We have

|I11| ≤
∑

j∈Ak∩B1

Cαn|uj|
|β̃j(τ)|ν

,

|I12| =
∑

j∈Ak∩B2

Cα1−ν
n |uj|

|
√
n/dnβ̃j(τ)|ν

.

(5)

Since β̃j(τ) converges in probability to non-zero βj,0(τ) = Op{(dn/n)ν1/2} for j ∈ B1 and
maxk |Ak ∩ B1| = O{(n/dn)ν2/2}, |I11| ≤ Op(α

1−νν1−ν2
n ) = op(α

1−ν
n ) because νν1 + ν2 < ν

as in (C8b). On the other hand, because
√
n/dnβ̃j(τ) = Op(1) for j ∈ B2, |I12| is at least

Op(α
1−ν
n ). Thus, I12 > 0 dominates I11 as n→∞. Therefore, for sufficiently large n,∑

j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

>
∑

j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

.
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Then, due to γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, for sufficiently large n we have

λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

( ∑
j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)γ
≥ γ

λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

−
∑

j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)
= γ

λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj| − |βj,0(τ)|
|β̃j(τ)|ν

+
∑

j∈Ak∩B2

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)
= γ

λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj| − |βj,0(τ)|
|β̃j(τ)|ν

+ γ
λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B2

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

= I13 + I14.

By similar argument to (5), I14 dominates I13. Consider I14:

γ
λn
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B2

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

= γ
λn
n

( n
dn

)ν/2(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B2

Cαn|uj|
|
√
n/dnβ̃j(τ)|ν

= γ
λn
n

( n
dn

)ν/2(dn
n

)1/2(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B2

C|uj|
|
√
n/dnβ̃j(τ)|ν

= γα2
nλnn

(ν−1)/2d−(ν+1)/2
n

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1 ∑
j∈Ak∩B2

C|uj|
|
√
n/dnβ̃j(τ)|ν

,

(6)

where
√
n/dnβ̃j(τ) = Op(1). Because λnn(ν−1)/2d

−(1+ν)/2
n → ∞ by (C9b), I14 > 0 dominates

R1 and R2. Hence, by (4) and (6), if there exists at least one βj,0(τ) equal to 0, I1 > 0 dominates
R1 and R2 for sufficiently large n.
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Next, consider I2:

λn
n

K∑
k=K1+1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
=
λn
n

( n
dn

)νγ/2 K∑
k=K1+1

ck

( ∑
j∈Ak∩B2

Cαn|uj|
(
√
n/dn|β̃j(τ)|)ν

)γ
= α2λnn

γ(ν−1)/2d−1+γ(1−ν)/2n

K∑
k=K1+1

ck

( ∑
j∈Ak∩B2

C|uj|
(
√
n/dn|β̃j(τ)|)ν

)γ
.

(7)

Because λnnγ(ν−1)/2d
−1+γ(1−ν)/2
n →∞ by (C9b), I2 > 0 dominates R1 and R2.

Therefore, by (4), (6), and (7), for sufficiently large n,

Wn{β0(τ) + Cαnu, τ} −Wn{β0(τ), τ} > 0

which proves (1) of Theorem 2.4.
Next, we show variable selection consistency. Let β(τ) = β0(τ) + Cαnu. Then, we have

1

n
Wn[{βB1

(τ)T ,0T}T , τ ]− 1

n
Wn[{βB1

(τ)T ,βB2
(τ)T}T , τ ]

=
1

n

(
Wn[{βB1

(τ)T ,0T}T , τ ]−Wn[{βB1,0(τ)T ,0T}T , τ ]
)

− 1

n

(
Wn[{βB1

(τ)T ,βB2
(τ)T}T , τ ]−Wn[{βB1,0(τ)T ,0T}T , τ ]

)
=

1

n

(
Un[{βB1

(τ)T ,0T}T , τ ]− Un[{βB1,0(τ)T ,0T}T , τ ]
)

− 1

n

(
Un[{βB1

(τ)T ,βB2
(τ)T}T , τ ]− Un[{βB1,0(τ)T ,0T}T , τ ]

)
+
{λn
n

K1∑
k=1

ck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ}
= J1 − J2 + J3.

It suffices to show that for sufficiently large n,

1

n
Wn[{βB1

(τ)T ,0T}T , τ ]− 1

n
Wn[{βB1

(τ)T ,βB2
(τ)T}T , τ ] < 0.

As in the proof of consistency of the adaptive group bridge estimator, J1 and J2 are of order C2α2
n.
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Consider J3:

λn
n

K1∑
k=1

ck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
=
λn
n

K1∑
k=1

ck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K∑
k=K1+1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
= J31 − J32 − J33

(8)

Because γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, similarly to (6) we have

J32 − J31

=
λn
n

K1∑
k=1

ck

(∑
j∈Ak

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
− λn

n

K1∑
k=1

ck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ
≥ λn

n

K1∑
k=1

γck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1( ∑
j∈Ak∩B2

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)
= α2λnn

(ν−1)/2d−(ν+1)/2
n

K1∑
k=1

γck

( ∑
j∈Ak∩B1

|βj,0(τ) + Cαnuj|
|β̃j(τ)|ν

)γ−1
×

∑
j∈Ak∩B2

C|uj|
|
√
n/dnβ̃j(τ)|ν

.

Because
√
n/dnβ̃j(τ) = Op(1) for j ∈ B2 and λnn(ν−1)/2d

−(ν+1)/2
n → ∞ by (C9b), J31 − J32 <

0 dominates J1 and J2. Similarly to (7), −J33 < 0 also dominates J1 and J2. Therefore, for
sufficiently large n,

1

n
Wn[{βB1

(τ)T ,0T}T , τ ]− 1

n
Wn[{βB1

(τ)T ,βB2
(τ)T}T , τ ] < 0,

which shows individual variable selection consistency.
To show the asymptotics β̂B1

(τ), we study the asymptotic normality of β̃(τ), which is the
solution of Sn(b, τ) = 0, when dn is fixed. Using (5.1) and (5.2) of He et al. [3], we have

1

Ĝ(t|Zi)
− 1

G(t|Zi)
=

1

nG(t|Zi)

n∑
i=1

∫ L

0

[
hT (t, 0,Zi)A(α0)

−1{Zi − eG(α0, t)}

+
eα

T
0 ZiI(u ≤ t)

s
(0)
G (α0, u)

]
dMG

i (u) + op(n
−1/2).

(9)
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Using (9), similarly to Peng and Fine [4], we can show Sn(β0(τ), τ) is asymptotically equivalent to
n−1/2

∑n
i=1 ηi(τ) and n1/2{β̃0(τ)−β0(τ)} is asymptotically equivalent to n−1/2

∑n
i=1 H{β0(τ)}−1ηi(τ).

Therefore, by the multivariate central limit theorem, n1/2{β̃0(τ)− β0(τ)} converges to
N(0,H{β0(τ)}−1E{η1(τ)η1(τ)T}H{β0(τ)}−1) in distribution for fixed dn.

Next, we show the asymptotics of β̂B1
(τ), where βB1

(τ) = {βj,0(τ) + Cαnuj; j ∈ B1}T . Let
bi be the dimension of Bi for i = 1, 2. Note that Theorem 2.5 works on restricted βj’s and Zi,j for
j ∈ B1. Thus, we have

‖β̂B1
(τ)− βB1,0(τ)‖ = Op(n

−1), ‖β̂(τ)− β0(τ)‖ = Op(n
−1).

Consider V1n = Wn{β0(τ) + n−1/2(aT ,0T )T , τ} −Wn{β0(τ), τ}, where a = (a1, . . . , ab1)
T is a

b1–dimensional vector and 0 is a b2–dimensional zero vector. From the consistency of β̂(τ), we
have β̂(τ)−β(τ) = n−1/2(âT ,0T )T with large probability, where â = argmin{V1n(a)}. Similarly
to Huang et al. [5], V1n can be written as

V1n = n−1/2(aT ,0T )TSn{β0(τ), τ}+
1

2
aTH11{β0, τ}a + aTop(1)a

+ λn

K1∑
k=1

ck

{( ∑
j∈Ak∩B1

|βj,0(τ) + n−1/2aj|
|β̃j(τ)|ν

)γ
−
( ∑
j∈Ak∩B1

|βj,0(τ)|
|β̃j(τ)|ν

)γ}
= T1n(a) + T2n(a).

By Peng and Fine [4], n−1/2(1T ,0T )TSn{β0(τ), τ} is asymptotically equal to n−1(1T ,0T )T
∑n

i=1 ηi(τ),
where 1 is a b1–dimensional vector and 0 is a b2–dimensional zero vector. Thus, T1n(a) converges
in distribution to aTN{0,Σ11(τ)} + aTH11{β0, τ}a/2. Similarly to Huang et al. [6], by (C9b)
we have T2n(a) → 0. Thus, V1n converges in distribution to V1(a). By the argmin continuous
mapping theorem of Kim and Pollard [7],

√
n(β̂B1

− βB1,0) converges to argmin{V1(a)}. This
completes the proof of Theorem 2.5.
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